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Chapter 1

Introduction

Current mobility services cannot compete on equal terms with self-owned mobility prod-
ucts concerning service quality. Due to supply and demand imbalances, ridesharing users
invariably experience delays, price surges, and rejections. Traditional approaches often
fail to respond to demand fluctuations adequately since service levels are, to some ex-
tent, bounded by fleet size. With the emergence of autonomous vehicles (AVs), however,
the characteristics of mobility services change, and new opportunities to overcome the
prevailing limitations arise.

This thesis proposes a series of strategies to help autonomous transportation
providers meet the service quality expectations of diversified user bases. We show how
autonomous mobility-on-demand (AMoD) systems can develop to revolutionize urban
transportation, improving reliability, efficiency, and accessibility. First, in Section 1.1,
we introduce the research on the dynamic fleet management of AVs and present the
autonomous mobility scenarios and stakeholders considered in this thesis. Then, in
Section 1.2, we describe a series of research challenges not yet addressed in the related
literature. Next, Section 1.3 presents our research questions and Section 1.4 defines
our research approach. Finally, in Section 1.5, we conclude with an overview of this
thesis.

1.1 Background

The following sections introduce the concepts and background research on fleet manage-
ment of autonomous vehicles. First, in Section 1.1.1, we describe the main implications
of AV implementation. Next, in Section 1.1.2, we discuss the possible impacts of a shared
approach to urban mobility. Then, in Section 1.1.3, we present the existing concepts on
dynamic fleet management, highlighting the close relation with the classic vehicle rout-
ing problem (VRP), and identifying the particularities of AV’s implementation. Finally,
Section 1.1.4 further details the autonomous mobility scenarios considered in this thesis,
and Section 1.1.5 identifies the requirements and goals of AMoD systems’ stakeholders.

1



2 1 Introduction

1.1.1 Autonomous vehicles

The advent of autonomous vehicles represents a disruptive change to transportation sys-
tems with uncertain repercussions. Full vehicle automation, that is, the ability to deal
with any roadway and environmental conditions [85], is currently the most anticipated
vehicle technology: major automotive and technology companies (e.g., Ford, Mercedes-
Benz, Tesla, Google, and Uber) have all declared that fully autonomous vehicles will
rollout on US roads in the next decade [43]. Automation is seemingly a natural step
forward on today’s available vehicles. A culmination of technologies such as geolocal-
ization, self-parking, adaptive cruise control (ACC), surrounding alerts and stop-and-go
self-steering [99].

In the following, we summarize the major impacts widespread AV adoption will po-
tentially cause in different areas:

• Mobility: AVs could facilitate personal independence and mobility, attending non-
drivers, such as the teenagers, the elderly, and the disabled [33].

• Parking: AVs can self-park in less expensive areas and even communicate with
parking infrastructures beforehand. This feature avoids cruising for parking, a
practice that usually incurs additional fuel expenses and unwanted delays [33].

• Car-ownership: AVs may reduce car ownership, especially in densely-populated
areas, allowing travelers to rely on shared autonomous vehicles [59]. Conversely,
some motorists may prefer to keep their vehicles for convenience or privacy’s sake.

• Trip making: Increased convenience, affordability, and people’s willingness to
travel may induce additional vehicle travel, increasing external costs such as park-
ing, congestion, and pollution [59, 99].

• Time expenditure: Commuters may enjoy their in-vehicle time differently, either
relaxing or being productive. Therefore, personal value of travel times (VOTTs)
are likely to decrease [33].

• Infrastructure: AVs could move in coordination with intelligent infrastructure, al-
lowing quicker reaction times and closer spacing between vehicles to counteract
increased demand [96].

• Land use patterns: Public spaces may be redesigned to reflect a mobility future with
decreased parking needs, and possibly fewer vehicles, due to shared on-demand
transportation [99]. Additionally, stimulated by AVs’ convenience, customers may
find it advantageous to purchase cheaper houses in exurban locations [59].

• Traffic: AVs are expected to efficiently use existing lanes and intersections, keep
shorter gaps between vehicles, and select more efficient route choices, ultimately
leading to reduced congestion [33]. However, these benefits only add up to be-
come a useful congestion-relieving tool if a significant share of the fleet is au-
tonomous. The success of shared on-demand transportation services may also
decrease traffic, as they become a convenient alternative to the ownership model.

• Public transit: in case AVs stimulate more sprawled land use development patterns,
public transit travel demands may be reduced. Overall, customers may find it more
convenient to rely on door-to-door on-demand services [59].
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Nevertheless, the precise time AVs will become completely reliable, affordable, and
broadly adopted is still uncertain. Many side aspects still need to be addressed before
AVs successfully debut, among them:

• Technical reliability: AVs will probably require more years of development and
testing before safety is proven under all possible conditions [59].

• Consumer adoption: Besides strict safety requirements, varying degrees of con-
sumer trust and purchasing power may result in a slow fleet turnover, creating a
mixed-traffic environment with roadway management problems [59].

• Regulation: Since legal and supporting infrastructures are generally unable to
evolve as fast as technology development, AVs are likely to be unevenly deployed.
Ultimately, during the implementation phase, authorities are expected to establish
performance standards to guarantee that AVs can safely operate on public roads
[33].

• Cost: AVs may require additional sensors (e.g., optical, infrared, radar, ultrasonic,
laser), services (e.g., navigation, computation), maintenance (for cleaning or re-
pairing critical components), and testing [59]. These elements add up to the final
price, making AVs unaffordable for potential buyers and ultimately delaying mass
adoption.

1.1.2 Shared autonomous vehicles

The world level of urbanization is likely to increase steadily in the next decades [109].
This growth tends to be accompanied by a series of underlying repercussions. While
urban land will increasingly become scarce, the demand for city services and infrastruc-
ture will probably also rise. As a result, current urban mobility deficiencies, such as lack
of parking spaces, congestion, and low vehicle occupation rates, may rise if the current
mobility paradigm remains unaltered [79]. One of the leading strategies to cope with
these unwanted repercussions is adopting shared, mobility-on-demand (MoD) services.
These services may significantly reduce road congestion and emissions once they lie in
between public and private transportation modes, being shared and flexible at the same
time [100]. However, Tachet et al. [100] show that most world urban centers have a
high unexplored “shareability” rate. The majority of their current single-passenger rides
could seamlessly be combined, even for low trip density scenarios and considering no
longer than five-minute delays.

Previously, the technological revolution that led to smartphone mass-adoption en-
abled the development of today’s MoD services. Perhaps, the missing component to
enable widespread vehicle sharing and ultimately make cities keep pace with a growing
transportation demand lies in another technological advance, namely, autonomous vehi-
cles [98]. Recent studies have shown that an autonomous mobility-on-demand (AMoD)
system employing a fleet of shared autonomous vehicles (SAVs) could significantly im-
prove mobility in urban environments. Despite the uncertainties regarding autonomous
vehicles implementation, most SAV implementation simulations (e.g., [2, 12, 34]) indi-
cate that replacing current transportation modes may be extremely beneficial in urban
environments, decreasing the active number of running vehicles while keeping a short
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response time. Smart fleet routing may even avoid congestion, as opposed to the claim
that AV relocation protocols would worsen traffic conditions due to additional trips of
empty vehicles [84].

1.1.3 Dynamic fleet management

Fleet management is an activity that encompasses the fields of transportation, distribu-
tion, and logistics. Its primordial objective consists of improving operational efficiency
and service quality while minimizing overall costs [11]. As pointed out by Zeimpekis
et al. [119], at the core of fleet management and supply-chain coordination lies the VRP,
a highly challenging optimization combinatorial optimization problem first proposed in
[29]. In broad terms, it deals with the optimal assignment of transportation orders to a
fleet of vehicles and the sequencing of stops for each vehicle representing the formation
of routes.

Due to the remarkable amount of logistical contexts a fleet may operate, many VRP
variants have been studied in the literature. Next, we present the VRP variants that best
capture the characteristics of the transportation system considered in this thesis:

• Dynamic VRP (DVRP): refers to environments in which events, such as customer
requests, traffic congestion, order update, and delays, are dynamically revealed to
the decision maker over time [119].

• Dynamic stochastic VRP (DSVRP): When it comes to defining the way dynamic
information evolves during the optimization process, DVRPs can be separated into
two categories: dynamic and deterministic and dynamic and stochastic. While the
former deals with an unknown input, the latter assumes that exploitable stochastic
knowledge is available on the dynamically revealed information [80]. The main
phenomena considered in the literature to create such knowledge are related to (i)
demands (space-time likelihood of occurrence), (ii) customers (present or absent),
and (iii) times (service or traveling) [38]. Hence, predictive analytics, that is, the
processing of the system’s historical data to create stochastic distribution models,
can ultimately improve the system’s future states [51].

• VRP with pickups and deliveries (VRPPD): transportation requests consist of point-
to-point transports, that is, movements of people or cargo between origins and des-
tinations (ODs) [10, 104]. Depending on the way vehicles move between points,
such problems may be classified as (i) many-to-many, (iii) one-to-many-to-one,
and (ii) one-to-one [10]. In (i), any point can serve as a source or destination for
any commodity. In (ii), commodities may be transported from the depot to the
customers and vice-versa. Finally, in (iii), each commodity has a given origin and
a given destination (e.g., door-to-door transportation systems).

• VRP with time windows (VRPTW): Requests are expected to be serviced within
predetermined time windows (TWs), defined by earliest and latest arrival times.
When arriving within a TW is unfeasible, a provider can wait until the earliest
arrival time (for static demands placed in advance), allow flexible latest arrival
times, or deny service.
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• Capacitated VRP (CVRP): Vehicles have capacity constraints (e.g., weight, volume,
number of seats) that restrict unlimited loading [104].

• Heterogeneous fleet VRP (HVRP): Fleet may be composed of vehicles with different
capacities [80].

Hence, a VRP variant able to seize all the different properties of AMoD systems can
be identified as DSHCVRPPDTW, that is, dynamic stochastic heterogeneous fleet capaci-
tated vehicle routing problem with pickups, deliveries, and time windows. Variants such
as the DSHCVRPPDTW, whose purpose is to deal with real-life applications, are gener-
ally denominated as rich vehicle routing problems (RVRPs). The term “rich” embodies
the different decision levels (strategical, tactical, and operational) considered [51].

Unlike VRPs, in which all data is known in advance, DVRP variants require that
scheduling plans are adjusted online as additional information is received. As a re-
sult, optimization strategies are usually run repeatedly [51]. However, Psaraftis et al.
[83] point out that most DVRP studies propose adaptations of known algorithms for
the static version of the problem. The authors argue that the pressing time constraints
typical in dynamic settings justify the predominance of (meta)heuristic approaches such
as Tabu Search, Neighborhood Search, Insertion Methods, Nearest Neighbor, Genetic
Algorithms, Ant Colony Optimization, Particle Swarm Optimization, and Column Gen-
eration. In contrast, few approaches are essentially dynamic and stochastic, among
them: Markov Decision Processes, Approximate Dynamic Programming, Reinforcement
Learning, Waiting-Relocation Strategies, and Queueing-Polling Strategies.

1.1.4 Future mobility scenarios

In the following, we describe the future logistical scenarios enabled by vehicle automa-
tion that we intend to address in this thesis. The predominance of one scenario over
another may be greatly influenced by particular characteristics of each area, such as ge-
ography, traffic conditions, and the existence of other transit modes. For example, in
densely populated urban centers, AMoD services may reach a break-even point sooner,
representing a cost-efficient alternative to owning a vehicle. In contrast, suburban in-
habitants may find it more convenient to commute in their own vehicles. Sharing and
ownership scenarios, however, are not exclusive. As pointed out by Campbell [14], in-
centives to simultaneously own and share AVs could be higher than solely relying on
ridesharing services, such that future AV fleets could ultimately be a mosaic of privately-
owned vehicles working as freelancers at idle times.

The triumph of ridesharing

Litman [59] estimates that AVs are likely to become affordable by 2040, which may
further expand taxi and carsharing services for low-income passengers. McKinsey &
Company and Bloomberg New Energy Finance [65] agree that the costs of commuting
via shared, self-driving vehicles may eventually become as affordable as public transit
modes. Consequently, stimulated by the additional convenience of a door-to-door on-
demand service, many passengers may be compelled to subscribe to an AMoD provider,
choosing SAVs as their main transportation mode or as first- and last-mile options. Stone
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et al. [99] suggests that public transportation could even change its form: from shared
and large vehicles to personal and small capacity vehicles designed to attend one in-
dividual transportation demand at a time. Sharing services reduce personal mobility
costs once all expenses of purchasing, maintaining, and insuring vehicles are distributed
across a large user base [98]. Litman [59] points out that once benefits are proven, many
households would likely be keen on relying on such services, reducing their vehicle own-
ership, and as a result, cities’ congestion and parking requirements.

The predominance of vehicle ownership

Although autonomous carsharing, ride-hailing, and ridesharing programs may attend a
remarkable share of future transportation demands, the added convenience brought by
automation may maintain consumers’ appetite for private vehicles [65]. Besides privacy
concerns and independence, some motorists may prefer a personal vehicle rather than
a shared one if they drive high annual miles, frequently carry personal belongings, or
simply want to portray status [59]. Moreover, people may reject taking a trip with
strangers due to personal security concerns or dissatisfaction with ride partners’ features
(e.g., gender, age) [55]. Hence, most of the current commuting patterns may remain
essentially unchanged. A household AV, for example, may become the family’s assistant.
It could move goods back and forth, pick up orders from stores, and be summoned
by other family members on-demand. Parking would also be facilitated since an AV
can drop off passengers at their destinations and park elsewhere (possibly a cheaper
location) to wait for the next demand [54]. Finally, as Krueger et al. [50] points out, the
VOTT of former drivers would likely decrease. They would be freed for purposes other
than driving, increasing in-vehicle productivity, and allowing people to live in farther
but affordable areas.

1.1.5 Mobility stakeholders

The main stakeholders involved in a transportation system are presented in the following
sections. Each stakeholder has different requirements and often conflicting goals.

Users

A user aims to transport something or someone (possibly him- or herself) from one
place to another. This transportation demand is ultimately translated into a request that
is expected to be timely and efficiently addressed by an adequate vehicle. In a highly
connected environment powered by widespread sensor technologies, users’ freight trans-
portation demands can be equipped with specific preferences. For instance, perishable
goods are time sensitive, requiring a series of accommodating conditions to preserve
their quality (e.g., temperature, humidity). In turn, fragile goods or livestock cargo are
impact sensitive and may require smoother maneuvers. Hence, such preferences have
to be considered by a transportation system when scheduling and routing vehicles.
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Independent autonomous vehicle owners

Private AV owners differ from users because they are also concerned about the costs
associated with acquiring and maintaining their assets. Therefore, besides minimizing
transport travel time, a vehicle owner also seeks to minimize fuel, parking fees, tolls,
and deterioration. Additionally, owners also expect that most of these parameters are
automatically considered by the AV navigation system when attending to household
demands. Owners may also be keen to make money out of their vehicles’ idle time,
occasionally leasing them to AMoD systems.

Autonomous mobility-on-demand providers

The concerns related to owning a single AV are scaled up for AMoD providers owning
multiple vehicles. Instead of optimizing their single trajectories, vehicles are expected
to work in harmony to fulfill users’ transportation demands and owners’ underlying
goals. In turn, such goals are related to the general profile of a fleet owner as a private
or public operator. These profiles are essentially distinguished by how much weight is
placed either on transportation equity or system profitability. For instance, when profit
is the most prominent driving force, equity concerns may occasionally be sidelined. As
shown in [17], some very profitable strategies perpetually ignore upcoming demands
that are less lucrative.

Cities

Cities, or, more precisely, city managers and transportation authorities, are mainly con-
cerned with the repercussions of the other stakeholder goals in the urban environ-
ment. Hence, traffic management strategies, infrastructural deployment, and restric-
tive/supportive policies may become necessary to mitigate congestion and improve ac-
cessibility.

1.2 Research challenges

In the following sections, we present and motivate the research questions arising from
specific logistical challenges regarding the context of dynamic fleet management of
shared autonomous vehicles.

1.2.1 Transitioning to full automation

For the most part, studies on autonomous vehicles investigate solutions in a full-
automation setting. However, this mobility landscape is far from reality when we
consider the current status of the autonomous systems currently being tested in the
market. Figure 1.1 shows the well-known Society of Automotive Engineers (SAE)
taxonomy to distinguish between levels of autonomy. As pointed out by Litman [59],
companies have still been testing SAE level 3 vehicles in which special conditions
apply (e.g., mapped routes, fair weather, possible human intervention). Additionally,
although some manufacturers have claimed level 4 vehicles will be available in the
near future, early versions are likely to be limited to more controlled environments
(e.g., freeways, “geofenced” areas), probably requiring human intervention on surface
streets.
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SuMMARy Of SAE InTERnATIOnAl’S lEVElS Of DRIVIng AuTOMATIOn fOR 
On-ROAD VEhIclES
Issued January 2014, SAE international’s J3016 provides a common taxonomy and definitions for automated driving in order to simplify 
communication and facilitate collaboration within technical and policy domains. It defines more than a dozen key terms, including those 
italicized below, and provides full descriptions and examples for each level.

The report’s six levels of driving automation span from no automation to full automation. A key distinction is between level 2, where the 
human driver performs part of the dynamic driving task, and level 3, where the automated driving system performs the entire dynamic 
driving task. 

These levels are descriptive rather than normative and technical rather than legal. They imply no particular order of market introduction. 
Elements indicate minimum rather than maximum system capabilities for each level. A particular vehicle may have multiple driving 
automation features such that it could operate at different levels depending upon the feature(s) that are engaged.

System refers to the driver assistance system, combination of driver assistance systems, or automated driving system. Excluded are warning 
and momentary intervention systems, which do not automate any part of the dynamic driving task on a sustained basis and therefore do 
not change the human driver’s role in performing the dynamic driving task.

Key definitions in J3016 include (among others):

Dynamic driving task includes the operational (steering, braking, accelerating, monitoring the vehicle and roadway) and tactical 
(responding to events, determining when to change lanes, turn, use signals, etc.) aspects of the driving task, but not the strategic 
(determining destinations and waypoints) aspect of the driving task.

Driving mode is a type of driving scenario with characteristic dynamic driving task requirements (e.g., expressway merging, high speed 
cruising, low speed traffic jam, closed-campus operations, etc.). 

Request to intervene is notification by the automated driving system to a human driver that s/he should promptly begin or resume 
performance of the dynamic driving task.

P141661

SAE 
level Name Narrative Definition

Execution of 
Steering and 
Acceleration/ 
Deceleration

Monitoring 
of Driving 

Environment

Fallback 
Performance 
of Dynamic 

Driving Task

System 
Capability 

(Driving 
Modes)

Human driver monitors the driving environment

0 no 
Automation

the full-time performance by the human driver of all 
aspects of the dynamic driving task, even when enhanced 
by warning or intervention systems

Human driver Human driver Human driver n/a

1 Driver 
Assistance

the driving mode-specific execution by a driver assistance 
system of either steering or acceleration/deceleration using 
information about the driving environment and with the 
expectation that the human driver perform all remaining 
aspects of the dynamic driving task

Human driver 
and system

Human driver Human driver
Some driving 

modes

2 Partial 
Automation

the driving mode-specific execution by one or more driver 
assistance systems of both steering and acceleration/
deceleration using information about the driving 
environment and with the expectation that the human 
driver perform all remaining aspects of the dynamic driving 
task

System Human driver Human driver
Some driving 

modes

Automated driving system (“system”) monitors the driving environment

3 conditional 
Automation

the driving mode-specific performance by an automated 
driving system of all aspects of the dynamic driving task 
with the expectation that the human driver will respond 
appropriately to a request to intervene

System System Human driver
Some driving 

modes

4 high 
Automation

the driving mode-specific performance by an automated 
driving system of all aspects of the dynamic driving task, 
even if a human driver does not respond appropriately to a 
request to intervene

System System System Some driving 
modes

5 full 
Automation

the full-time performance by an automated driving system 
of all aspects of the dynamic driving task under all roadway 
and environmental conditions that can be managed by a 
human driver

System System System
All driving 

modes

Contact:		SAE	INTERNATIONAL	+1.724.776.4841	•	Global	Ground	Vehicle	Standards	+1.248.273.2455	•	Asia+86.21.61577368

Copyright © 2014 SAE International.  The summary table may be 
freely copied and distributed provided SAE International and J3016 
are acknowledged as the source and must be reproduced AS-IS.Figure 1.1: Taxonomy and definitions for terms related to on-road motor vehicle automated driving

systems (SAE International standard) [85].

Moreover, regulatory barriers can restrict operations only within certain zones where
safety is guaranteed. Chen et al. [19], for instance, advocates that government agen-
cies can dedicate certain areas of road networks exclusively to AVs. Such autonomous
vehicle zones (AVZs) would be capable of enhancing the transportation network perfor-
mance by, for example, facilitating the formation of platoons. Besides, inside zones or
selected streets, AVs could facilitate parcel delivery by automatically handing over goods
to pickup stations [108]. To improve service coverage in a particular area, providers
could also combine a heterogeneous fleet of autonomous- and manually-driven vehi-
cles. For instance, Scherr et al. [90, 91, 92] consider a logistic scenario where manually
operated vehicles guide AV platoons outside AVZs to move parcels from distribution
centers to transshipment points within a city. As some of these points are inside AVZs,
inter-zone crossing requires that the provider coordinate the mixed fleet to carry out
platoon operations from time to time.

However, to the best of our knowledge, the problem of servicing demands in het-
erogeneous autonomous and non-autonomous networks has not yet been addressed in
a passenger transportation setting. In this setting, the extra delay caused by platoon
operations, for example, can be unacceptably high for on-demand services. Hence, to
operate within such mixed-zone scenarios successfully, alternative fleet compositions
may be required.
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1.2.2 Heterogeneous service quality requirements

Considering service levels that mirror the personal VOTT of user segments may leverage
AMoD systems’ overall performance, especially in terms of occupancy levels and prof-
itability. Not accidentally, the most common metrics applied to assess service levels from
the customers’ perspective are concerned with time, namely, (i) the pickup delay and (ii)
the in-vehicle delay due to ridesharing. Although minimizing (i) and (ii) improves user
experience, shared transportation systems generally benefit from having more flexible
time constraints. For instance, Fagnant and Kockelman [34] showed that increasing the
maximum travel delay led to reduced empty-SAV trips while also shrinking the fleet
size. Santi et al. [86] also found that increasing the maximum waiting time increased
the number of shared, non-vacant trips from around 30% to almost 100%. In summary,
increasing delays can improve vehicle shareability (a desirable property for cities and
operators).

Hence, a private fleet owner aiming to cater to a broader market section may want
to offer extra mobility capabilities to serve more diversified transportation requests. For
instance, some users may prefer to pay higher fares for faster service or private rides. Al-
ternatively, other users would not mind waiting for more affordable shared rides. Hence,
in a more flexible AMoD system, users could be economically incentivized to join rides
that increase sharing and occupancy. Current on-demand transportation companies are
already attempting to explore different demand segments by offering various riding op-
tions, from car-pooling to luxury rides.

Few approaches (e.g., [18, 60, 123]) examine the outcome of fulfilling the needs of
diverse user profiles on AV fleet management strategies. However, none offers mech-
anisms to prioritize user segments (e.g., business users) or is capable of fully meeting
user expectations.

1.2.3 Short-term fleet size elasticity

Finding the minimum fleet size capable of sufficiently meeting the transportation de-
mand is an overarching discipline in the AMoD literature. Commonly, authors rely on
performance-driven fleet sizing approaches that aim to ensure that the fleet can meet
the service quality requirements of a particular transportation demand [98].

Due to typical passenger demand fluctuation, however, this method faces two signif-
icant limitations. First, once fleet-sizing simulations generally run on whole-day travel
data, the final number of vehicles ultimately reflects daily demand peaks. Since these
peaks typically occur only twice a day, most vehicles remain underutilized most of the
time. Second, in the face of unexpected/unusual demand spikes (e.g., due to bad
weather or crowded concerts), there are not enough vehicles to adequately fulfill all
requests. Therefore, entirely relying on fixed fleets may be detrimental for future AMoD
providers, harming both fleet productivity and reliability.

Today’s on-demand transportation companies are already adopting more flexible
strategies. For instance, Uber’s current business model benefits from being solely a
matching platform for drivers and riders. Since drivers are responsible for owning and
maintaining their vehicles, the company does not need to buy and maintain a private
fleet. This characteristic was crucial to their business expansion once starting opera-
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tions in different cities does not require considerable outlay. To actively control service
quality, the company applies dynamic pricing strategies to incentivize drivers to move
to undersupplied locations to improve their profits [107].

In an AV-dominant future, providers can still continue to outsource demand to pri-
vately owned operators. Some owners may profit from leasing their vehicles to AMoD
systems occasionally (e.g., during idle periods of the day) or continuously, as indepen-
dent contractors [14]. Therefore, apart from the expected scheduling and routing ser-
vices, a future on-demand transportation company may become a mediator between
car-owners and riders, both with particular and heterogeneous constraints. Addition-
ally, car-renting companies and car automakers, which will supposedly own large AV
fleets, could also provide subscription plans to private users or associate themselves
with third-party on-demand transportation services. Customers would also gain further
freedom of choice. There would be many more options to choose from instead of a uni-
form fleet of vehicles besides other renting methods (e.g., booking a vehicle for an entire
day or week). Moreover, different car owners could stipulate different profit margins or
minimum compensations. Therefore, the best possible ride for a transportation demand
would consider both customers’ requirements and owners’ constraints. On the other
hand, car owners could promote their vehicles in the scoring system by guaranteeing a
regular maintenance/cleaning routine.

Nevertheless, as pointed out in [47, 72], research on autonomous transportation
systems considering such a short-term fleet size elasticity is still lacking in the literature.
Although optimization approaches can generally deal with vehicle surpluses over a given
planning horizon, active fleet size management on the operational level (as a means to
guarantee service quality) has not yet been investigated.

1.2.4 Dynamic stochastic supply and demand

On-demand transportation systems can further improve their efficiency and profitability
if they can adjust imbalances between supply and demand [114]. A fleet management
system might correct these imbalances by applying relocation strategies, moving vehi-
cles from low-demand areas to high-demand ones when applicable. Likewise, the initial
fleet distribution may also have a strong influence on user service levels if vehicles can
start close to upcoming demands [12]. However, although demand-anticipatory reloca-
tions are critical to lower customer’s waiting time, the strategy must be well balanced to
avoid excessive VMT of empty-SAVs [34]. Ideally, relocation costs should compensate
for the additional earnings, unless the loss is part of a deliberate strategy to outperform
competitors to gain visibility among customers [114].

Reactive approaches use ongoing imbalances to reposition vehicles between areas.
For instance, Chen et al. [18] use a price-based strategy that encourages trips originating
in a cell with a surplus of vehicles and penalizes trips originating in a cell with a deficit
of vehicles. In comparison, Fagnant and Kockelman [34] push or pull unoccupied SAVs
to or from adjacent geographical blocks, prioritizing shifts to blocks exhibiting comple-
mentary imbalances.

Conversely, stochastic approaches use historical data to anticipate future events. Due
to the popularization of information and communication technologies (ICTs), obtaining
knowledge about stochastic phenomena has become facilitated in the field of transporta-
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tion [38]. Companies owning historical information can apply predictive analytics tech-
niques (e.g., machine learning and data mining) to assess the likelihood of future events.
Uber, for instance, uses historical data on traffic conditions to establish an estimated time
of arrival (ETA) to waiting customers [73]. Hence, planning can be improved by using
data from all entities involved in the transportation system to determine the best possible
decisions for a predicted behavior.

Studies leveraging stochastic demand information to rebalance vehicles abound in
the literature. Authors typically employ methods such as reinforcement learning (RL)
(e.g., [41, 58, 115]), model predictive control (MPC) (e.g., [48, 106, 121]), and approx-
imate dynamic programming (e.g., [1], [94]), to estimate the value of future system
states. However, most related literature does not account for in-demand stochastic pat-
terns originating from heterogeneous user base composition. Consequently, vehicles
ultimately rebalance to places where the number of upcoming homogeneous requests
is expected to be the highest. Notwithstanding, when the patterns of a diversified user
base are considered (see Section 1.2.2), novel rebalancing strategies may arise.

Moreover, research on the benefits of incorporating the stochastic information sur-
rounding the supply of privately-owned AV is still lacking in the literature. Such a gap
stems directly from the challenge presented in Section 1.2.3, on the elasticity of AV
fleets. By harnessing the knowledge on both demand and supply patterns, AMoD sys-
tems are substantially better equipped to meet user needs with the added advantage of
not necessarily owning large AV fleets.

1.2.5 Equitable access to autonomous mobility

Contrary to the claim that autonomous vehicles will substantially improve accessibility
(e.g., [66]), there is still much concern about the actual impact of automated driving
on transportation equity (e.g., [30]). First, the potential necessity of deploying special
infrastructure (as hypothesized in Section 1.2.1) can lead to increased inequality. As
pointed out by Cohn et al. [22], if AVs have barriers to entry due to initial unaffordability,
investing in AV infrastructure could result in transportation resources being inequitably
distributed. Creger et al. [25] agrees that if AVs’ deployment is not principled in equity,
they will likely exacerbate transportation injustices. Likewise, Dean et al. [30] suggests
that if the private vehicle ownership scenario prevails (see 1.1.4), AMoD services could
further perpetuate existing societal inequalities, primarily benefiting high-income pop-
ulations.

Typically, classic performance measures and evaluation criteria used in transporta-
tion modeling fail to account for differences in demographics[22]. For example, most
vehicle repositioning strategies in the literature rely on supply-demand imbalances or
historical profitability as stimuli to distribute idle vehicles. As a result, a rebalancing bias
develops towards densely-populated areas, systematically disadvantaging passengers in
low-demand zones [116]. Besides, provided that AV fleets are primarily operated by
private companies, low-income areas can be further neglected in favor of affluent ar-
eas, where profits are more likely to occur. In light of these problems, there is a growing
consensus on the need for public transportation authorities to ensure future mobility ser-
vices converge towards maximizing benefits for all city residents [14, 20, 20, 21, 25, 76].
Nevertheless, equity goals are mostly overlooked in AV fleet management research.
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1.2.6 Short-haul integration of passenger and freight flows

Although some long-haul modes (e.g., aircrafts, ferries) already integrate passenger and
freight flows, short-haul integration is hardly observed in practice [89]. Daduna [26]
points out that current attempts to integrate freight transport into urban public trans-
portation have failed because of two main reasons. First, the integration inevitably leads
to further loading/unloading operations, possibly incurring downstream delays that may
cause the loss of connections at transfers. Second, to operate a given timetable at off-
peak hours, new vehicles and drivers may be necessary, leading to additional costs.

Moreover, as pointed out by Mourad et al. [69], few studies consider the joint use
of transport resources between passengers and goods flows. Among them, fewer model
the problem of servicing the two demand types interchangeably and simultaneously. To
the best of our knowledge, such a transportation setting is explored only by Li et al.
[55, 56, 57] and Do et al. [31]. The authors consider a ride-hailing setting where taxis
can pick up parcels while servicing customers, but limit the ridesharing capabilities such
that multiple customers cannot share a ride.

People-and-freight integration, however, can be further facilitated by future au-
tonomous technologies. As technology develops, vehicle bodies can be adapted to carry
out a range of logistics operations. AVs equipped with parcel lockers are expected to
dominate parcel delivery in urban areas [65]. Ford automaker, for instance, envisages
an “autolivery” future in which self-driving vans could be used to quickly transport
goods within a city, potentially partnered with drones to realize the final leg of a given
journey [71]. In turn, Toyota presents an AV concept where bodies can be customized
following user specifications (e.g., hotel room, retail shopping, ridesharing) [105].

Hence, given the expected versatility of future body types, providers could ultimately
adopt mixed-purpose SAVs, which can consolidate multiple people and freight trans-
portation requests simultaneously. The extent to which the performance gains brought
by such an autonomous people and freight integrated transportation (PFIT) system justify
its adoption has not been studied in the literature yet.

1.3 Research questions

Assuming the future mobility scenarios described in Section 1.1.4, the role of the mo-
bility stakeholders described in Section 1.1.5, and the research challenges presented in
Section 1.2, we present the main research question to be addressed in this thesis:

RQ: How can AMoD systems leverage supply and demand information as well as cities’
infrastructure to balance the goals of all mobility stakeholders?

To handle the research challenges encompassed by this question thoroughly, we propose
the following key research sub-questions (SQs) and subsequently identify the challenges
they address:
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SQ1: How can fleet operators deal with the operational restrictions arising in the early
stages of AV deployment? (1.2.1)

SQ2: How can AMoD systems guarantee service quality, in terms of responsiveness, relia-
bility, and privacy, while improving fleet productivity? (1.2.2, 1.2.3)

SQ3: How can AMoD systems explore the stochastic information surrounding privately-
owned vehicle supply and heterogeneous demand? (1.2.4)

SQ4: How can cities steer providers towards achieving equity goals? (1.2.5)

SQ5: How can AMoD systems handle passenger and cargo demands interchangeably to
improve fleet productivity? (1.2.6)

1.4 Research approach

In order to answer the research questions presented in Section 1.3, this thesis presents
a series of optimization methods to manage fleets of autonomous vehicles in diverse
operational environments. In Figure 1.2, we show all the components that integrate a
fleet management system (FMS). First, a solving strategy processes all available data (e.g.,
travel times, demand, vehicle statuses) to improve the objective functions entailed by a
particular logistical scenario, which encompasses the characteristics of a transportation
setting. Next, event cases, that is, entities that register the current system’s information,
are continuously recorded in a knowledge base. This module comprises facts about the
world (i.e., historical data) and an inference engine that can reason about these facts
(i.e., data analytics methods) [44]. Finally, the knowledge built or updated from the
event cases can be exploited by the solver during the optimization process through a
predictive model [119].

FMS
(Fleet Management System)

Solver
(Cost function, 

constraints, 
scheduling strategy, 

etc.)

History 
data
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time 
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Figure 1.2: Detailed structure of a fleet management system based on [119].
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We propose mixed integer linear programming (MILP) models for each logistical sce-
nario and solve them to optimality. To deal with real-world instances of one of the inves-
tigated scenarios, we also design a matheuristic. In turn, to build the knowledge base
and enable anticipatory optimization, we propose an approximate dynamic programming
(ADP) algorithm.

Regarding the data feeding the FMS system, upcoming demands are collected from
third-party sources (e.g., taxicab data) or generated. In turn, the space-time module
considers real-world, high-granularity street networks from areas such as Manhattan,
New York City (US), Delft (NL), and Rotterdam (NL). We simulate the movements of
the AV fleet throughout these areas, updating vehicle action plans frequently. The only
source of uncertainty associated with vehicles is the availability of the third-party fleet
(i.e., location, announcement time, service time window). Other disturbances, such as
vehicle breakdown and travel time delays, are not considered.

1.5 Thesis outline

The chapter’s order aims to reflect the increasingly complex logistic operations required
at different AV technology development levels. As AVs evolve and become widespread,
providers can exploit different alternatives to meet user service quality requirements.
Figure 1.3 provides an overview of the structure of this thesis.

Initially, a precondition to providing service quality in autonomous transportation is
safety. To guarantee safe operations, the transition to a full automation setting can take
several decades. Infrastructure will gradually evolve to accommodate AV movements,
whereas AVs will improve their fitness to deal with complex traffic. Chapter 2 presents a
MILP model for this initial phase of AV deployment, where mobility services will have to
deal with AV-ready and not AV-ready areas. Subsequently, we focus on AV-only scenarios,
where AVs can drive everywhere.

In Chapter 3, we model a rich transportation scenario comprised of heterogeneous
users and vehicles. Analogously to other transportation modes, we consider that the
system must deal with a diversified user base with different service quality expectations.
We propose a multi-objective matheuristic to dynamically hire third-party AVs whenever
company vehicles are incapable of sustaining the service level requirements purchased
by users. To guarantee high fleet productivity, we design a reactive rebalancing algo-
rithm that uses user’s service level violations as stimuli to rebalance vehicles to low
demand areas.

Using the same elements of the scenario proposed in Chapter 3 (i.e., heterogeneous
service requirements and vehicle hiring), in Chapter 4, we exploit both user and third-
party vehicle information to enable anticipatory decision making. We propose an ADP
algorithm that builds value function approximations of future system states iteratively.
We use these values in our objective function to weigh the downstream impact of the
system’s decisions (dispatch, rebalance, or hire vehicles) in the future. Additionally, we
assess the influence of penalization schemes in reducing user service-level violations.
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In Chapter 5, we approach service quality from a different perspective. We extend
the method presented in Chapter 4 to investigate how to overcome the demand patterns
naturally incorporated into value functions to improve the service levels of targeted city
areas. This way, providers can implement more equity-aware rebalancing strategies,
allowing that all city residents enjoy the benefits of autonomous mobility.

Next, in Chapter 6, we present a MILP model for a highly flexible environment, where
both people and parcel demands, with varying service level requirements, are combined
in mixed-purpose AVs. Once parcel transportation requests are more amenable to wait-
ing, new opportunities to optimize fleet usage arise.

Finally, in Chapter 7, we conclude the thesis, summarize our contributions, and
present an outlook for future research.
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Figure 1.3: The outline of this thesis. In the background, we indicate the solution strategies used in each chapter.



Chapter 2

Routing with autonomous
vehicle zones

Throughout Chapter 1, we presented how widespread AV adoption is expected to re-
shape transportation systems. This chapter shows how service providers can guarantee
full coverage in a mixed autonomous and non-autonomous environment. We model de-
tailed automated driving areas and consider a heterogeneous fleet comprised of three
vehicle types: autonomous, conventional, and dual-mode. While autonomous and con-
ventional vehicles can only operate in their designated areas, dual-mode vehicles service
zone-crossing demands in which both human and autonomous driving are required. For
such a hybrid network, we introduce a new mathematical planning model based on a
site-dependent variant of the heterogeneous dial-a-ride problem (HDARP).

This chapter is organized as follows. We motivate the adoption of autonomous ve-
hicles zones (AVZ) in Section 2.1, describe the problem in detail in Section 2.2, and
propose a mathematical model for it in Section 2.3. Next, in Section 2.4, we present
the parameters we use to design a series of AV deployment scenarios in the city of Delft,
the Netherlands. Then, in Section 2.5, we evaluate how operational costs, service levels,
and fleet utilization develop across scenarios, concluding with a summary of key insights
and outlook on future work in Section 2.6. Parts of this chapter have been published in
[7]:

B. A. Beirigo, F. Schulte, and R. R. Negenborn. Dual-mode vehicle routing in mixed autonomous and

non-autonomous zone networks. In Proceedings of the 21st International Conference on Intelligent

Transportation Systems (ITSC), pages 1325–1330, Maui, HI, United States, 2018.
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2.1 Introduction

During a transition phase to full-automation, the introduction of AVs is likely to happen
gradually, following not only technological advances but also the spread of automation-
friendly infrastructures. However, most studies on SAV management assume a full-
automation setting, a mobility scenario that is currently far from reality. Many com-
panies have been still testing SAE level 3 vehicles in which special conditions apply
(e.g., mapped routes, fair weather, possible human intervention), and early versions
of level 4 vehicles are likely to be limited to more controlled environments (e.g., free-
ways, restricted zones) [59, 64]. Hence, in the early stages of vehicle automation, reg-
ulatory barriers are likely to prevent AVs from operating in areas requiring advanced
driving capabilities (e.g., shared spaces). Chen et al. [19], for instance, suggest that
government agencies can dedicate certain areas of road networks exclusively to AVs.
Such autonomous vehicle zones (AVZs) could, for example, enhance the performance
of transportation networks by facilitating the formation of platoons. In essence, until
automation level 5 is achieved, fleet operators have to employ both conventional and
autonomous vehicles to guarantee maximum service coverage on partially autonomous
infrastructures.

This chapter investigates how the gradual evolution of autonomous infrastructures
influences the fleet composition and vehicle routing in a mobility system. We simulate
the spread of automated driving (AD) areas in urban networks and analyze the oper-
ational performance of a heterogeneous fleet comprised of AVs, conventional vehicles
(CVs), and dual-mode vehicles (DVs). While CVs and AVs are only allowed to operate
in their respective areas, DVs can freely drive throughout the entire network. We carry
out the analyses for the city of Delft, the Netherlands, by creating various autonomous
driving areas in the city’s mobility network. Figure 2.1 illustrates a possible setting with
autonomous and conventional driving zones in the example of Delft.

Automated 

driving (AD)

Conventional 

driving (CD)

Figure 2.1: Example of autonomous vehicle zone (AVZ) deployment in Delft, the Netherlands. Inside
AVZs, infrastructure is ready to support automated driving.
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2.2 Problem description

In this chapter, we propose a multi-depot site-dependent dial-a-ride problem (MDSD-
DARP), an extension of the heterogeneous dial-a-ride problem (HDARP) introduced by
Parragh [78]. Similarly to HDARP, the MDSDDARP consists of designing a cost-effective
routing plan for a fleet of heterogeneous vehicles to service a series of pickup and de-
livery requests with different transportation modes. However, in most HDARP variants,
the source of vehicle heterogeneity is associated with the transportation requirements
of hospitals’ patients (e.g., wheelchair space, stretcher, patient seat). In contrast, in
MDSDDARP, the compatibility relationship between users and vehicles depends on the
vehicle’s ability to access user locations. This concept was first explored by Nag et al.
[70] in the site-dependent vehicle routing problem (SDVRP), in which certain sites (e.g.,
congested areas) could only be serviced by specific types of vehicles (e.g., small-capacity
vehicles). However, rather than relying on vehicle dimensions or user preferences to de-
termine user-vehicle compatibility, we rely on vehicles’ driving capabilities (automated,
conventional, and dual-mode) to decide whether they are allowed to service users in
automated or conventional driving areas.

We summarize the MDSDDARP as follows. Given

• a hybrid street network comprised of an AVZ and a conventional vehicle zone (CVZ),
• a heterogeneous fleet comprised of autonomous, conventional, and dual-mode

vehicles,
• a set of time-constrained transportation requests arising from either a CVZ or an

AVZ,

the MDSDDARP consists of constructing a set of vehicle routes in such a way that
• DVs can pick up and deliver users in the entire network, whereas AVs and CVs can

only operate in automated and non-automated driving areas,
• vehicles depart from multiple locations and can stop at the delivery location of

their last serviced user,
• the capacity of a vehicle is not exceeded along its route,
• the ride time delay of a route does not exceed a limit wride,
• the pickup time delay of a request does not exceed a limit wpickup,
• a subset of the requests is serviced (i.e., service denial is allowed),
• the total profit is maximized.
Figure 2.2(a) illustrates the problem for a fleet of three vehicles (A, C , and D) of

different types (autonomous, conventional and dual-mode), and three requests (1, 2,
and 3) spread over a hybrid street network. While pickup and delivery points of requests
2 and 3 lie entirely inside a single zone, passenger 1 must be picked up inside an AVZ
and delivered in a CVZ location. Next, Figure 2.2(b) shows how we simplify this setup.
Besides eliminating intermediate nodes of the real-world street network, we create a
viable transportation network where vehicles and passengers are connected by their
shortest paths, according to their site compatibility. While vehicle D is allowed to visit
every pickup and delivery node, A can only visit the nodes inside the AVZ, and C can
only visit the nodes inside the CVZ. Notice that although the pickup point of request 1
is inside the AVZ, vehicle A is not connected to it since A cannot reach the destination
of request 1. Undirected lines represent two-way paths between nodes (possibly non-
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symmetric), and directed lines highlight some of the problem’s operational constraints,
such as (i) vehicles can only start their route by visiting pickup points, and (ii) there are
not paths from request destinations to origins.

2.3 Problem definition

The multi-depot site-dependent DARP is modeled on a directed graph G = (N , E). The
node set N is partitioned into {P, D,O}where P= {1,...,n} is both the set of pickup nodes
and request indices, D = {n+1,...,2n} is the set of destination nodes and O is the set
of origins ok of vehicles k ∈ K . We define the set O to better simulate a free-floating
mobility service in which vehicles depart from distinct points within the service area
(rather than departing from a central station) and park nearby the delivery point of the
last serviced request upon finishing the service.

We consider that each vehicle k ∈ K with capacity Qk is from a type mk ∈ L, and
every transportation request i can be served by a subset of vehicle types Li ⊆ L. Conse-
quently, the arc set E is defined as E= {(i, j,m) | i ∈ O, j ∈ P or i, j ∈ P∪D, i 6= j and i 6=
n+ j for m ∈ L}, such that there may exist up to |L| paths from i to j, each one having
a travel time tm

i, j . We assume that the set of types L coincides with the driving modes
allowed in our hybrid maps (i.e., L = {AV, CV, DV}). To each node i ∈ N is associated a
load qi , corresponding to the number of passengers, so that qi ≥ 0∀i ∈ P, qi =−qi−n∀i ∈ D and qi = 0 ∀i ∈ O. Additionally, the service duration di is a function of the
number of passengers qi entering/leaving a vehicle at node i ∈ N .

Moreover, let wpickup be the maximum pickup delay, wride the maximum ride delay
of all requests, and t i the revealing time of request i. For a pickup and delivery pair (i, j)
where i ∈ P and j ∈ D, the earliest times (ei and e j) and latest times (li and l j) to visit i
and j are defined as follows: (ei , li)=(t i , t i+wpickup) and (e j , l j)=(ei+di+ tm

i, j ,e j+wride)
for driving modes m ∈ L.

3

2

2

A

3 1

D

C1

3

2

2

3 1

D

C1

AVZ

DD CDADPick-up DeliveryVehicle

City map, vehicles, 

and requests

Transportation 

network

A

(a) (b)

Figure 2.2: (a) Real world input (hybrid street map, customers’ pickup and delivery locations, and
vehicle positions) and (b) corresponding viable transportation network.
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The decision variable xk
i, j is equal to 1 if the arc (i, j,mk) ∈ E is traversed by vehicle

k ∈ K and the load of a vehicle k upon leaving node i ∈ N is ωk
i . Regarding the time

related variables, ∆k
i is the ride time of request i ∈ P in vehicle k and τk

i is the time
at which vehicle k arrives at node i ∈ N . Ultimately, to streamline model execution, a
preprocessing phase is carried out to eliminate decision variables that violate ride time,
site-dependent, and capacity constraints. We defineX as the set of valid rides comprised
of feasible (k, i, j) combinations and an auxiliary set of valid visits Q = {(k, i) | (k, i, j) ∈
X or (k, j, i) ∈ X}. Table 2.1 summarizes the sets, variables, and parameters.

Table 2.1: Sets, parameters, and variables of the MDSDDARP.

Sets

K Vehicles
P Pick-up nodes and request indices
D Delivery nodes
O Origin nodes ok of vehicles k ∈ K
N = P∪D∪O
Q Valid visits (k, i) for k ∈ K and i ∈ N
X Valid rides (k, i, j) for k ∈ K and i, j ∈ N
L Vehicle types and driving modes

Parameters

Vehicles

mk Type of vehicle k ∈ K
ok Origin point of vehicle k ∈ K
Qk Capacity of vehicle k ∈ K

pmk

base Base fare for servicing a passenger using vehicle k

pmk

time Time-dependent rate for servicing passenger using vehicle k

cmk

time Time-dependent operational cost of vehicle k

Requests

di Service duration at node i ∈ N
qi Number of passengers of request i
wpickup Maximum pickup time delay
wride Maximum ride time delay
ei Earliest time at node i
li Latest time at node i

Distances

tm
i, j Travel time from node i to node j in mode m ∈ L

Variables

xk
i, j (Binary) 1 if vehicle k traverses arc (i, j), 0 otherwise

τk
i Arrival time of vehicle k at point i
∆k

i In-vehicle delay of user i in vehicle k
ωk

i Load of vehicle k after visiting node i
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The formulation of the MDSDDARP is as follows:

Maximize:∑
(k,i, j)∈X

i ∈ P

(pmk

base+ pmk

time · tmk

i,n+i) · xk
i, j−
∑

(k,i, j)∈X
γmk

cost · tmk

i, j · xk
i, j (2.1)

Subject to:∑
(k,i, j)∈X

xk
i, j ≤ 1 i ∈ P (2.2)

∑
(k,ok , j)∈X

xk
ok , j ≤ 1 k ∈ K (2.3)

∑
(k,i, j)∈X

xk
i, j−
∑

(k,i, j)∈X
xk

i,n+ j = 0 k ∈ K , j ∈ P (2.4)

∑
(k,i, j)∈X

xk
i, j−
∑

(k, j,i)∈X
xk

j,i = 0 k ∈ K , j ∈ P (2.5)

∑
(k,i, j)∈X

xk
i, j−
∑

(k, j,i)∈X
xk

j,i ≥ 0 k ∈ K , j ∈ D (2.6)

τk
j −τk

i ≥ tk
i, j+di+M k

i, j(x
k
i, j−1) (k, i, j) ∈ X (2.7)

ei ≤τk
i ≤ li (k, i) ∈ Q (2.8)

∆k
i =τ

k
n+i− (τk

i +di) i ∈ P, (k, i) ∈ Q (2.9)

tmk

i,n+i ≤∆k
i ≤ tmk

i,n+i+wride i ∈ P, (k, i) ∈ Q (2.10)

wk
j −ωk

i ≥ q j+W k
i, j(x

k
i, j−1) (k, i, j) ∈ X (2.11)

max{0,qi} ≤ωk
i ≤min{Qk,Qk+qi} (k, i) ∈ Q (2.12)

xk
i, j ∈ {0,1} (k, i, j) ∈ X (2.13)

ωk
i ,τk

i ∈ N (k, i) ∈ Q (2.14)

∆k
i ∈ N i ∈ P, (k, i) ∈ Q (2.15)
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The objective function (2.1) maximizes the revenue obtained from passenger deliv-
ery while minimizing operational costs. Constraint (2.2) allows service denial, since
not all customers need to be picked up, and constraint (2.3) defines that vehicles can
potentially stay still in their origin nodes in case they are not scheduled. Constraint
(2.4) imposes that if a vehicle visits a request pickup node it must also visit the associ-
ated delivery node. In turn, the flow constraints (2.5) and (2.6) ensure vehicles arrive
and exit pickup nodes but may arrive and stay at delivery nodes, reflecting occasions in
which a vehicle delivers its last user and waits in the vicinity for incoming requests. Con-
straints (2.7) and (2.8) guarantee adequate arrival times at nodes within predetermined
time windows while constraints (2.9) and (2.10) define and limit the ride time of each
request. In turn, feasible load flows are guaranteed by constraints (2.11) and (2.12).
Finally, the validity of W and M at the linearized constraints (2.7) and (2.11) is ensured
by setting W k

i, j ≥min{2Qk,2Qk+qi} and M k
i, j ≥max{0, li+ tk

i, j+di− e j} ∀(i, j,k) ∈ X .

2.4 Experimental study

Assuming automated driving areas are gradually implemented, we establish three key
elements that may influence the performance of future heterogeneous fleets: the cost
depreciation of autonomous technologies (2.4.1), the configuration of mixed-zone street
networks (2.4.2), and the particular demand patterns arising from such zoned environ-
ments (2.4.3). In Section 2.4.4, we show how these elements are combined to generate
our instance set.

2.4.1 Operational cost scenarios

It is widely assumed that AV technologies will become increasingly affordable until they
eventually reach market saturation. Thus, we consider this gradual price depreciation
to build three operational cost scenarios. In our study, operational costs vary according
to the distance traveled (in seconds, considering an average speed of 40km/h) and are
comprised of (i) general automotive costs (e.g., maintenance, parking, fuel, insurance),
(ii) driver’s labor and (iii) automation-related costs (e.g., maintenance of extra sensors,
software, data storage, computing power). In Table 2.2, we show how these elements
compose the total operational cost of each vehicle type for the potential scenarios S01,
S02, and S03. Regardless of the vehicle type and scenario, we only vary the automation
related costs (iii), from 0.003 €/s to 0.001 €/s, while keeping general automotive costs
(i) and driver’s labor (ii) stable at 0.001 €/s each.

Table 2.2: Operational cost scenarios for vehicle types in relation to automation technology (€/s).

Vehicle type

Cost scenario AV CV DV

S01 (large price premium) 0.004 0.002 0.005
S02 (moderate price premium) 0.003 0.002 0.004
S03 (minimal price premium) 0.002 0.002 0.003
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2.4.2 Mixed-zone street network

Since the development of dedicated automated areas is uncertain, we simulate the de-
ployment of AVZs. First, we extract the map of Delft from OpenStreetMap and save it as
a directed graph comprised of edges (streets) and nodes (intersections). To guarantee
any two nodes are connected to each other, we eliminate all nodes not belonging to the
graph’s largest strongly connected component, resulting in a final street network with
2,123 nodes and 4,964 edges.

Generating AVZs consists of choosing z random nodes of this graph to be the zone
origins and iteratively adding the neighboring edges and nodes from these origins, one
level at a time, until at least an overarching coverage percentage p of strongly connected
nodes within zones is achieved. In turn, all zones are interconnected by the shortest
paths between their origins, yielding a strongly connected subnetwork representing a
possible AVZ deployment. Figure 2.3 shows nine potential AVZ configurations for the
street network in Delft considering a coverage percentage p ∈ {10%,25%,50%} and
number of zone origins z ∈ {1,2,4}. While z varies the spatial configuration of AVZs,
p simulates their expansion, so that different transition scenarios can be assessed. To
broaden the variability of our test cases even further, we repeat the generating process 5
times, resulting in 45 transportation networks with distinct configurations of automated
driving areas.

Finally, assuming three modes of driving are available, automated driving, conven-
tional driving, and dual-mode driving, we create a look-up structure to store the short-
est distances between every node and its reachable neighbors for each driving mode.
Hence, a node belonging to an AVZ, for example, may access every node within the AVZ
via automated driving paths, whereas nodes outside the AVZ can only be accessed via
dual-mode driving paths.

2.4.3 Transportation demand versus zone configuration scenarios

We generate demand data to assess the influence of different passenger transportation
patterns throughout different AD area configurations. This way, we can investigate the
logistical outcome when the demand is restricted to a particular area (intra-zone trans-
portation) or when the origin and destination nodes belong to different zones (inter-zone
transportation). To do so, we consider three zone-crossing frequencies (low, moderate,
and high) as shown in Table 2.3. Additionally, we investigate the implication of busy
operational environments by uniformly distributing such demands on different time in-
tervals, namely, 1, 5, 10, and 20 minutes.
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z = 1

p = 25%

z = 2

p = 25%

z = 4

p = 25%
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p = 10%

z = 4
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p = 50%
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p = 10%

Conventional driving (CD) Automated driving (AD)

Figure 2.3: Potential deployment of automated driving areas in Delft street network considering
different combinations of number of zones z and coverage percentage p.

Table 2.3: Zone-crossing frequencies.

Zone-crossing

Transportation pattern High Moderate Low

intra-zone (AVZ - AVZ) 10% 30% 40%
intra-zone (CVZ - CVZ) 10% 30% 40%
inter-zone (AVZ - CVZ) 80% 40% 20%

2.4.4 Test cases

Table 2.4 summarizes the parameters we consider to generate a total of 14,580 test cases,
and Table 2.5 defines values for service and fleet configuration parameters presented in
Section 2.3.
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Table 2.4: Summary of test case settings totaling 14,580 instances.

Parameter Values

Number of vehicles {15,30,60}
Number of requests {10,20,40}
Operational cost scenarios {S01, S02, S03}
AD coverage percentage {10%,25%,50%}
Number of AD zones {1,2,4}
Zone-crossing {high, moderate, low}
Time interval (min) {1,5,10,20}
Number of zone configurations 5

Table 2.5: Service and fleet configuration parameters.

Parameter Value

Base fare pm
base(∀m ∈ L) €3.0

Time-dependent rate pm
time(∀m ∈ L) €0.001/s

Vehicle capacity Qk 5
Service delay per passenger 30 s
Pickup delay wpickup 5 min
Ride delay wride 10 min

2.5 Results

Instances are run for up to 10 min (not including preprocessing times) using an Intel
Xeon 3.7Ghz computer with 32 GB RAM, and the MILP model is implemented using the
Python interface of the Gurobi 7.5.2 optimizer. Results are expressed in terms of the
following performance markers:

• Service rate – The percentage of serviced requests.
• Fleet utilization – The percentage of the fleet actually used to service requests.
• Mobility cost – The relative operational cost to service each request.
• Execution time – The sum of preprocessing time (for creating a suitable transporta-

tion network and setting up the MILP model) and the solver runtime.
• Fleet composition – Percentages of each vehicle type that compose the final make-

up of used vehicles.
Under the time boundary specified, optimal results were obtained in 91% of the test

cases. We then use this optimal subset of results to carry out our analysis, assessing
mean values of test cases grouped by different parameters (e.g., a result defined by the
number of vehicles, number of requests, and operational cost scenarios, can be the mean
of up to 540 tests cases). In the following sections, we present our main findings.
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Table 2.6: Service rate and fleet utilization on different time intervals, number of vehicles, and
requests.

Service rate Fleet utilization

#R #V 1 min 5 min 10 min 20 min 1 min 5 min 10 min 20 min

10 15 93.9% 96.5% 97.9% 99.4% 60.2% 58.6% 56.1% 51.8%
30 99.4% 99.7% 99.7% 100.0% 31.9% 31.1% 30.3% 29.1%
60 99.8% 100.0% 99.8% 100.0% 16.1% 16.0% 15.9% 15.6%

Avg. 97.7% 98.7% 99.1% 99.8% 36.1% 35.2% 34.1% 32.1%

20 15 71.3% 80.4% 89.4% 96.5% 86.4% 87.2% 84.8% 80.7%
30 97.1% 98.2% 99.6% 99.8% 60.2% 57.3% 54.5% 50.9%
60 99.8% 99.9% 100.0% 100.0% 31.5% 30.6% 29.9% 28.9%

Avg. 89.4% 92.9% 96.3% 98.8% 59.4% 58.4% 56.4% 53.5%

40 15 41.8% 49.8% 63.4% 84.5% 94.6% 93.6% 95.9% 95.8%
30 75.5% 87.1% 94.2% 98.6% 87.8% 88.1% 82.1% 76.9%
60 97.7% 99.3% 99.7% 99.8% 59.2% 56.1% 52.6% 49.1%

Avg. 71.6% 78.7% 85.8% 94.3% 80.5% 79.2% 76.8% 73.9%

Time interval and fleet performance. The busier the logistical scenario, the higher the
fleet utilization, and the fewer requests can be serviced. This trend can be verified in
the average percentages of service rate and fleet utilization presented in Table 2.6, and
it is especially remarkable when a large number of requests must be serviced by few
vehicles.

Fleet composition & AD coverage. Fleet composition depends on the AD coverage once AVs
and DVs are more prone to be scheduled when larger areas of the transportation network
can accommodate autonomous driving. Figure 2.4 illustrates this trend. Each square
represents the average percentage of a vehicle type for each combination of AD coverage,
zone-crossing frequency, and operational cost scenario. Notice that within each zone-
crossing category, the share of AV and DV vehicles tends to grow while the opposite
occurs to CVs. Larger AVZs may lead to farther AV trips, making vehicles busier for
longer periods and preventing them from servicing other customers. Hence, to comply
with the service time constraints, the size of AV fleets must follow the growth of AVZs,
whereas the size of CV fleets must follow the shrinkage of CVZs.

Fleet composition and zone-crossing frequencies. Although 80% of the requests must be
serviced by DVs when a high crossing frequency is considered, this share is not directly
reflected in the shares of DVs actually scheduled, which were around 50% no matter the
AD coverage and cost scenario. This subpar representation may be associated with our
transportation network’s dimension: travel times between pickup and delivery nodes are
generally short, such that fewer vehicles can service several users. In contrast, actual
DV shares for the low and moderate inter-zone frequencies more closely resemble their
correspondent zone-crossing frequencies in Table 2.3.

Fleet composition & operational cost scenarios. The depreciation of automated driving
was found to be virtually irrelevant, especially at high zone-crossing frequencies. In
such cases, there is no leeway for replacing conventional vehicles once most of the trips
expressly require dual-mode vehicles. Consequently, it is more likely that such vehicles



28 2 Routing with autonomous vehicle zones

AV
-S

01

AV
-S

02

AV
-S

03

C
V-

S0
1

C
V-

S0
2

C
V-

S0
3

D
V-

S0
1

D
V-

S0
2

D
V-

S0
3

Vehicle type - Scenario

L-10%

L-25%

L-50%

M-10%

M-25%

M-50%

H-10%

H-25%

H-50%

Zo
ne

 c
ro

ss
in

g 
- A

D
 c

ov
er

ag
e

35% 36% 36% 41% 40% 38% 24% 24% 25%

37% 38% 39% 35% 35% 33% 28% 28% 29%

38% 40% 41% 31% 31% 30% 31% 30% 29%

30% 31% 31% 39% 38% 37% 31% 31% 32%

33% 34% 34% 32% 31% 30% 35% 35% 36%

36% 37% 39% 28% 28% 27% 36% 35% 34%

18% 18% 18% 35% 35% 33% 47% 47% 48%

23% 24% 24% 25% 25% 24% 51% 51% 52%

32% 32% 33% 18% 18% 18% 50% 50% 49%

20%

35%

50%

Av
g.

 s
ha

re
 o

f v
eh

ic
le

 
 ty

pe
 in

 a
ct

iv
e 

fle
et

Figure 2.4: Fleet composition according to automated driving coverage (10%, 25%, and 50%), zone-
crossing frequency (L=Low, M=Moderate, and H=High), and operational cost scenarios (S01, S02,
and S03).

end up being used to also service intra-zone requests, no matter the operational costs in
place. In contrast, if a low zone-crossing frequency is considered, the share of AVs and
DVs slightly increases, whereas the share of CVs decreases: former DV rides are replaced
by AV rides, and former CV rides are replaced by DVs.

The influence of operational costs. As expected, the depreciation of autonomous vehicle
operational costs decreases mobility costs (see Table 2.7). Independently of the op-
erational cost scenario, mobility costs tend to decrease as more vehicles are available
since trip distances can be shorter. Additionally, the results also help define the tradeoff
between fleet size and operational costs for a certain number of requests.

Execution time. As shown in Table 2.7, the preprocessing time is directly related to the
number of vehicles and requests since it consists of looping through all decision variables
to eliminate unfeasible answers. In contrast, the run time seemed to be more sensitive
to the scarcity condition posed by certain operational environments than by the number
of decision variables and constraints. In fact, the busier the operational environment,
the longer the runtime: small fleets dealing with a far superior number of requests (e.g.,
15 vehicles and 40 requests) are a more complex challenge to the branch-and-bound
method of Gurobi solver.
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Table 2.7: Overall results for each operational cost scenario and number of vehicles and requests.

Service
rate

Fleet
utilization

Mobility cost (€) Pre-
processing

time(s)
Run

time(s)#V #R S01 S02 S03

15 10 96.9% 56.7% 1.43 1.19 0.92 0.0 0.1
20 84.4% 84.8% 1.43 1.17 0.91 1.5 2.7
40 59.8% 94.4% 1.29 1.07 0.83 9.2 459.3

30 10 99.7% 30.6% 1.27 1.05 0.82 0.5 0.3
20 98.7% 55.7% 1.30 1.08 0.84 3.4 1.5
40 88.2% 83.3% 1.31 1.08 0.84 18.9 188.9

60 10 99.9% 15.9% 1.17 0.96 0.75 2.0 0.7
20 99.9% 30.2% 1.17 0.97 0.75 7.2 3.2
40 99.0% 54.2% 1.21 1.00 0.78 38.8 72.9

2.6 Conclusions

This chapter addresses the research sub-question SQ1 by physically guaranteeing acces-
sibility, a precondition to other service quality markers. We investigated how mixed-zone
transportation networks can affect mobility services in light of the gradual development
of autonomous infrastructures. We model the routing for such services considering a het-
erogeneous fleet comprised of conventional, autonomous, and dual-mode vehicles. We
assume that only the latter can freely access every location in the network, whereas au-
tonomous and conventional vehicles are restricted to operate within automated driving
areas and non-automated driving areas, respectively. Then, such a vehicle/infrastructure
compatibility requirement is used to formulate the problem as a variant of the hetero-
geneous dial-a-ride problem in which site-dependencies are taken into consideration.

The work builds a foundation for the increasingly important problem domain of par-
tially autonomous vehicle routing. The results obtained with numerical experiments for
the city of Delft, the Netherlands, provide detailed insights into how operational costs,
service rates, and fleet utilization develop under scenarios of multiple infrastructural
characteristics, fleet configurations, and technology costs in the next decades of vehic-
ular automation. In particular, we show that fleet composition is strongly associated
with the autonomous vehicle zones coverage and inter- or intra-zone demand patterns,
which indicates that advanced data analytics will be essential for successfully deploy-
ing such (partially) autonomous mobility systems. Our findings help urban planners
understand the importance of infrastructural decisions for the quality of local mobility
services, and transportation providers gain fundamental insights on how to adjust a fleet
to the infrastructural conditions of cities.

Throughout the subsequent chapters, we focus on logistical scenarios where the
shortcomings of AV technology have been either partially or completely overcome. We
set out to improve service quality and fleet productivity, considering that AVs can safely
access all request locations. Hence, our case studies are designed for fleets of either SAE
level 4 AVs (operating inside AVZs) or SAE level 5 AVs. In Chapter 3, we begin to explore
the unique benefits that vehicle automation can bring to all mobility stakeholders.





Chapter 3

A business class for autonomous
mobility

In Chapter 2 we showed how mobility-on-demand providers can guarantee full cover-
age in a mixed autonomous and non-autonomous environment. In a fully autonomous
setting, however, the success of such providers depends on their ability to create mo-
bility services that challenge traditional mobility products in terms of service quality,
adequately catering to different segments of their passenger base. Planning models
presented in autonomous mobility-on-demand (AMoD) literature, nonetheless, do not
enable active control of service quality, sometimes allowing extensive delays and ulti-
mately service rejection. In this chapter, we propose an AMoD solution able to control
service quality across a heterogeneous user base on an operational planning level. To
this end, we consider an elastic vehicle supply, that is, third-party AVs can be hired on-
the-fly on a contract to address excess demand.

This chapter is organized as follows. Section 3.1 introduces the problem and Section
3.2 reviews the concept of service quality across related literature. Section 3.3 presents a
multi-objective mixed integer linear programming (MILP) formulation for the dial-a-ride
problem with service quality contracts (DARP-SQC) as well as a dynamic formulation for
it, and describe how objectives optimized hierarchically in order of importance. Section
3.4 introduces a multi-objective matheuristic for the dynamic version of the problem.
Then, Section 3.5 describes the experimental settings we use to create a series of case
studies. These case studies comprise different user base compositions, service-level en-
forcement rates, and service quality contract settings. Next, Section 3.6 reports the
results for both static and dynamic formulations, highlighting the tradeoffs between ful-
filling user expectations and hiring new vehicles. Finally, Section 3.7 concludes our work
and presents an outlook for future research on service quality and fleet size elasticity.
Parts of this chapter have been submitted to a journal:

B. A. Beirigo, F. Schulte, and R. R. Negenborn. A business class for autonomous mobility-on-demand:

Modeling service quality contracts in ridesharing systems. Submitted to a journal.
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3.1 Introduction

The upcoming autonomous vehicle (AV) transition is expected to re-shape urban trans-
portation in the next decades. The current personal mobility paradigm, mainly based on
vehicle ownership, is likely to be phased out as autonomous mobility-on-demand (AMoD)
systems develop [59]. All major car manufacturers have already anticipated this shift,
announcing their plans to use shared autonomous vehicle (SAV) fleets to provide seamless
transportation solutions to travelers rather than selling individual vehicles [47].

However, most AMoD systems are unable to control service reliability actively. Once
a particular service level is defined (e.g., in terms of maximum waiting times), they
determine a fleet size that maintains such level at a reasonable rate (see, e.g., [2, 12,
34, 112]). As high this rate might be, even a small lack of reliability can undermine
the acceptance of mobility-on-demand services, especially for customers who cannot
afford service rejection or excess delays. User acceptance, however, is a crucial factor in
ridesharing systems: peak performance can only be achieved when a sufficiently large
number of riders are willing to participate [50].

Moreover, ridesharing research generally does not consider that different customer
groups widely vary in their behavior and desires [120]. Companies from various sectors
acknowledge that profits and perceived service quality (SQ) can be improved by directly
catering to segments of their customer base. For example, airline passengers can gen-
erally choose from first, business, or economy class, whereas current on-demand urban
transportation network companies (TNCs), such as Uber and Lyft, offer a range of ser-
vice tiers, spanning from pooled riders up to executive limousine services. Similarly,
future AMoD systems are also likely to consider customer preferences when matching
overlapping itineraries to construct viable routes.

this chapter proposes a hierarchical multi-objective approach where service quality,
defined in terms of responsiveness, reliability, and privacy, can be thoroughly tuned to
meet user needs. To this end, we take the perspective of a ridesharing AMoD company
servicing a diversified user base where riders have both different sharing preferences
and service level (SL) requirements, which are expressed in terms of maximum tolerance
delays. By varying such parameters, we define a strict service quality contract (SQC) that
specifies the minimum SQ-settings for three user classes, namely, business (B), standard
(S), and low-cost (L). Whenever the operating fleet cannot sustain the service quality
demanded by incoming requests, third-party vehicles are hired online to guarantee the
expected user experience required by each SQ class. We assume that in a highly au-
tomated scenario, third-party owned, freelance autonomous vehicles (FAVs) are readily
available to join the operating fleet, working on a contract during predefined periods or
idle moments.

Figure 3.1 illustrates how a batch of requests from different SQ classes are serviced
under this scenario, using a set of working and hireable vehicles. It can be seen from the
output sub-figure 3.1-(b) that the high-SQ class request B5 prompts a hiring operation
(H3→W3) and enjoys a private ride. In contrast, the low-SQ class request L4 waits
longer to be picked up and does not travel directly to its destination (the ride is shared
with user S2 momentarily). The working vehicle 2 stops rebalancing to service ODs 1,
2, and 4, whereas candidate vehicle 3 is hired to service ODs 5 and 3. Since working
vehicle 1 cannot access any users in time, it repositions to the origin of the hireable
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Figure 3.1: (a) The user base is segmented into three classes, namely, business (B), standard (S), and
low-cost (L), which have different expectations towards service quality. The fleet comprises working
vehicles (third-party- or company-owned) and hireable vehicles (third-party-owned). (b) To ade-
quately fulfill user expectations across classes, we rely on on-demand vehicle hiring, inflating the fleet
size to avoid service-level violations.

vehicle 3 (presumably, an undersupplied region), whereas the idle FAV 4 is dismissed.
Therefore, hireable FAVs join the working fleet to help providers honoring service quality
contracts by preventing delays and rejections from happening.

Our contribution is fourfold. First, we propose a new approach to control service
quality in AMoD systems, which allows us to significantly better meet user service-level
expectations of all considered user categories. Second, we acknowledge the inherent
differences between user profiles by segmenting the demand into service quality classes
and formalize the requirements of these profiles using detailed SQCs, which are upheld
fully on an operational level using online hiring. This setup allows providers greater
leeway since they can trade off class-specific user delay tolerance and on-demand hir-
ing. Third, we contribute to the DARP literature by modeling such SQCs through service
quality constraints and show how a typical AMoD provider can benefit from enforcing
service quality in a real-world scenario. Finally, to deal with large-scale real-world in-
stances, we propose a matheuristic that creates a graph of feasible visiting plans and
optimally assigns these plans to active vehicles, hierarchically minimizing vehicle hiring
and user dissatisfaction.

3.2 Related work

The ridesharing problem of pooling multiple users in a single ride has its roots in the
dynamic variant of the classic dial-a-ride problem (DARP), introduced by Cordeau [23].
It belongs to a broader class of transportation on demand (TOD) problems related to the
transportation of passengers or goods between specific origins and destinations at the
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request of users [24]. What differs DARP from its TOD counterparts is the explicit con-
cern with user inconvenience, generally controlled through service quality constraints
[10].

For small instances (i.e., a few requests and vehicles), static DARP formulations have
been solved to optimality using exact methods (e.g., branch-and-bound). In contrast,
larger instances have been commonly addressed by combining construction heuristics
(e.g., insertion algorithms), local search methods (e.g., 2-Opt), and metaheuristics (e.g.,
genetic algorithms, large-neighborhood search) [45]. Subsequently, we review the con-
cept of service quality across several vehicle routing studies, highlighting the character-
istics that enable us to develop the AMoD system we propose.

3.2.1 Service levels & service rate

In the realm of operations research, service level, quality of service and service quality are
terms used interchangeably in DARP formulations to denote the degree to which a sys-
tem can avoid excessive delays or comply with prespecified time window constraints (see
[77]). However, compliance with these service levels may differ among typical DARP
formulations. In a comprehensive literature review, Ho et al. [45] point out that stud-
ies occasionally adopt soft constraints, that is, they allow violations from the preferred
service levels but penalize their occurrence in the objective function (e.g., [49]). When
rejections are permitted, service providers can make selective visits and decide which
requests to accommodate [45]. This is the case for most recent AMoD studies, in which
the quality of proposed matching and schedule operations is also measured regarding
the service rate (i.e., the percentage of requests serviced).

Service levels and service rates have been consistently shown to be inextricably
linked. Molenbruch et al. [67] describe an approximately linear relationship between
service level settings and various performance indicators, such as fleet size, total dis-
tance, empty mileage, passenger miles, and idle time. Accordingly, in an analysis of the
minimum fleet sizing problem, Vazifeh et al. [112] have shown that the shorter is the
connection time (i.e., the maximum delay between two consecutive trips), the bigger
is the fleet required to keep service at a reasonable rate. Conversely, allowing longer
connection times reduces fleet size, but at the expense of traffic and operational effi-
ciency once vehicles may travel longer without any passenger on board. Ultimately,
as Vazifeh et al. point out, setting service levels is a crucial design choice which can
be more adequately addressed by mobility operators. Molenbruch et al. demonstrate
that operational efficiency can be improved even further if such design choice considers
heterogeneous user expectations regarding service levels.

Since providers have to find a compromise between fully meeting user expectations
and operational costs, we set up this compromise using service-level enforcement rates.
These rates determine the extent to which the system is committed to fulfilling each
SQ class expectations. Aiming to decrease extra costs due to vehicle hiring, a provider
may, for instance, strive to achieve the expected service levels of at least 90% of the
users of a certain class, allowing longer waiting for the remaining 10%. By configuring
these rates, providers can establish a service quality hierarchy across users from different
classes, using the available fleet resources to first meet the needs of the most demanding
users.



3.2.2 Heterogeneous users 35

3.2.2 Heterogeneous users

The literature on classic routing problems provides many variants regarding user hetero-
geneity formulations. On heterogeneous dial-a-ride (HDARP) formulations, for example,
a heterogeneous fleet has to service multiple user categories with different transporta-
tion requirements (viz., patient seat, stretcher, wheelchair place, accompanying staff
seat) [78]. However, as pointed out by Ho et al., for most DARP variants, these cate-
gories focus on vehicle layout or equipment availability; service levels generally do not
vary among users.

As argued by Molenbruch et al., it is plausible to assume service level requirements
depend on why a trip is undertaken (e.g., scheduled appointment, leisure activity, com-
muting). Moreover, as shared autonomous transportation start to compete with current
modes, users may adopt AMoD services that best reflect or improve their current ride ex-
perience. For example, through a migration analysis on Dutch commuters, Winter et al.
[116] shows that preference towards SAVs is highest for those currently combining car
and public transport.

By explicitly addressing heterogeneous user preferences, transportation providers
can segment their user base and improve their operational efficiency and profitability
by catering to each class accordingly. For instance, Wong et al. [117] extend a model
of urban taxi services in congested networks to the case of multiple user classes (low-
and high-income), multiple taxi modes (normal and luxury) with distinct combinations
of service area restrictions (urban or rural), and fare levels (mileage- and congestion-
based). Chen et al. [18] show that AMoD providers can find a compromise between
profitability and service coverage by offering high value of travel time (VOTT) users,
refined, work-enhancing vehicle environments at higher fares. Lokhandwala and Cai
[60] allow users to choose either private or shared rides and the extent to which they
can tolerate deviations from the original trip distance. Zhang et al. [123] also model the
user’s willingness to share rides and adapt their waiting tolerances from random hourly
incomes.

Addressing heterogeneous user requirements is also common outside TOD formula-
tions. For example, Smith et al. [97] investigate a generalization of the dynamic trav-
eling repairperson problem (DTRP) that heavily penalizes service delays of high-priority
demand classes. Bulhões et al. [13] consider a vehicle routing problem with service levels
(VRP-SL), in which a logistics provider is tied to contractual obligations regarding strict
delivery deadlines for several business partners. In order to balance service quality and
operational costs, some groups of partner requests are subjected to different minimum
quality thresholds (in terms of the share of serviced demand), depending on their rela-
tive profitability.

Still, throughout all these studies, users either leave the system unserved or endure
longer delays when these requirements cannot be fulfilled. In contrast, we consider
rejections as an unacceptable breach of service quality contract, such that we seek to
inflate fleet size to at least guarantee full coverage. Further, similarly to Bulhões et al.
[13], we control service levels on the operational planning level. We establish minimum
service quality requirements for three user classes and assume some classes have priority
over others. This way, service providers can exert greater control over the management
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of scarce vehicle supply, steering the fleet to first fulfill the expectations of the most
lucrative customer segment.

3.2.3 Heterogeneous vehicles & fleet size elasticity

Although most studies on urban mobility assume that a single service provider takes
care of all requests, this centralized setting is unlikely to happen in reality since multiple
providers can exist in one operation area [45]. As pointed out by Vazifeh et al., central-
izing all operations entails a transition from a diversified mobility market, comprised
of several micro-operators (e.g., taxi drivers), to a monopolistic market. The authors
argue that, although optimal from a vehicle operational perspective, this approach is
undesirable since it may lead to less competition and, consequently, higher prices for
passengers. However, they show that most efficiency benefits (concerning fleet size)
can still be achieved in an oligopolistic market with up to three operators. Accordingly,
in a dial-a-ride context, Molenbruch et al. [68] suggest that enabling horizontal coopera-
tion (i.e., allowing operators to exchange customers’ information) can lead to additional
benefits regarding empty trip reduction.

Vehicle automation further diversifies the mobility market since idle privately-owned
AVs may also become micro-operators. Once vehicles remain parked about 95% of the
time [93], incentives for individuals to simultaneously own and share their AVs when
they are not in use will likely be high [14]. These idle hireable vehicles, which we
refer to as FAVs, may be readily available during predefined time windows to join larger,
centrally controlled fleets in exchange for compensation. As suggested by Hyland and
Mahmassani [47], AV fleet managers can significantly benefit from such short-term fleet
size elasticity, increasing or decreasing the fleet to adequately meet the demand.

Therefore, apart from the expected scheduling and routing services, a future
on-demand transportation company may become a mediator between car-owners and
renters, both with particular and heterogeneous constraints. Additionally, car-renting
companies and car automakers, which will supposedly own large AV fleets, could also
provide subscription plans to private users or associate themselves with third-party
on-demand transportation services. For instance, the latter option might be a natural
next step for automakers that are currently partnering or investing in ride-hailing
companies.

In this setting, the advantages of service diversification and efficient scheduling can
be balanced. For instance, different car owners could stipulate different profit margins
or make their vehicles hireable under certain conditions, such as a minimum profit. Cus-
tomers would also gain further freedom of choice. There would be many more options to
choose from (instead of a uniform vehicle fleet), and alternative renting methods could
be available (e.g., booking a vehicle for an entire day or week). Therefore, the best
possible ride for a transportation demand would consider both customers’ requirements
and owners’ constraints.

Ultimately, such a crowd-sourced AMoD system is expected to guarantee that the
interactions between all involved parties are mutually beneficial. Users find affordable,
tailored rides, car owners are adequately compensated for renting their vehicles, and
the system profits as the matching/routing platform.
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3.2.4 Shared autonomous vehicles systems

Following the taxonomy of Narayanan et al. [72] concerning the operation of SAV sys-
tems, we model an on-demand booking service with dynamic vehicle assignment and
mixed sharing system (both ridesharing and carsharing setups are possible).

Table 3.1 shows how our work fits into related literature concerning service quality,
fleet characteristics, and objective function. First, the “Service quality” header comprises
three columns where we identify whether users (i) can demand shared and/or private
rides, (ii) can choose from heterogeneous service levels, and (iii) can have priority over
others. The “Fleet” header groups four columns indicating the SAV fleet characteristics,
namely vehicle homogeneity (concerning capacity), vehicle ownership (company or pri-
vate), availability (permanent or time windowed), and fleet size inflation enabled by
dynamic hiring. Finally, the “Objective” column summarizes the goal of each approach.
Typically, works that do not aim to minimize rejections assume travelers are willing to
wait indefinitely but penalize this waiting accordingly. For instance, Hyland and Mah-
massani [46] prevent travelers from going from assigned to unassigned as well as being
reassigned more than once, besides penalizing the assignment to busy vehicles picking
up or dropping off. We refer to these penalties in the objective function as “Min. assign-
ment to busy” since they aim to improve the service quality of users previously assigned.
In contrast, when waiting is bounded, a sufficiently large fleet size is considered. In [34],
for example, the minimum fleet size is defined using a “seed” day simulation in order
to guarantee travelers are never rejected and do not wait for more than ten minutes.
Regarding the objective function labels, when a method aims to minimize costs that de-
pend solely on the distance traveled, we label it with “D” (i.e., min. travel distance).
Conversely, if other elements are used to calculate the cost (e.g., hourly salaries, VOTT,
travel times), we use the label “C”.

In contrast to typical formulations, we analyze a highly diversified market scenario
in which private AV owners provide freelance rides to a mobility firm in exchange for
compensation. The firm is assumed to own a homogeneous fleet but occasionally hire
third-party vehicles to avoid user service-level violations. To make it more realistic, we
assume such a backup fleet comprises heterogeneous vehicles with different capacities.
However, opposed to most HDARP formulations in which vehicle/user compatibility de-
pends on physical characteristics, we treat seats as commodities. Any customer can be
transported by any vehicle as long as service quality can be maintained.

3.3 Problem formulations

In this section, we introduce the mathematical model for the problem at hand (Section
3.3.1) and present the changes necessary to implement the dynamic version (Section
3.3.2). Since both formulations aim to minimize a multi-objective function hierarchi-
cally, Section 3.3.3 further explains how this process is carried out using a lexicographic
method.
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Table 3.1: On-demand booking and dynamic vehicle assignment ridesharing systems classified according to service quality, fleet characteristics, and objective
function. Objectives separated by “-” are linearly combined and objectives separated by “>” are optimized hierarchically.

Service quality Fleet

Reference

(S)hared
(P)rivate

rides

Het.
service
levels

User
class

priority

Het.
vehicle
capacity

(C)ompany
(P)rivate
vehicles

(P)ermanent
(W)indowed
availability

Dynamic
hiring Objective

Fagnant and Kockelman [32] P - - - C P - W
Fagnant and Kockelman [34] S - - - C P - W
Alonso-Mora et al. [2] S - - - C P - R - W
Fiedler et al. [36] S - - - C P - D
Gueriau and Dusparic [41] S - - - C P - P
Simonetto et al. [95] S - - - C P - W
Santos and Xavier [87] S - - - C P - R - C
Wallar et al. [113] S - - Ø C P - H - U
Hyland and Mahmassani [46] P - - - C P - W - D - B
Gurumurthy and Kockelman [42] P - - - C P - W
Chen et al. [18] P Ø - - C P - C
Lokhandwala and Cai [60] S, P Ø - - C P - D - S
Zhang et al. [123] S, P Ø - - C P - C
This chapter S, P Ø Ø Ø C, P P, W Ø R > H > S > W

Objectives: W: Min. waiting, R: Min. rejections, H: Min. fleet size, S: Min. service level violation, D: Min. travel distance, C: Min. cost, P: Max. vehicle pickups,
U: Max. utilization vehicle capacity, B: Min. assignment to busy.
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3.3.1 Static DARP-SQC

The DARP-SQC is modeled on a digraph G = (N , E). The node set N is partitioned into
{P, D,O} where P = {1,...,n} is both the set of pickup nodes and request indices, D =
{n+1,...,2n} is the set of destination nodes, and O is the set of origins ok of vehicles
k ∈ K . We consider a free-floating fleet where vehicles do not need to depart from or
come back to a central station. They can start from different origins and park nearby
the delivery location of the last dropped request upon finishing the service. We let Z be
the set of discretized locations on a street network, such that all nodes in N map to a
single location in Z , using the function g : N → Z . The shortest path between nodes i
and j in N is given by Zg(i),g( j) ⊆ Z which we denote as Zi, j for simplicity. In turn, the
minimum travel time to traverse path Zi, j is t i, j .

Each vehicle k has capacity Qk and is available to work on a contract during a time
window [ek, lk]. For company vehicles, this window spans the entire planning horizon,
whereas, for third-party vehicles, various time windows may be set. Users are segmented
into service quality classes c ∈ C such that the set of request indices P can be further
partitioned as P =

⋃
c ∈ C

P c . The arc set E is defined as E = {(i, j) | i ∈ O, j ∈ P or i, j ∈
P∪D, i 6= j and i 6= n+ j}. To each node i ∈ N is associated a load qi , corresponding to
the number of passengers, such that qi =0∀i ∈ O. Regarding the pickup and destination
nodes, qi ≥ 0∀i ∈ P and qi =−qi−n ∀i ∈ D, that is, the load acquired upon picking up
a request has to be equally consumed in the request’s destination. Nodes i ∈ N are also
associated with a service duration di , which may correspond to, for instance, embarking
and disembarking delays, for i ∈ P and i ∈ D, respectively. Service levels for SQ classes
c ∈ C are represented by constants wc

pickup and wc
tolerance. The former corresponds to

the expected maximum pickup delay over the revealing time ei of request i ∈ P c . The
latter is the maximum delay tolerated by user i, which corresponds to the sum of both
pickup and in-vehicle delays. Hence, when wc

pickup < wc
tolerance, users from class c are

satisfied if picked up within wc
pickup but can tolerate up to a wc

tolerance delay. Consequently,
wc

tolerance−wc
pickup corresponds to the in-vehicle delay. The binary parameter ρc is 1, if

users from SQ class c ∈ C demand private rides (i.e., ridesharing is disabled).
The decision variable xk

i, j is 1 when vehicle k ∈ K traverses arc (i, j) ∈ E and the load

of a vehicle k upon leaving node i ∈ N is ωk
i . On the other hand, the decision variable

yi determines whether the service level of user i ∈ P is achieved, setting a viable range
for i’s pickup delay variable δi . If we can meet user i service levels, that is, variable yi
is 1, then 0≤ δi ≤ wci

pickup. On the contrary, if yi is 0, the minimum service-level rate
σci of SQ class ci ∈ C does not cover user i. In this case, user i needs to wait longer,
that is, wci

pickup<δi ≤wc
tolerance. Regarding the time related variables, ∆k

i is the delay of

request i ∈ P in vehicle k and τk
i is the time at which vehicle k arrives at node i ∈ N .

All elements of the DARP-SQC problem are summarized in Table 3.2.
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Table 3.2: Sets, parameters, and variables of the DARP-SQC.

Sets

K Vehicles
C Sorted SQ classes (from highest to lowest priority)
P Pickup nodes and request indices
P c Pickup nodes and request indices of SQ class c
D Delivery nodes
O Origin nodes ok of vehicles k
N = P∪D∪O
Z Discrete street network locations
Zi, j Shortest path between locations i and j

Parameters

Vehicles

ek Contract start time of vehicle k
lk Contract end time of vehicle k
ok Origin node of vehicle k
Qk Capacity of vehicle k

Requests

ci SQ class of request i
di Service duration at node i ∈ N
qi Number of passengers of request i
ei Earliest time of request i

Service quality classes

σc Service-level enforcement rate of SQ class c
wc

pickup Expected max. pickup delay of users in SQ class c

wc
tolerance Total delay tolerance of users in SQ class c
ρc (Binary) 1 if SQ class c does not allow ridesharing, 0 otherwise

Distances

t i, j Travel time from node i to node j

Variables

xk
i, j (Binary) 1 if vehicle k traverses arc (i, j), 0 otherwise

yi (Binary) 1 if user i service level is achieved, 0 otherwise
δi Pickup delay of user i
∆k

i In-vehicle delay of user i in vehicle k
τk

i Arrival time of vehicle k at node i
ωk

i Load of vehicle k after visiting node i
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Multi-objective function

LetX be the solution space, such that s ∈ X is given by s = {xk
i, j ,hi ,δi ,∆k

i }. We consider
a multi-objective function with non-commensurate objectives, ranked according to their
respective priority. First, we aim to minimize the fleet size, by minimizing the total
number of seats across all vehicles with different capacities

ffleet(s) =
∑
k ∈ K

∑
j ∈ P

Qk xk
ok , j

. (3.1)

Next, assuming classes in C are sorted in decreasing priority order (e.g., business, stan-
dard, low-cost), we aim to minimize, the sum of service level violations

{ f c
violate(s) =
∑

i ∈ P c

(yi−1) | ∀c ∈ C}, (3.2)

and then the total waiting time for each class

{ f c
wait(s) =
∑

i ∈ P c

δi+
∑

i ∈ P c

∑
k ∈ K

∆k
i | ∀c ∈ C}. (3.3)

Finally, the multi-objective function is given by

f (s) = { ffleet(s), f c
violate(s) ∀c ∈ C , f c

wait(s) ∀c ∈ C}. (3.4)

MILP model

The formulation of the DARP-SQC is as follows:

Minimize:

f (xk
i, j ,hi ,δi ,∆

k
i ) (3.5)

Subject to:∑
k ∈ K

∑
j ∈ N

xk
i, j = 1 ∀i ∈ P (3.6)

∑
i ∈ N

xk
i, j−
∑
i ∈ N

xk
i,n+ j = 0 ∀ j ∈ P, k ∈ K (3.7)

∑
i ∈ P

xk
ok ,i
≤ 1 ∀k ∈ K (3.8)

∑
i ∈ N

xk
i, j−
∑
i ∈ N

xk
j,i ≥ 0 ∀k ∈ K , j ∈ P∪D (3.9)

ek ≤τk
i ≤ lk k ∈ K , ∀i ∈ N (3.10)
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τk
j ≥ (t i, j+di+τ

k
i )x

k
i, j ∀i, j ∈ N , k ∈ K (3.11)

∆k
i =τ

k
n+i− t i,n+i− (τk

i +di) ∀i ∈ P, k ∈ K (3.12)

ωk
j ≥ (ωk

n+i+q j)x
k
i, j ∀i, j ∈ N , k ∈ K (3.13)

max{0,qi} ≤ωk
i ≤min{Qk,Qk+qi} ∀i ∈ N , k ∈ K (3.14)∑

i ∈ P c

yi ≥
 
σc · |P c |£ ∀c ∈ C (3.15)

wci
pickup(1− yi)≤δi ≤ wci

pickup yi+wci
tolerance(1− yi) ∀i ∈ P (3.16)

ei ≤τk
i ≤ ei+δi ∀i ∈ P, k ∈ K (3.17)

∆k
i +δi ≤ wci

tolerance ∀i ∈ P, k ∈ K (3.18)∑
k ∈ K

ωk
i = qi ∀i ∈ P :ρci = 1 (3.19)

∑
k ∈ K

xk
i,n+i = 1 ∀i ∈ P :ρci = 1 (3.20)

xk
i, j ∈ {0,1} ∀k ∈ K , i, j ∈ N (3.21)

yi ∈ {0,1}, δi ∈ N ∀i ∈ P (3.22)

∆k
i ∈ N ∀k ∈ K ,∀i ∈ P (3.23)

τk
i , ωk

i ∈ N ∀k ∈ K , ∀i ∈ N (3.24)

The aim of the hierarchical multi-objective function (3.5) is first to determine the
minimum fleet size and vehicle mix that satisfies the demand and then to improve class
service levels. Constraints (3.6) and (3.7) ensure that all users are serviced exactly once
and that the same vehicle visits their origin and destination nodes. Constraints (3.8) and
(3.9) guarantee that every scheduled vehicle k departs from its origin ok and stops at the
delivery node of its last request. Constraints (3.10) impose that vehicles can only pick
up and deliver users within their working time window. The consistency of arrival and
ride times is ensured by constraints (3.11) and (3.12), whereas the consistency of load
variables is ensured by inequalities (3.13) and (3.14). Constraints (3.15)-(3.20) imple-
ment the user SQCs. First, constraints (3.15) enforce that the service-level expectations
of a minimum share of users from each class are met. Next, Constraints (3.16), (3.17),
and (3.18) ensure that service levels are consistent with maximum pickup and in-vehicle
delays. Then, equalities (3.19) and (3.20) ensure that users whose class entails a pri-
vate ride are picked up by empty vehicles and travel directly to their destination. Finally,
constraints (3.21)-(3.24) declare the variables.



3.3.2 Dynamic DARP-SQC 43

The quadratic constraints (3.11) and (3.13) are linearized as in Cordeau et al. [24]:

τk
j −τk

i ≥ t i, j+di−M k
i, j(1− xk

i, j) ∀i, j ∈ N , k ∈ K (3.25)

Qk
j −Qk

n+1 ≥ q j−W k
i, j(1− xk

i, j) ∀i, j ∈ N , k ∈ K (3.26)

The validity of the Big-M constants W and M in (3.25) and (3.26) is ensured by setting
W k

i, j ≥min{2Qk,2Qk+qi} and M k
i, j ≥max{0, li+ t i, j+di− e j} ∀k ∈ K and i, j ∈ N .

3.3.2 Dynamic DARP-SQC

In order to deal with real-world instances, we break apart the time horizon into κ-second
rounds t ∈ {0,1,2,. . . , T}. At each round t, we process a request batch indexed by Pt ,
which is comprised of requests accumulated throughout the time slot [κ ·(t−1), κ · t).
Additionally, we search for available freelance vehicles parked throughout locations in
Z to construct the set of backup FAVs KFAV

t ⊆ K , which can privately service all requests
in Pt . In the following, we further detail the elements we use to expand the static DARP-
SQC problem definition presented in Section 3.3.1 to accommodate dynamic execution.
These elements are summarized in Table 3.3.

Requests. A request ri is defined by a tuple {i, i′,τk
i ,τk

i′ ,ei ,ei′ ,qi ,ci}, which consists of
origin i ∈ P, destination i′ ∈ D, with respective expected arrival times τk

i and τk
i′ ,

placement time ei , minimum delivery time ei′ = ei+ t i,i′ , load qi , and service level class
ci .

Vehicles. We assume all vehicles k are associated to visiting plans vk = {P k,Rk,S k}.
Sets P k and Rk are comprised of passengers (i.e., picked up requests) and assigned
requests, respectively. In turn, S k = {S k

0 ,S k
1 , . . . ,S k

m } is a sequence of nodes rep-
resenting the vehicle’s itinerary, such that S k ⊆ N . While S k

0 is vehicle k’s last vis-
ited node, S k

1 , . . . ,S k
m are the subsequent m nodes to visit. Hence, vehicle k’s current

load is Qk
S k

0
=
∑

ri ∈P k qi , which corresponds to the load after visiting Sk
0 in the interval

[τk
S k

0
,τk
S k

0
+dS k

0
).

Visiting plan feasibility. A valid visiting plan vk from vehicle k consists of a sequence of
trip pairs (i, j) ∈ {(S k

0 ,S k
1 ),(S k

1 ,S k
2 ), . . . ,(S k

m−1,S k
m )} that represent a feasible solution

with respect to the following constraints:

C1) e j ≤τk
i +di+ t i, j ≤τk

j (arrival consistency)

C2) ωk
i +q j ≤Qk (load consistency)

C3) if i ∈ P∧ρci = 1 then j = i′ (privacy requirement)
C4) τk

i ≤ lk (vehicle contract deadline)

It is worth noting that when a request is assigned to a vehicle, we assume that it
can still be further delayed or even picked up by different vehicles but never rejected.
Such flexibility allows a higher number of feasible rides to arise at each period, which
ultimately favors the inclusion of high priority users by disrupting previous visiting plans.
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Table 3.3: Sets, parameters, and variables of the dynamic formulation.

Sets

Z∗ Regional centers of street network locations Z
KPAV Company vehicles
KFAV

t Hireable vehicles at time t
KH

t Vehicles hired at time t
KP

t Parked vehicles at time t
P k Passengers (picked up requests) of vehicle k
Rk Assigned requests (non picked up) of vehicle k
S k Node itinerary of vehicle k
vk Visiting plan {P k ,Rk , S k} of vehicle k
V k

R Candidate visiting plans where k is in the rebalancing state
V k

S Candidate visiting plans where k is in the servicing state
vk

idle Candidate visiting plan where k is in the idle state
V k Feasible visiting plans V k

S ∪V k
R ∪{vk

idle} for vehicle k
V Visiting plans

⋃
k ∈ K
V k in ERTV graph

Vi Visiting plans in V including request i
V SL

i Visiting plans in V that meet request i target SL
PA Requests previously assigned to vehicles
Bt Request batch placed in period t
Pt = Bt ∪ PA

P c
t Requests in Pt of class c ∈ C

O∗t Origins ok ∈ Z∗ of hired vehicles KH
t

PU
t Pickup nodes of service-level violated requests at time t

Jt Rebalancing targets O∗t ∪ PU
t

Parameters

γhire Hiring penalty
γsl Service-level violation penalty
γreject Rejection penalty
κ Round duration
lk Contract deadline of vehicle k
T Total time horizon
s Maximal hiring delay

Variables

hk (Binary) 1 if vehicle k ∈ KFAV
t is hired, 0 otherwise

xv (Binary) 1 if visiting plan v is chosen, 0 otherwise
yi (Binary) 1 if service level of request i is achieved, 0 otherwise
zi (Binary) 1 if request i is rejected, 0 otherwise
δiv Pickup delay of user i in visiting plan v
∆v Delay sum of all requests in visiting plan v
∆c

v Delay sum of class c requests in visiting plan v
ac Number of service-level violations in class c
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Vehicle states and visiting plan types. At each round, a vehicle k can execute three actions,
namely, (i) move to pick up or deliver requests, (ii) stay idle at its current position, and
(iii) move empty to another location. Accordingly, we consider that vehicles k executing
(i), (ii), or (iii), are in states servicing, idle, or rebalancing, respectively. The best plan is
chosen from a set of feasible candidates V k, which is partitioned based on the possible
vehicle states using

V k
S Set of candidate visiting plans where vehicle is servicing users, that is, |P k|>0

or |Rk|> 0,

vk
idle Candidate visiting plan where vehicle is idle, that is,Rk=P k=; and |S k|=1,

such that S k
0 is a parking place,

V k
R Set of candidate visiting plans where vehicle is rebalancing, that is,Rk=P k=
; and |S k|= 2, such that S k

0 is a parking place and S k
1 is a rebalance target.

Updating vehicle progress. We use the function updateProgress(k,t) to update
visiting plans. The time period t is used to compute the progress of vehicle k throughout
the itinerary S k and update sets Rk and P k. First, regardless of node type, ∀i ∈ S k,
if τk

i ≥ ei , S k =S k \{i}. If i is a pickup node, thenRk =Rk \{ri} and P k =P k∪{ri},
whereas if i is a delivery node, then P k =P k \{ri}.
Interrupting visiting plans. By breaking apart the current leg (i, j) = (g(S k

0 ), g(S k
1 )) of

a vehicle k into a sequence of intermediate nodes throughout the shortest path Zi, j =
{i, b1, b2, . . . , bn, j} ⊆ Z , we can use the current time t, the arrival time τk

S k
i

, and travel

times t i, j to determine the break point b ∈ Zi, j from where we can start a new itinerary.
Using breakpoints adds flexibility to the scheduling process, since we can change visiting
plans every period, before reaching location j. For instance, a servicing vehicle can take
a turn at any break point b throughout Zi, j to pick up another user, or, provided that it
has no passengers, empty the request list and rebalance to parking place b. In turn, a
vehicle moving to a high demand region can interrupt the rebalancing process at b to
pick up a request occurring nearby.

Optimal itineraries. Based on the passengers P k of vehicle k and a candidate request
setR , there can be several feasible S itineraries created using nodes from P k∪R that
fulfill constraints C1, C2, C3, and C4. These itineraries compose candidate visiting plans
v= {P k,R ,S } in the set V k

S . The total delay associated with an itinerary S of visiting
plan v consists of the sum of the arrival delays at destination nodes, which is given by

∆v =
∑

i′ ∈ S ∩D

τk
i′ − ei′ .

Using delays∆v , we can determine the visiting plan featuring the global minimum total
delay

vk
g = argmin

v ∈V k
S

∆v . (3.27)
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From a SQ class perspective, the total delay of requests from class c consists of the sum
of delays to reach these requests’ destinations, which is given by

∆c
v =
∑

i′ ∈ S∩D
ci=c

τk
i′ − ei′ .

Likewise, using delays ∆c
v , we can determine the visiting plan featuring the minimum

total delay for class c

vk
c = argmin

v ∈V k
S

∆c
v . (3.28)

Hiring. We outsource requests to privately-owned vehicles (FAVs) whenever the current
fleet can no longer meet the minimum service level requirements of SQ classes. For
each period t, we search regional centers for available FAVs that can back up the
PAV fleet if it cannot service a request batch Pt adequately. We assume that such
freelance vehicles are readily available to join the fleet in exchange for compensa-
tion, and their supply is sufficient to match the overall excess demand. We collect
these vehicles in set KFAV

t = {closestFAVToRequest(i, Z*) | ∀i ∈ Pt}, where
closestFAVToRequest(i, Z*) is a function that returns the vehicle k parked at
regional center location in Z∗ ⊆ Z that can pick up request i.

To determine regional centers in Z∗, we implement a variant of the facility-location
problem proposed by Toregas et al. [103]. Our formulation aims to determine the mini-
mum set of facilities that together can cover all other locations in Z within s time units.
For instance, a long s results in fewer regional centers, increasing the pickup time of
requests and, consequently, service-level violations. Conversely, a short s leads to many
regional centers, allowing the hireable fleet to access users faster. In this chapter, we
refer to s as the maximal hiring delay and adjust it such that hired vehicles can pick
requests within their expected service level, regardless of class.

All vehicles k ∈ KFAV
t have contract deadlines min{lk, T}, such that k is dismissed at

a later time t ′ as long as t ′ >= lk. Finally, to guarantee PAV availability, we set lk = T
for all vehicles k ∈ KPAV. Additionally, we consider hired vehicles to have precisely the
capacity of the number of passengers determined by the request they are supposed to
service. Therefore, throughout the simulation, the working fleet dynamically changes
from homogeneous to heterogeneous, especially at high-demand times.

Decision variables. Decision variables are grouped in solution tuples s = {xv , yi ,zi ,h
k}

with xv , yi ,zi ,h
k ∈ {0,1} such that the solution space is defined using

X = {xv , yi ,zi ,h
k | ∀v ∈ V k, ∀k ∈ K and ∀i ∈ Pt}.

Variable xv = 1 when the visiting plan v ∈ V k from vehicle k ∈ K is chosen, and
variables yi and zi help to distinguish how user i is serviced. If yi = 1, the system could
meet request i class service levels, whereas if zi = 1 request i is rejected. Finally, for
vehicles k ∈ KFAV

t , hk = 1 signals that k was hired to carry out a visiting plan at the
current period t.
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Multi-objective function

For the dynamic version of our problem, we also propose a multi-objective function.
First, we aim to minimize, in turn, the sum of rejection penalties γreject given by the
ordered list of objectives

{ f c
reject(s) =
∑

i ∈ P c

γreject ·zi | ∀c ∈ C}. (3.29)

After preventing rejections, we aim to hire the least number of vehicles necessary to
meet user service levels, such that we aim to minimize

fhire(s) =
∑

k ∈ KFAV
t

Qkhk. . (3.30)

Next, we seek to minimize the sum of violation penalties γsl in the ordered list of
objectives

{ f c
violate(s) =
∑

i ∈ P c

γsl ·(yi−1) | ∀c ∈ C}. (3.31)

Then, we consider the minimization of waiting times across classes:

{ f c
wait(s) =
∑

v ∈V k

∆c
v · xv | ∀c ∈ C}. (3.32)

Finally, we define the multi-objective function of our dynamic formulation using

f (s) = { f c
reject(s) ∀c ∈ C , fhire(s), f c

violate(s) ∀c ∈ C , f c
wait(s) ∀c ∈ C}. (3.33)

According to each class priority, the order of the objectives guarantees that visiting
plans are set up first to avoid rejections. In the next steps, vehicles are hired only to
prevent service level violations, which are minimized subsequently also following the
order of C . Once optimal service level distribution is guaranteed, the solution featuring
the minimum waiting time is chosen.

3.3.3 Lexicographic method for multi-objective optimization

We use the lexicographic method to determine the optimal solution for the multi-
objective function f (s) (for both static and dynamic models). This method consists of
solving, in decreasing priority order, a sequence of single-objective problems

Minimize { fr(s) | fl(s)≤ψl , l = 1,.. . , r−1, s ∈ X},
where r ∈ {1,2,. . . , | f |} is the index of the current objective. A solution s is feasible only
if it does not degrade the optimal values ψl found for previous objectives fl with higher
priority. Although we adopt a hierarchical optimization approach, it is worth noting
that service quality objectives such as f violate and f wait are good candidates for linear
combination. By deliberately weighing the tradeoffs, providers could establish a utility
function that best represents their efforts to cater to users across classes.
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3.4 A matheuristic for the dynamic DARP-SQC

The following sections describe how we build on the state-of-the-art method proposed
by Alonso-Mora et al. [2] to solve the problem’s dynamic version. The method was
chosen because (i) its conventional formulation offers optimality guarantees and (ii) it
is flexible to accommodate the contributions put forward in this chapter, namely, service
level constraints and hiring capabilities.

First, request demand and vehicle supply information are combined into a pairwise-
shareability graph (Section 3.4.1), which is subsequently used to iteratively compute a
graph of feasible visiting plans (Section 3.4.2). Next, visiting plans are optimally as-
signed to vehicles using a multi-objective MILP formulation whose goal is to minimize
user dissatisfaction hierarchically (according to the importance of each class) while hir-
ing the least number of vehicles (Section 3.4.3). Then, a MILP formulation is used to
optimally rebalance idle vehicles to underserved areas, where either service level viola-
tions (i.e., extra delays or rejections) or vehicle hirings occurred (Section 3.4.4).

The necessary steps to calculate a complete solution are described in Algorithm 3.1
and summarized in Figure 3.2, which provides an overview of our method using as an
example the input presented in Figure 3.1 (a). Since the construction steps I and II
(where feasible visiting plans are determined) are followed by assignment steps III and
IV (where vehicles are optimally assigned to visiting plans), the complete strategy con-
sists of a matheuristic, that is, a heuristic that incorporates phases where mathematical
programming models are solved [4].

Algorithm 3.1: Dynamic DARP-SQC matheuristic
Input: Request index batches P = {B1,B2,B3, . . . ,BT } for total horizon T , service level classes C ,

initial fleet KPAV randomly distributed throughout street network locations in Z , and
regional centers Z∗.

1 K = KPAV

2 for t = 0,1,2,. . . , T do
3 updateProgress(k,t), ∀k ∈ K
4 K = K \{k} if t ≥ lk ∀k ∈ K //Remove vehicles whose contracts expired
5 PA = {i | ∀ri ∈ ⋃

k ∈ K
Rk} //Build set of assigned requests

6 Pt = Bt ∪ PA //Build set of requests in progress
7 KFAV

t = {closestFAVToRequest(i, Z*) | ∀i ∈ Pt}
8 K = K∪KFAV

t
9 Build RV graph using vehicles K and requests Pt (Section 3.4.1)

10 Build ERTV graph from RV graph (Section 3.4.2)
11 (MILP) Match visiting plans to vehicles (Section 3.4.3)
12 K = K \{k} if hk = 0 ∀k ∈ KFAV

t //Remove unhired FAVs
13 O∗t = {ok | hk = 1 ∀k ∈ KFAV

t } //Origins of hired vehicles
14 PU

t = {i | yi = 0, ri ∈ Pt} //Origins of SL violated requests
15 Jt = {i | ∀ i ∈ O∗t ∪ PU

t } //Rebalancing targets
16 KP

t = {k | if vk = vk
idle∀k ∈ K} //Idle vehicles

17 Create rebalancing visiting plans V k
R using KP

t and Jt
18 (MILP) Match rebalancing visiting plans to vehicles (Section 3.4.4)
19 Implement all visiting plans v ∈ V k if xv = 1 ∀k ∈ K
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Requests:
S={1, 2, 3} | B={5} | L={4}

Vehicles:
W={1, 2} |     H={3, 4}

I II III IV

INPUT
Routes
1: 0, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 3 Rebalancing
2: 011’242’4’ Servicing
3: 055’33’ Servicing
4: 0 Idle

OUTPUT
Visiting plan
assignment

Idle vehicle 
rebalancing

ERTV 
graph

RV
graph

Figure 3.2: Method overview for the input example presented in Figure 3.1 (a). Input is processed
into a RV graph (Figure 3.3) where initial ridesharing opportunities are identified. Then, the RV
graph is used to build an ERTV -graph (Figure 3.4), which connects all vehicles and requests through
feasible visiting plans. Next, these plans are optimally assigned to available vehicles (Figure 3.5).
Finally, remaining idle vehicles are optimally rebalanced to underserved areas (Figure 3.6). The
output consists of updated vehicles plans, which are illustrated in Figure 3.1 (b).

3.4.1 Pairwise request-vehicle graph

The pairwise request-vehicle (RV) graph is based on the idea of shareability graphs pro-
posed by Santi et al. [86]. In the RV graph, two requests are connected only if they can
be serviced by an empty virtual vehicle starting at the origin of one of them. Likewise,
a vehicle is connected to a request if the request can be serviced by the vehicle.

Since we consider previously assigned requests can still be picked up by different
vehicles, these requests also integrate the RV graph construction. At each time period t,
after updating all vehicle tuples according to the current period t as well as dismissing
hired vehicles with expired contract deadlines, we define the set of assigned requests
PA = {i | ∀ri
⋃

k ∈ K
Rk}, and the set of all requests Pt = Bt ∪ PA. Then, we use the total

fleet K and requests Pt to build the RV graph.
Figure 3.3 presents the RV graph created from the problem input described in Figure

3.1(a). The graph features six request-request (RR) pairs and seven request-vehicle (RV)
pairs.

3.4.2 Extended trip-request-vehicle graph

Similarly to Alonso-Mora et al. [2], we use the RV graph to compute the request-trip-
vehicle (RTV) graph, where request and vehicle nodes are connected to trip nodes, which
are comprised of request sets. Feasible trips featuring q ∈ {1,2} request derive directly
from the RV graph, whereas trips involving q≥ 3 requests are feasible only if all possible
subtrips with q−1 requests are also feasible. By carrying out this sub-feasibility assess-
ment process iteratively, increasingly higher q-trip combinations can be evaluated up to
the capacity of vehicle k, that is, q ∈ {1,2,. . . ,Qk}.

In contrast to the original RTV graph formulation, where trip nodes consist of a
request set that refers to a unique minimum waiting visiting plan, we propose visiting
plan nodes (v-nodes). We consider a single request setR can lead to up to |C |+1 visiting
plans. Besides the minimum total delay plan vk

g , we also consider the minimum total

delay plans vk
c for each class c ∈ {ci | ri ∈ R}. Adding extra visiting plans focusing on

SQ classes’ total delay minimization adds flexibility to the assignment algorithm once
it can consider a larger pool of itineraries to balance service level provision between
classes.
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S1

L4

S2
S3

B5

Pairwise shareability graph

Requests:
S={1, 2, 3}, B={5}, L={4}

Vehicles:
W={1, 2},     H={3, 4} Request-request

Request-vehicle

Pairs:

W1

H3

H4

W2

I

Figure 3.3: RV graph resulting from the problem input presented in Figure 3.1(a).

We refer to this expanded version, where request sets generate several visiting plans,
as the extended trip-request-vehicle (ERTV) graph. Hence, whenever a vehicle k can suc-
cessfully service a request setR , instead of adding edges e(ri ,R) ∀ri ∈ R and e(R ,k),
we add edges where R is replaced by visiting plans v.

Once these visiting plans entail a one-to-one relationship to both vehicles and re-
quests, we can attribute weights to edges. As a result, a feasible visiting plan v leads to
edges e(ri , v,δiv) ∀ri ∈ R and e(v,k,∆v), where δiv is the delay to pick up request ri
through sequence S and ∆v is the total waiting time to realize S .

We employ an exhaustive search over all feasible itineraries created from R to find
the visiting plans vk

g and vk
c . However, it is worth noting that we are able to do so

because we consider low-capacity vehicles with at most four seats. In order to consider
high-capacitated vehicles, local improvement methods or exploration heuristics might
be necessary to curb computation time.

Additionally, to ensure every vehicle will be assigned to a visiting plan, we add two
extra edges. For parked vehicles, we add edge e(k, vk

idle,0) to guarantee they can stay
parked. Consequently, if vk

idle is assigned to k ∈ KFAV
t , k did not need to be hired.

For unloaded vehicles cruising to pick up users (i.e., P k = ; and |Rk|≥ 1), we add
edge e(k, vk

stop,0), where vk
stop ∈ V k

R is a special rebalance case, where Rk is emptied
and the vehicle stops at the closest parking place (the next break point in the shortest
path to the current destination). Both vk

idle and vk
stop have zero-valued weights because

we aim to avoid unnecessary trips, such that vehicles remain still whenever possible.
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It is worth noting that vehicles can also continue to carry out their incumbent vis-
iting plan, which is naturally added to the ERTV graph during the construction phase.
Algorithm 3.2 presents all the construction steps of the ERTV graph.

Finally, upon adding edges that link requests i to visiting plans v, we populate the set
Vi of plans where i can be serviced. Then, we define set V SL

i ⊆Vi where δiv ≤ wci
pickup,

which consists of the set of plans where request i desired service levels are satisfied.
Figure 3.4 displays a portion of the ERTV graph based on the pairwise RV graph.

It shows how requests Pt = {1,2,4,5} from period t are associated to vehicles 1, 2,
and 4 through visiting plans V 1 = {v17, v18}, V 2 = {v0, v1, . . . , v14}, and V 4 = {v15, v16},
respectively. It is worth noting that vehicles 1, 2, and 4 include their incumbent visiting
plans, namely, v18, v7, and v16. This way, whenever appropriate, vehicles can continue
carrying out these plans. Moreover, for vehicle 2, the plans v10, v11, and v12 stem from
the same request set R = {r1, r4, r2}. Since R features two different SQ classes, v10 is
the visiting plan achieved seeking to minimize the total delay whereas v11 and v12 are
the visiting plans achieved when the goal is to minimize the delays of standard and low-
cost classes. A similar outcome can be found for plans v4, v5, and v6, which all stem
from request set R = {r2, r4}.

II Extended Request-Trip-Vehicle graph

14𝑣𝑣1 011’44’

2𝑣𝑣14 022’
4𝑣𝑣13 044’

12𝑣𝑣9 0121’2’

-𝑣𝑣0 0
1𝑣𝑣8 011’
-𝑣𝑣7 Rebalancing

14𝑣𝑣2 044’11’
14𝑣𝑣3 0141’4’

S1

S2 142𝑣𝑣10 011’242’4’
142𝑣𝑣11 0121’2’44’
142𝑣𝑣12 044’121’2’

W2

𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖
Δ𝑖𝑖 𝑘𝑘ℛ𝑣𝑣 𝒮𝒮

H4

24𝑣𝑣4 022’44’
24𝑣𝑣5 044’22’
24𝑣𝑣6 0242’4’

B5

V

W1

-𝑣𝑣18 0
5𝑣𝑣17 055’

-𝑣𝑣16 0
4𝑣𝑣15 044’

L4

Figure 3.4: ERTV graph created from the RV graph showed in Figure 3.3. For brevity, we omit the
elements concerning vehicle H3. Edges connecting requests i to visiting plans v weight requests’ pickup
delays δiv , whereas edges connecting vehicles to visiting plans weight plans’ total delays∆v (i.e., sum
of all users’ pickup and in-vehicle delays).
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Algorithm 3.2: ERTV graph construction
Input: RV graph from period t with request-request (RR) edges e(ri , r j) with i, j ∈ Pt and

vehicle-request (RV) edges e(ri ,k) with i ∈ Pt and k ∈ K .
Output: ERTV graph with request and v-node edges e(ri , v,δiv) and v-node and vehicle edges

e(v,k,∆v).
1 Function getVisitingPlans(k,R)
2 V = ;
3 V ← vk

g //Min. total delay (3.27)

4 for c ∈ {ci | ri ∈ R} do
5 V ← vk

c //Min. total delay for class c (3.28)

6 return V

7 Function addVisitingPlansToERTV(V)
8 Add request and v-node edge e(ri , v,δiv)∀ri ∈ R , ∀v ∈ V
9 Add v-node and vehicle edge e(v,k,∆v)∀v ∈ V

10 Function addFeasiblePlansFromRequests(Rk
q ,k,R′)

11 for R ∈ R′ do
12 V = getVisitingPlans(k,R)
13 if V 6= ; then
14 Rk

q←R
15 addVisitingPlansToERTV(V)

16 begin
17 for k ∈ K do
18 addVisitingPlansToERTV({vk

stop, vk
idle})

19 Rk
q = ; ∀q ∈ {1,2,. . . ,Qk}

20 R′ = {{ri} | ∀e(ri ,k) ∈ RV graph} //Candidate one-request trips
21 addFeasiblePlansFromRequests(Rk

1,k,R′)
22 R′ = {{ri , r j} | ∀ri , r j ∈ Rk

1} //Candidate two-request trips
23 R′ = {R | ∀R ∈ R′∧ e(R1,R2) ∈ RV graph} //Filter unfeasible
24 addFeasiblePlansFromRequests(Rk

2,k,R′)
25 for q ∈ {3,.. . ,Qk} do
26 R′ = {Ri ∪R j | ∀Ri ,R j ∈ Rk

q−1}
27 R′ = {R | ∀R ∈ R′∧|R|= q} //Select candidate q-request trips
28 R′ = {R | ∀R ∈ R′∧∀ri ∈ R , R\ ri ∈ Rk

q−1} //Filter candidate

unfeasible trips
29 addFeasiblePlansFromRequests(Rk

q ,k,R′)

Table 3.4 presents the number of pickup and delivery permutations evaluated at
each iteration of the Algorithm 3.2, considering vehicles can carry up to four passen-
gers. Since some permutations might violate requests’ service-level requirements, only
a subset of them ends up becoming valid visiting plans.
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Table 3.4: Feasible request combinations for each vehicle throughout the iterations of Algorithm 3.2.
Valid combinations are created based on the RV graph showed in Figure 3.3 considering four-seat
vehicles, totaling 135 pickup and delivery combinations.

N. of requests (N. of possible visiting plans)

Vehicle 1(1) 2(6) 3(90) 4(2,520) Total

W1 B5 - - 1

W2 S1 S1,S2 - - 7
S2 S2,L4 - - 7
L4 S1,L4 S1,S2,L4 - 97

H3 S2 S2,S3 - - 7
S3 S3,B5 - - 4*
L4 S2,L4 - - 7
B5 L4,B5 - - 4*

H4 L4 L4 - - 1

*No ridesharing in itineraries featuring business users

3.4.3 Visiting plan assignment formulation

For each period t, we use the ERTV graph elements to formulate an assignment problem,
formalized using the following MILP model:

Minimize:

f (xv , yi ,zi ,h
k)

Subject to:∑
v ∈V k

xv = 1 ∀k ∈ K (3.34)

∑
v ∈Vi

xv+zi = 1 ∀i ∈ Bt (3.35)

∑
v ∈Vi

xv = 1 ∀i ∈ PA (3.36)

∑
v ∈V k

S

xv = hk ∀k ∈ KFAV
t (3.37)

∑
v ∈V SL

i

xv = yi ∀i ∈ Pt (3.38)

∑
i ∈ P c

t

yi ≥
 
σc · |P c

t |
£ ∀c ∈ C (3.39)
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The optimization problem aims at minimizing the multi-objective function (3.33) in
order to find the least number of hirings necessary to meet user service level expecta-
tions throughout SQ classes. Constraints (3.34) guarantee that each vehicle realizes a
single visiting plan. In turn, constraints (3.35) ensure that every unassigned user is ei-
ther assigned or rejected, whereas (3.36) guarantee that previously assigned requests
continue so but allows the original plan to be changed (other vehicles can carry out the
service). Constraints (3.37), guarantee the consistency of the hiring process, such that
hk = 1 whenever a visiting plan from V k

S of vehicle k ∈ KFAV
t is chosen. Constraints

(3.38) guarantee the consistency of each variable yi , which is 1 only when the expected
service level of request i is fulfilled. Finally, analogously to the static formulation, con-
straints (3.39) enforce that the service-level expectations of a minimum share of users
from each class are met.

Figure 3.5 illustrates the assignment step for the input example presented in Figure
3.1(a). The feasible visiting plans featured in Figure 3.4 are optimally assigned to as-
sociated vehicles according with the multi-objective function (3.33). From the output
it can be seen that all user expectations were met (i.e., no delays or rejections). Addi-
tionally, previously rebalancing vehicle 2 was assigned to pick up users 2 and 4 whereas
vehicle 3 was hired to pick up requests 3 and 5.

Visiting plan assignment

HiringsRejections
(B→ S→ L)

Output

Vehicles
- Working = 1, 2, 3 / Hired = 3 / Idle = 1
Requests
- SL met = 1, 2, 3, 4, 5 / Delayed: ∅ / Rejected = ∅
Routes
- W1 = 0 / W2 = 011’242’4’ / W3 = 055’33’

Input

Vehicles: 1, 2, 3, 4 Candidate plans: {𝑣𝑣𝑜𝑜, 𝑣𝑣1, … , 𝑣𝑣 𝒱𝒱 }
Requests: {1, 2, 3, 4, 5}

Optimal assignment (lexicographic method)

MIN
Total waiting
(B→ S→ L)

III

SL violations
(B→ S→ L)

Figure 3.5: At each period, feasible visiting plans are optimally assigned to available vehicles such
that rejections, hirings, service level violations, and waiting times are hierarchically minimized. The
order objectives are addressed following the lexicographic method is indicated by the arrows.
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Feasibility. Due to constraints (3.39), the MILP model is infeasible whenever the num-
ber of vehicles is insufficient to honor SQCs. Still, we can determine the best possible
outcome by minimizing violations to a relaxed version:∑

i ∈ P c
t

yi+ac ≥  σc · |P c
t |
£ ∀c ∈ C , (3.40)

where ac represents the number of service level violations in class c, such that 0≤ ac ≤ 
σc · |P c

t |
£
, ∀c ∈ C . Then, we can minimize ac across classes using the ordered list of

objectives

{ f c
feasible(s) = ac | ∀c ∈ C}. (3.41)

3.4.4 Idle vehicle rebalancing formulation

Due to the spatiotemporal characteristics of transportation requests, vehicles can end up
stranded in low demand areas of a city, operating at subpar productivity rates. Hence,
to address ongoing supply-demand imbalances, relocation strategies are commonly em-
ployed to route idle vehicles to regions where requests are more prone to appear. Fol-
lowing Alonso-Mora et al., we fix supply and demand imbalances by optimally rebalanc-
ing parked vehicles KP

t = {k | if vk = vk
idle∀k ∈ K} to locations where the system failed

to meet user needs. In the original formulation, vehicle rebalancing targets were the
pickup points of rejected users. Since our hiring setup can avoid rejections altogether,
we adopt two new rebalancing stimuli to move vehicles throughout the street network.
First, since hiring indicates a lack of proper vehicle supply, we consider that the origins
of hired vehicles KH

t = {k | hk = 1 ∀k ∈ KFAV
t } are also rebalancing targets. We refer

to these origins as O∗t = {ok | ∀k ∈ KH
t }, since they are a subset of regional centers Z∗.

Second, we consider that service-level violations in a particular area also indicate in-
sufficient vehicle supply. This way, besides the origins of rejected users, the origins of
assigned but dissatisfied users also integrate the list of rebalancing targets. We refer to
the origins of service-level violated requests as PU

t = {i | yi = 0, ri ∈ Pt}, such that the
list of rebalancing targets is Jt = {i | ∀ i ∈ O∗t ∪PU

t }. Finally, we minimize the total travel
times to reach the rebalancing targets Jt .

For each vehicle k ∈ KP
t we define a set of candidate visits V k = {vk

idle}∪V k
R , where

visiting plans vk ∈ V k
R are based on sequences {Sk | Sk = {Sk

0 , i} ∀i ∈ Jt}. Then, we use
variables xv to optimally assign vehicles to targets as follows:

Minimize:∑
k ∈ KP

t

∑
v ∈V k

R

∆v xv (3.42)

Subject to:∑
v ∈V k

xv = 1 ∀k ∈ KP
t (3.43)
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k ∈ KP

t

∑
v ∈V k

R

xv =min
�|Jt |, |KP

t |
�

(3.44)

The objective function (3.42) aims at minimizing the total rebalancing delay. Equa-
tions (3.43) guarantee that all available idle vehicles KP

t are used to reach targets in Jt
(if any), and equations (3.44) ensure that each idle vehicle ends up either rebalancing
or staying parked. Figure 3.6 illustrates how the rebalancing process takes place for the
idle vehicles resulting from the assignment step illustrated in Figure 3.5.

Idle vehicle rebalancing

Output

Vehicles
- Rebalancing = 1 / Idle = 1
Routes
- W1 = 0, 𝑜𝑜3

Optimal assignment

MIN
Total distance traveled to reach rebalancing targets

IV

Input
Idle vehicles: 1
Rebalancing targets:
- Origins of requests with unmet service levels = ∅
- Hired vehicle origins = 𝑜𝑜3

Figure 3.6: Idle working vehicles are optimally rebalanced to underserved areas.

3.5 Experimental study

In the following sections, we present the SQ parameters (Section 3.5.1), describe how
simulation settings such as trip and travel data are set up (Section 3.5.2), and design
twelve operational scenarios (Section 3.5.3) to study the influence of different user-base
and FAV-supply configurations.

3.5.1 Service quality settings

The primary objective of our experiments is to assess the operational impact of actively
controlling service quality for a heterogeneous user base. Since the interplay between
service levels, fleet size, and service denial has already been thoroughly examined in the
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literature (see, e.g., [67]), we focus our analysis on the operational adjustments required
to service the request demand entirely, such that formerly inconvenienced users can also
be successfully serviced under strict SQCs.

In order to design a heterogeneous user base, we first define the class SQC config-
urations adopted in this chapter. Next, to evaluate the outcome of meeting SQCs, we
present three service-level enforcement rate scenarios, where we vary provider’s leeway
to violate the SQCs. Finally, to evaluate how class SQC configurations can influence fleet
operations, we propose three user segmentation scenarios, where we vary the predom-
inance of a certain class within the transportation demand.

Service quality contracts

Table 3.5 summarizes the SQC settings we adopt for each user class. Besides order
of priority and sharing preferences, it shows the expected maximum pickup and total
delays of each SQ class. The class-specific settings can represent, for instance, high-
, intermediate-, and low-SQ requirements, possibly arising from high-, middle-, and
low-income users, respectively. Besides income, the criteria to choose a suitable class
can also be related to the nature of the appointment of a user. For example, trips to
scheduled events (e.g., meetings, concerts, doctor appointments) are usually stricter,
requiring higher service rates and levels. Alternatively, to make a parallel with current
urban mobility options (regarding the expected quality of service), the low-cost class
best represents former transit passengers, whereas standard and business classes best
represent former ridesharing and carsharing/taxi passengers, respectively.

Table 3.5: Service quality contract (SQC) for each SQ class.

SQ
class

Ride
preference

Service level (min)

Priority Expected max. pickup (wpickup) Max. total delay (wtolerance)

Business 1st private 3 7
Standard 2nd shared 5 7
Low-cost 3rd shared 7 7

Service-level enforcement rate

We assess the outcome of different service-level enforcement rates σc through four sce-
narios where we assume the system addresses all SQ classes c ∈ C using a common
rate σ ∈ {0,0.8,0.9,1}. The scenario where σ= 0 simulates the typical AMoD system
in which service-level preferences are not enforced. The remainder scenarios allow us
to investigate how increasingly enforcing the fulfillment of service-level expectations in
10% steps across user classes affects hiring, until the point at which service-level expec-
tations are fully upheld, for σ= 1. Hence, scenarios σ= 0 and σ= 1 represent lower
and upper service-level bounds, whereas σ= 0.8 and σ= 0.9 allow the system to vio-
late service-level expectations of 20% and 10% of the requests, respectively. Although
we do not consider costs in our model, the service-level enforcement rates are tunable
parameters that allow providers to trade off vehicle hiring and user dissatisfaction costs.
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User base segmentation

To investigate the interplay between requests of distinct SQ classes, we create three user
base segmentation scenarios, namely, B+, S+, and L+, in which we vary the proportion
of users belonging to each SQ class in the transportation demand (Table 3.6). We assume
that the service quality demanded by each user base follows a normal distribution in
which the predominant class of such base covers the average SQ requirements of most
users (68%) whereas the other two classes can adequately service the rest.

The proposed scenarios aim to represent service quality requirements arising in dif-
ferent regions, on different occasions, or at different times. For example, user base L+
may better represent the vicinity of a campus area, where most users (presumably stu-
dents) are willing to wait longer in exchange for cheaper rides. Conversely, the user
base B+ fits affluent areas where privacy and high responsiveness are prone to play a
more significant role. Throughout the simulation, we use the user base segmentation
scenarios to determine the share of requests from the New York City taxi dataset that
belongs to each SQ class.

Table 3.6: User base segmentation scenarios define different distributions of SQ classes across the
same transportation demand by varying, in turn, the proportion of requests in each class.

User
base

SQ class

Business Standard Low-cost

B+ 68% 16% 16%
S+ 16% 68% 16%
L+ 16% 16% 68%

3.5.2 Simulation settings

Street network. We use a multidigraph from the street network of Manhattan, New York
City comprised of 4,548 locations and 9,701 links. Travel times are drawn from the
shortest distances between the street network locations, considering an average travel
speed of 30km/h. For simplicity, we assume that congestion is an exogenous effect;
neither the time of the day nor the number of vehicles traveling throughout the street
network affects travel times.

Region center distribution. Figure 3.7 shows the distribution of 68 regional centers, op-
timally determined considering a maximal hiring delay s= 150s. This value allows that
available hireable vehicles can fulfill the expectations of even business users who have
placed their request at the beginning of a thirty-second round.

Transportation demand settings. We run our simulation on 42,702 real-world taxi re-
quests from Manhattan occurring in the evening peak, from 18h to 19h, on the first day
of February 2011. The raw dataset, containing detailed taxi information for the whole
city, is processed in three phases. First, we filter out the demands occurring outside
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Figure 3.7: Optimal distribution of regional centers with corresponding reachable locations through-
out the street map of Manhattan, New York City considering a maximal hiring delay of 150s at
30km/h.

Manhattan. To do so, we remove all requests whose origin/destination GPS coordi-
nates cannot be matched (within a 50 meters range) to an intersection of such graph
or whose travel distances are small (below 50 meters). After the matching process, we
replace origin and destination GPS locations with their correspondent node IDs in the
graph. Second, we select only the relevant trip data fields required to carry out our sim-
ulation, namely, pickup times (which are adapted to request times), origin/destination
IDs, and number of passengers. Additionally, we filter out records whose number of pas-
sengers is higher than four (i.e., the maximum vehicle capacity we consider). After this
step, the final shares of requests requiring one, two, three, and four seats are 77.00%,
16.54%, 4.53%, and 1.93%, respectively. Finally, we use the roulette wheel selection to
randomly attribute SQ classes to users, following the proportions specified in the user
base segmentation scenarios.

3.5.3 Case study configuration

We combine both service-level enforcement rates {0, 0.8, 0.9, 1} and user base segmen-
tation scenarios {B+, S+, L+} presented in Section 3.5.1 to create a series of case studies
for the static and dynamic formulations. Regardless of the case study considered, users
expect to be serviced according to the SQC configuration presented in Table 3.5. Table
3.7 summarizes the settings used to create the instances for both formulations.

Static DARP-SQC

Each instance is a combination of a request batch of size n ∈ {15,20} and a user base
segmentation u ∈ {B+, S+, L+}. To create such instances, we collect n requests from
thirty-second batches of our trip data and randomly distribute SQ classes according to
the proportions defined in the user base u. We maintain requests’ original placement
times as well as pickup and delivery locations but set all passenger counts to one to
enable more ridesharing opportunities.

Since we assume a no-rejection policy, we adjust the fleet size and the disposition of
the vehicles according to the settings of each instance. First, to guarantee all requests can
be reached by a vehicle on time, we determine the minimum set of regional centers from
which vehicles can access all nodes in less than three minutes (i.e., the shortest expected
maximum pickup delay of all SQ classes). Then, for each request, we assume there will
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be a four-seat vehicle, available throughout the entire planning horizon, stationed at
a regional center that can adequately reach it, such that |K |= n. Although our model
allows for vehicle heterogeneity, we do not investigate such a feature in this formulation
to curb computational complexity. Creating a viable instance for a heterogeneous fleet
would require stationing at least Qmax× n vehicles at each regional center, assuming
vehicle capacities can range from one to Qmax =max{Qk | ∀k ∈ K}.

Dynamic DARP-SQC

We assume that the provider relies on an initial working fleet of 1,000 four-seat vehicles
to service the transportation demand described in 3.5.2. If the policy allows, the provider
can inflate the fleet size by occasionally hiring privately-owned vehicles (on a single-ride
basis) to meet minimum class service levels requirements. By default, we assume the
capacity of the hired vehicles is equal to the number of passengers of the request that
first prompted the hiring.

Table 3.7: Instance settings for both static and dynamic problem formulations.

Problem formulation

Characteristic Static Dynamic

#Requests {15, 20} 42,702
#Instances 5 request samples -
Round duration (κ) 30s 30s
#Rounds 1 120
Company fleet size - 1,000
Capacity of company vehicle - 4 seats
Hireable fleet size Equal to n. of requests Unlimited
Capacity of hireable vehicle 4 seats 1, 2, 3, or 4 seats

3.5.4 Dynamic formulation benchmarking

We implement three policies by varying the objective function of our matching algo-
rithm:

Min. waiting (MW): Standard formulation, with no service level constraints and no
hiring, where the goal is to hierarchically minimize the rejection penalties and waiting
times across classes f MW = { f c

reject ∀c ∈ C , f c
wait ∀c ∈ C}:

Min. f MW(xv ,zi) s.t. (3.34), (3.35), (3.36).

SL constraints (SL): No hiring formulation, enforcing service-level constraints, and
aiming to hierarchically minimize f SL = { f c

feasible ∀c ∈ C , f c
reject ∀c ∈ C , f c

violate ∀c ∈
C , f c

wait ∀c ∈ C}:
Min. f SL(xv , yi ,zi ,a

c) s.t. (3.34), (3.35), (3.36), (3.38), (3.39), (3.40).
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SL constraints + Hire (SLH): Proposed formulation, enforcing service-level con-
straints, allowing hiring, and aiming to hierarchically minimize f SLH = { f c

feasible ∀c ∈
C , f c

reject ∀c ∈ C , fhire, f c
violate ∀c ∈ C , f c

wait ∀c ∈ C}:
Min. f SLH(xv , yi ,zi ,h

k,ac) s.t. (3.34), (3.35), (3.36), (3.37), (3.38), (3.39), (3.40).

Although we assume providers are allowed to break service level expectations of up
to (1−σc) percent of users for each class c ∈ C , we consider that rejections are a more
critical service-level violation than delays. Following this assumption, throughout all
policies we first seek to minimize rejections. Subsequently, policy MW focuses on min-
imizing waiting times, whereas policies SL and SLH focus on minimizing service-level
violations, which cover both rejections and pickup delays. Particularly in SLH, we use
the hiring capabilities to prevent rejections from happening even further, once avoiding
user rejection is more important than fleet size minimization. Ultimately, by contrasting
MW, SL, and SLH, we can assess the effect of enforcing service-level constraints alone
as well as how they influence vehicle hiring.

3.6 Results

The static and dynamic formulations were developed in Python and Java, respectively,
and all MILPs were implemented using Gurobi 8.1.0. The experiments were performed
on an AMD Opteron central processing unit (CPU) running at 2.10 GHz and 128 GB
RAM.

3.6.1 Static DARP-SQC

Table 3.8 presents the results for the static DARP-SQC model. Each instance is run for
a maximum of five hours. The figures for each number of requests, user base, and ser-
vice rate combination are obtained by averaging the results of the five different request
distributions. In column “N. of hired,” we present the average number of hired vehicles,
considering that the fleet size equals the number of requests. Next, for each SQ class,
we show the pickup and ride delays. Finally, column “N. of solved inst.” presents the
number of instances that could be solved optimally. We use these instances to calculate
the averages.

The fleet sizes achieved under the no service level enforcement scenario (i.e., σ= 0)
represent the minimum number of vehicles required to pick up all users. In contrast,
the slightly higher fleet sizes achieved under the 80%, 90%, and 100% service rates
highlight the compromise between the number of vehicles and the class delay tolerances
enforced by the SQC constraints. From an AMoD platform’s perspective, these results
illustrate how exploring users’ tolerance to extra delays effectively decreases fleet size
while maintaining the strict service quality imposed by previously laid out agreements.
By setting up balanced SQCs, platforms can avoid excessive hiring by exploiting the
delay tolerance of specific classes while guaranteeing maximum performance for high-
demanding user classes.
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Table 3.8: Number of vehicles hired, pickup delay, and ride delay for the static DARP-SQC instances
across all case studies. Figures correspond to the average of the results achieved for instances that
could be solved to optimality.

N. of
req.

User
base

Service
rate

N. of
hired

Pickup delay (s) Ride delay (s) N. of
solved
inst.B S L B S L

15 B+ 0% 10.4 138.3 175.6 203.5 0.0 22.9 12.9 5
80% 11.8 90.9 134.2 221.6 0.0 48.4 12.9 5
90% 12.2 90.5 109.1 220.5 0.0 48.4 12.9 5
100% 12.2 90.5 109.1 220.5 0.0 48.4 12.9 5

S+ 0% 9.0 57.6 143.3 176.3 0.0 46.8 57.0 4
80% 9.2 57.6 126.0 175.0 0.0 60.7 56.6 4
90% 9.2 57.6 126.0 175.0 0.0 60.7 56.6 4
100% 9.8 57.6 115.0 175.0 0.0 49.8 56.6 4

L+ 0% 9.0 68.8 152.3 165.1 0.0 0.0 67.3 4
80% 9.2 59.2 147.9 163.6 0.0 0.0 67.3 4
90% 9.5 59.2 124.6 163.6 0.0 0.0 60.8 4
100% 9.5 59.2 124.6 162.4 0.0 0.0 61.9 4

20 B+ 0% 14.0 124.2 227.8 205.6 0.0 28.5 8.1 5
80% 16.8 73.1 162.0 223.5 0.0 28.5 12.3 5
90% 17.2 73.1 134.4 199.2 0.0 6.0 11.5 5
100% 17.2 73.1 134.4 199.2 0.0 6.0 11.5 5

S+ 0% 11.0 170.0 199.7 159.1 0.0 25.9 0.2 2
80% 12.5 94.6 193.0 184.7 0.0 23.9 30.8 2
90% 13.5 76.0 166.7 174.8 0.0 14.5 7.2 2
100% 14.5 74.8 141.0 173.8 0.0 14.5 7.2 2

L+ 0% 10.0 116.0 201.7 181.7 0.0 42.3 49.7 1
80% 10.0 116.0 103.3 197.7 0.0 151.3 39.4 1
90% 10.0 116.0 103.3 197.7 0.0 151.3 39.4 1
100% 11.0 116.0 69.2 197.7 0.0 133.2 35.2 1

From Table 3.8, we can also see that, even for a small twenty-request batch, optimal
solutions could be found only for a few instances from user bases S+ and L+. Conversely,
the predominance of business-class requests in the user base B+ allows reaching optimal
solutions in every case. Having more standard and low-cost class users, who are willing
to share a ride and wait longer, leads to a larger number of possible routes, which trans-
lates to additional complexity. Ultimately, the results indicate that addressing realistic
instances for the DARP-SQC requires more computationally efficient algorithms.

3.6.2 Dynamic DARP-SQC

Throughout the following sections, we provide an exploratory analysis of the aggregate
results regarding all user bases and service-level enforcement rates for all policies. We
use the case study consisting of user base S+ and service-level enforcement rate σ= 0.9
to illustrate our results further and refer to it as the reference case study. In this case
study, the most frequent SQ class (i.e., the standard class) imposes a balanced SQC when
compared to its counterparts, requiring reasonably fast service levels and also allowing
for ridesharing. On the other hand, the reference service-level enforcement rate allows
us to thoroughly assess the flexibility achieved by violating the expectations of 10% of
the users.



3.6.2 Dynamic DARP-SQC 63

Service quality distribution

Table 3.9 summarizes the average service quality outcome across classes achieved by
each policy for all case studies. The column “Serviced” shows the percentage of users
picked up by the AMoD system. In turn, the column “Met SL” presents the percentage
of satisfied users, serviced according to their expected service levels. Subsumed un-
der the header “Violated SL”, we present the two service level violations we consider in
our approach. The column “Delayed” indicates the percentage of users whose desired
service levels could not be fulfilled, whereas the column “Rejected” indicates the per-
centage of requests that could not be serviced. It is worth noting that each percentage
under the “Serviced” column is the sum of corresponding percentages under “Met SL”
and “Delayed” columns. The user base segmentation scenarios play a significant role in
the number of users serviced when vehicle hire is not enabled. Once user base scenario
B+ comprises more business users, which expect shorter delays and private rides, less
sharing occurs, leading to about 10% fewer pickups than the other bases. However,
by exploiting the user delay tolerances, our SL policy can achieve higher service rates
than the MW policy across case studies. By delaying users who can wait longer, the
SL-policy matching process can enable additional possibilities to combine overlapping
routes. Although policy MW minimizes user class rejections and waiting times hierarchi-
cally, the lack of service-level enforcement constraints prevents the optimization process
from adequately harnessing class delay tolerances.

Table 3.9: Service quality achieved using each policy for all case studies.

User
base

Service
rate

Violated SL

Policy Serviced Met SL Delayed Rejected

B+ 0% Min. waiting 84.99% 37.35% 32.64% 15.01%

80% SL constrs. 85.09% 55.32% 14.87% 14.91%
SL constrs. + Hire 100.00% 91.98% 8.02% -

90% SL constrs. 85.18% 56.01% 14.35% 14.82%
SL constrs. + Hire 100.00% 95.91% 4.09% -

100% SL constrs. 84.92% 56.84% 13.00% 15.08%
SL constrs. + Hire 100.00% 100.00% - -

S+ 0% Min. waiting 96.14% 55.92% 36.37% 3.86%

80% SL constrs. 98.19% 85.58% 10.79% 1.81%
SL constrs. + Hire 100.00% 91.05% 8.95% -

90% SL constrs. 98.16% 85.73% 10.59% 1.84%
SL constrs. + Hire 100.00% 95.58% 4.42% -

100% SL constrs. 98.37% 86.69% 10.05% 1.63%
SL constrs. + Hire 100.00% 100.00% - -

L+ 0% Min. waiting 96.53% 78.53% 14.53% 3.47%

80% SL constrs. 98.00% 93.52% 2.49% 2.00%
SL constrs. + Hire 99.34% 96.14% 2.54% 0.66%

90% SL constrs. 97.79% 94.07% 1.52% 2.21%
SL constrs. + Hire 99.63% 98.05% 1.22% 0.37%

100% SL constrs. 97.76% 94.41% 1.10% 2.24%
SL constrs. + Hire 100.00% 100.00% - -
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For example, for the reference case study, enforcing service-level constraints leads to
a 29.81% percentage point increase over the 55.92% number of satisfied users (i.e., met
service levels) from policy MW. At the same time, from Table 3.9, we can see that the
number o serviced users increases moderately (from 96.14% to 98.16%). Ultimately,
these results suggest that our service-level enforcement constraints were useful to re-
organize pickups, resulting in a 53.3% increase in service quality across classes in the
reference case study.

Figures 3.8 and 3.9, detail the service-level distribution for all requests, considering
user base S+ and service-level enforcement rate σ = 0.9. In Figure 3.8, we can see
that because policy MW does not enforce users’ class service-level expectations, pickup
waiting times of business users end up being the highest among the classes. Once we aim
to first minimize rejections across classes in MW, this result suggests that by delaying the
business users, the optimization process could pick up more users from the remaining
classes. Figure 3.8 also shows that policy SL rejects thirty four business users (0.4% of
the 6,831 business requests) but is able to achieve the expected three-minute maximum
waiting time for around 75% of them.

Service-level enforcement rate versus vehicle hiring. Figure 3.9 offers an alternative per-
spective on how each policy makes use of the 10% service level violation allowed by
adopting the service-level enforcement rate σ= 0.9. For SL, which features the relaxed
version of the service-level enforcement constraints (3.40), we can verify how this relax-
ation took place across classes. For business and standard users, the share of SL violated
requests are 11.24% and 17.73%, which correspond to 1.24 and 7.73 percentage points
higher than the 10% violation limit. In contrast, for the SLH policy, the violations for
business and standard users total 3.73% and 5.60%, figures significantly lower than the
SL violation limit. This result could indicate that the optimization process is overhiring
vehicles since there was still extra room for violating user expectations (up to 10%).
However, by analyzing which user class hired vehicles are addressing the most, we can
further understand why the service violation limit was underutilized.
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Figure 3.8: Pickup waiting time distribution and number of rejected users for each SQ class across
all policies for user base S+ and service-level enforcement rate σ= 0.9 for policies SL and SLH. The
dashed lines mark the expected max. pickup delays of user classes.
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Figure 3.9: Service-level violation breakdown into percentages of rejected and delayed users for each
SQ class across all policies for user base S+ and service-level enforcement rate σ= 0.9 for policies SL
and SLH.

Table 3.10 expands the summary statistics presented in Table 3.9. For each user base
segmentation scenario, it shows for every user SQ class, the percentage of users picked
up by company or freelance vehicles as well as the percentage of users whose service-
level expectations are violated. From Table 3.10, we can see that vehicle hiring occurs
predominantly to fulfill business user requests. Therefore, these hirings end up freeing
the four-seat company vehicles that would have been used to transport these requests
privately. As a result, the ridesharing requests from standard and low-cost classes can
enjoy a larger vehicle supply, which leads to fewer service-level violations. This extra
vehicle supply, in turn, is reflected in the underutilization of the service-level violation
limits.

Long-term fairness. Ultimately, it is worth noting that, although we enforce class service
levels, individual users may experience service-level violations repeatedly, over a longer
time horizon. To further minimize user dissatisfaction, a real-world service provider
could strive to make up for repeating users who have had their service levels violated in
previous rides. Provided that users i ∈ P are associated with unique ids in the AMoD
system, the variable of yi can be set up ad-hoc to grant users the best service level.
This way, σc rates could also be applied individually by keeping track of each traveler’s
service level over multiple rides.

The effect of rebalancing. Regarding the rebalancing approach, the inclusion of service-
level violations as an additional stimulus to prompt rebalancing (besides service rejec-
tion) has been shown to increase fleet productivity. It can be seen from Figure 3.10 that
in MW, idle vehicles can still be found until about 18:30, whereas in SL there are no
idle vehicles from about 18:10 and onward. The number of idle vehicles drops sharply
as soon as the system fails to fulfill user expectations across classes. As a result, by
rebalancing vehicles earlier, policy SL contributes to achieving a two percentage point
increase in the number of users picked up compared to MW. Moreover, when users can-
not be rejected (i.e., policy SLH), the hiring operations have successfully replaced the
user rejection stimuli to indicate where vehicles are needed.
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Table 3.10: Share of requests whose service-level expectations were met (through company or freelance vehicles) or violated, according to SQ class for each
user base distribution, service-level enforcement rate, and policy.

User
base

Service
rate

Business Standard Low-cost

Policy Company Freelance Violated Company Freelance Violated Company Freelance Violated

B+ 0% Min. waiting 14.6% - 85.4% 73.3% - 26.7% 98.3% - 1.7%

80% SL constrs. 38.2% - 61.8% 87.1% - 12.9% 96.0% - 4.0%
SL constrs. + Hire 60.4% 29.7% 9.9% 92.1% - 7.9% 100.0% - -

90% SL constrs. 38.7% - 61.3% 87.5% - 12.5% 98.2% - 1.8%
SL constrs. + Hire 64.1% 31.2% 4.8% 94.8% * 5.2% 100.0% - -

100% SL constrs. 39.3% - 60.7% 89.4% - 10.6% 98.7% - 1.3%
SL constrs. + Hire 66.8% 33.2% - 99.4% * - 100.0% - -

S+ 0% Min. waiting 25.9% - 74.1% 56.0% - 44.0% 85.8% - 14.2%

80% SL constrs. 86.0% - 14.0% 82.9% - 17.1% 96.7% - 3.3%
SL constrs. + Hire 75.4% 16.8% 7.8% 88.4% * 11.3% 100.0% - -

90% SL constrs. 88.8% - 11.2% 82.3% - 17.7% 97.7% - 2.3%
SL constrs. + Hire 78.2% 18.1% 3.7% 92.8% 1.6% 5.6% 100.0% - -

100% SL constrs. 90.3% - 9.7% 83.1% - 16.9% 98.4% - 1.6%
SL constrs. + Hire 76.6% 23.4% - 97.9% 2.1% - 99.9% * -

L+ 0% Min. waiting 25.4% - 74.6% 61.8% - 38.2% 94.9% - 5.1%

80% SL constrs. 83.8% - 16.2% 87.3% - 12.7% 97.2% - 2.8%
SL constrs. + Hire 82.6% 9.0% 8.4% 88.4% - 11.6% 99.0% - *

90% SL constrs. 84.4% - 15.6% 89.0% - 11.0% 97.5% - 2.5%
SL constrs. + Hire 80.3% 15.9% 3.7% 92.6% 1.2% 6.2% 99.5% - *

100% SL constrs. 85.5% - 14.5% 90.1% - 9.9% 97.5% - 2.5%
SL constrs. + Hire 77.2% 22.8% - 95.8% 4.2% - 99.3% * -

Values lower than 0.01% are marked with “*” and absent data are marked with “-”
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Fleet size inflation

From the overall fleet statistics presented in Table 3.11, we can see that the average,
maximum, and median numbers of hired seats throughout all rounds are proportional
to the service quality of each user base and service-level enforcement rate. For instance,
we can see that the overrepresentation of business-class users is translated accordingly
in the fleet of vehicles hired to service formerly dissatisfied users in policies MW and SL.
Moreover, most hired vehicles end up being of low capacity. Once we assume that a hired
vehicle’s capacity equals the number of seats required by the request that prompted the
hiring, this outcome is congruent with the characteristics of the user demand (77% of
the requests demand only one seat). For the reference case study, Table 3.11 shows that
at the demand peak, the total fleet capacity grows by 168 vehicles (see the hiring peak
in Figure 3.10 between 18:15 and 18:30).

Table 3.11: Average number of hired vehicles per capacity and summary statistics for the hired fleet
in each round.

User
base

Service
rate

Avg. hired/Vehicle capacity Hired vehicles

1 2 3 4 Avg. Median Max.

B+ 80% 76.39% 19.41% 2.74% 1.46% 223.88 309 493
90% 79.67% 15.79% 3.21% 1.32% 243.75 336 497
100% 79.92% 14.75% 4.16% 1.17% 254.74 355 520

S+ 80% 76.41% 15.48% 4.82% 3.29% 32.79 22 102
90% 73.45% 17.40% 5.45% 3.70% 47.41 43 168
100% 74.29% 18.57% 4.94% 2.20% 60.32 65 167

L+ 80% 66.49% 26.89% 3.36% 3.26% 15.64 8 72
90% 77.33% 17.55% 3.50% 1.62% 30.85 22 104
100% 76.71% 18.01% 2.61% 2.67% 56.07 51 191

Min. waiting (MW) SL constraints (SL) SL constraints + Hire (SLH)

Carrying Idle Rebalancing Cruising to pick up1 2 3 4 passenger(s)Vehicle status:

Figure 3.10: Size of the working fleet every thirty seconds over the course of one hour for each policy,
considering user base S+ and a 90% SL enforcement for SL and SLH. Colors help to identify the part-
to-whole ratio of vehicles per status at each period.
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Whole day operation

In Figure 3.11, we show the fleet status for a full-day instance considering 210,269
requests configured according to the reference case study. Hirings occur predominantly
in the evening, and the surplus number of vehicles over the 1000-vehicle fleet is lower
than 200. From the figure, we can conclude that the fixed working fleet can meet the
entire demand most of the time and still be sub-utilized at some periods (e.g., before
6:00). Our results stress how much vehicle downtime a provider can avoid by partially
relying on the FAV fleet to completely fulfill the demand.

Carrying Idle Rebalancing Cruising to pick up1 2 3 4 passenger(s)Vehicle status:

Figure 3.11: Size of the working fleet every thirty seconds over the course of an entire day, considering
user base S+ and a 90% SL enforcement for SLH, policy. Colors help to identify the part-to-whole
ratio of vehicles per status at each period.

Computational complexity

The same shortcomings found for the static version regarding the more flexible user-
segmentation scenarios are also present in the dynamic version. In these scenarios,
the lexicographical method cannot be completed on some rounds due to the maximum
computation time we have imposed on the optimization process. Consequently, some
assignments are sub-optimal, covering a subset of the objectives (high-priority first).
This outcome is particularly present for scenario L+. From Table 3.11, we can see that
the number of hired vehicles for this user-segmentation for a 100% service rate is higher
than the S+, where users have a lower waiting tolerance. Additionally, Table 3.9 shows
that 0.37% of low-cost users are rejected while using the hiring policy SLH, where hired
vehicles are made available to pick up all users. This indicates that, for some rounds,
the hierarchical optimization stops prematurely, failing to minimize class rejections and
vehicle hire.

3.6.3 Managerial insights

With widespread AV adoption, cities may implement policies that prioritize high oc-
cupancy vehicles or even charge empty-seat taxis. Such policies serve two main pur-
poses. First, they discourage excessive low-occupancy AV rides, counterbalancing po-
tential rises in overall vehicle kilometers traveled (VKT). Second, they contribute as alter-
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native sources of income for cities, especially in the shadow of an expected revenue drop
due to less parking space requirements [74]. Hence, keeping high occupancy rates and
reducing total VKT are critical factors for future AMoD providers. Our multi-objective
function covers both goals once it determines the minimum fleet size and mix to meet
the demand expectations.

However, despite advantageous for the operator, single-ride contracts are likely to be
unpopular among owners. Under such an agreement, there might be occasions where
vehicles are made available for a whole day but make only a couple of trips. In this
low-profit scenario, owners could, for instance, link their participation to a minimum
compensation, such that their vehicles are used more frequently.

Alternatively, to guarantee frequent use, providers could establish long-duration con-
tracts to actively manage and rebalance vehicles as if they belonged to the fixed working
fleet. Under such contracts, however, operators may be required to bear all costs within
the leasing period. These may include not only the costs to rebalance and service users
but also the opportunity costs of hireable vehicles working for other competing opera-
tors. Therefore, once costs are considered, the rider’s satisfaction must be adequately
translated into user class fares to cover the provider’s outlay concerning vehicle hire.

Moreover, when hiring, we assume there is an infinite number of FAVs readily avail-
able in each request’s surroundings. This assumption entails that there exists an efficient
hiring strategy in place, which hires vehicles of adequate capacities in advance and re-
balances them to locations where the own fleet historically cannot fulfill the demand.
Such an anticipatory hiring strategy could be the key to reaching a more reasonable
compromise between FAV owners and providers’ objectives in a real-world scenario. In
this case, independent owners have an extra incentive to make their vehicles available
to join the provider’s fleet once they are compensated even before they are assigned to
a request.

3.7 Conclusions

This chapter answers the research sub-question SQ2. We have introduced a new ap-
proach to actively control service quality in AMoD systems, increasing and decreasing the
number of used vehicles in the short term to meet diversified user expectations. We have
used these expectations to establish service quality contracts, allowing heterogeneous
users to choose ride experiences that best match their preferences, especially regarding
maximum waiting times and willingness to share a ride. Based on an experimental study
using New York City taxi data, we have found that the developed approach allows us
to significantly improve the service quality of all considered user categories. Enforcing
the proposed service-level constraints, we can meet the expectations of 85.7% of the
users across classes, a 53% average increase in comparison to conventional ridesharing
systems. When hiring is enabled, we can meet the expectations of 95.6% of the user
requests, at the expense of a mild fleet inflation (a maximum surplus of 168 FAVs is
observed at the evening demand peak).

The proposed method allows providers to make a compromise between avoiding
service-level violations and hiring extra vehicles, steering the vehicle supply to service
the highest priority or most profitable customer segments, according to the particular
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conditions of an operational environment (e.g., availability of idle vehicles, hiring costs,
user dissatisfaction costs). Nevertheless, hiring occurs only to the extent that it preserves
minimum service level requirements. Hence, we add to recent literature by providing
an active means to control service quality on an operational level and distinguishing
services classes in terms of user expectations.

Moreover, we have formalized the problem using a MILP formulation and proposed
a matheuristic to deal with large-scale real-world instances. This matheuristic encom-
passes the construction of feasible ridesharing visiting plans and the optimal assignment
of plans to available vehicles. Besides ride-matching, the assignment phase also includes
a reactive rebalancing strategy that uses both service level violations and vehicle hire as
stimuli to reposition vehicles. Using a lexicographic method, we have solved a multi-
objective function where the primary goal is to minimize rejections (i.e., the most sig-
nificant source of inconvenience) to subsequently minimize fleet size and service-level
violations. We have also evaluated to what extent hiring extra vehicles affects overall
service quality and fleet usage, by designing twelve scenarios where we vary the rate
at which providers commit to fulfilling user service level expectations. In this way, our
results help understand the operational impact of meeting user service quality expecta-
tions and the tradeoffs entailed by occasionally violating service quality expectations.

Although we have restricted the analysis to three user segments, the service qual-
ity classes we propose are general enough to serve as the basis for more diversified
customer-centric services. For the classes considered, our results show that, regardless of
the user base, most hired vehicles join the initial fleet to service one-passenger requests
from the high-quality user segment (i.e., the business class). These findings indicate that
providers may benefit from leveraging the strengths of two AMoD paradigms, namely,
ridesharing and single-passenger personal mobility, on a common platform, without the
necessity of owning the entire fleet.

One must notice that our commitment to service quality cannot be fully upheld in
the face of (i) unexpected traffic disruptions or (ii) a shortage of hireable vehicles. To
mitigate the SQ violations caused by (i), providers can carry out an analysis of the fea-
tures of their specific problem instance to set up realistic SQ deals in the first place. This
analysis can take into account, for example, the platform fleet size, the third-party fleet
availability, the demand patterns, and the city infrastructure. They can even incorpo-
rate safety delay buffers in the service levels, such that the worst-case scenario is always
accounted for.

In Chapter 4, we focus on alleviating the adverse effects caused by (ii). We strengthen
our problem formulation by addressing the inherent uncertainty of the proposed sce-
nario, in which both FAV supply and heterogeneous demand unfold throughout time.
We assume a limited number of FAVs become available throughout the day, such that
the AMoD system has to decide when and where it is best to hire third-party vehicles.
Since vehicle supply is limited in this scenario, the system no longer can fully meet users’
expectations. In order to make up for dissatisfied users, we assume SQ violations are
compensated according to the inconvenience level (i.e., extra delay or service denial).
From the service provider perspective, however, these compensations are penalties in-
curred on the company’s revenue. To improve service quality and ultimately avoid such
penalties, we propose a learning-based approach that leverages stochastic supply and
demand information to prevent imbalances from happening.



Chapter 4

Learning to fulfill service level
contracts

In the previous chapter, we demonstrated how providers could optimize fleet productiv-
ity by dynamically inflating the fleet size, up to the point that user service levels are met
fully. Before, we considered that there was no prior knowledge of the class-specific user
demand patterns or the availability of third-party owned vehicles, leading to a purely
reactive method. Conversely, in this chapter, we show how the optimization process
can benefit from exploiting such knowledge. In the face of uncertain demand and idle
vehicle supply, we propose a learning-based optimization approach that uses the dual
variables of the underlying assignment problem to iteratively approximate the marginal
value of vehicles at each time and location under different availability settings. These
approximations are used in the optimization problem’s objective function to weigh the
downstream impact of dispatching, rebalancing, and occasionally hiring idle third-party
vehicles in a high-resolution transportation network of Manhattan, New York City. The
results show that the proposed policy outperforms a reactive optimization approach in
various vehicle availability scenarios while hiring fewer vehicles.

This chapter is structured as follows. We introduce Section 4.1 our literature review
in Section 4.2, define the problem in Section 4.3, and formulate it using the language
of dynamic resource management in Section 4.4. Section 4.5 presents our approxi-
mate dynamic algorithm, and Section 4.6 lays out the details of our experimental study
and analyzes the performance of our method when dealing with several transportation
scenarios. Finally, Section 4.7 concludes the work and presents an outlook for future
research. Parts of this chapter have been submitted to a journal:

B. A. Beirigo, F. Schulte, and R. R. Negenborn. A learning-based optimization approach for autonomous

ridesharing platforms with service level contracts and on-demand hiring of idle vehicles. Transportation

Science (in press, 2021).
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4.1 Introduction

Mobility-on-demand (MoD) platforms and transportation network companies (TNCs) such
as Uber and Lyft have grown substantially and altered mobility behavior worldwide.
Although envisioned to make vehicle ownership superfluous and, eventually, alleviate
congestion, these ride-hailing platforms have primarily won customers from traditional
public transport modes [15]. Ultimately, MoD solutions can only challenge vehicle own-
ership if service providers can offer high service levels consistently.

Sufficient vehicle supply is a critical factor when it comes to providing consistent
service levels efficiently and sustainably. However, most existing models for rideshar-
ing are not capable of responding quickly to significant demand changes. First, often
fixed fleet sizes are assumed, which makes it hard to react to demand fluctuations on
a tactical level, let alone in real-time. Second, when providers rely on third-party vehi-
cles (i.e., independent drivers), they typically balance supply and demand using surge
prices: fares at under-supplied areas dynamically increase both to attract more drivers
and suppress excessive demand. Such a strategy, however, is highly controversial since
it mainly benefits the platform at the expense of drivers and riders [118]. Regardless
of the strategy, some customers end up being penalized with excessive delays, abusive
prices, and rejections. With the emergence of autonomous vehicles (AVs), however, new
possibilities to overcome the shortcomings caused by demand-supply imbalances arise.
As soon as vehicle availability is detached from driver availability, ridesharing platforms
can count on a larger pool of vehicles, which, currently non-automated, remain parked
about 95% of the time [93].

In this chapter, we consider an autonomous mobility-on-demand (AMoD) system
where a ridesharing platform can occasionally hire freelance autonomous vehicles (FAVs),
that is, idle third-party-owned AVs, to support its own platform-owned autonomous
vehicles (PAVs) fulfilling the demand adequately. Hence, in contrast with related
literature, we model a highly diversified mobility system where AV ownership is
disseminated among the platform and individuals, who simultaneously own and hire
out their vehicles. We refer to this system as the AMoD-H. To guarantee service quality,
the platform establishes strict service level contracts (SLCs) with its user base, such that
contract violations (e.g., extra delays, rejections) incur penalties. Hence, by harnessing
FAV availability, the platform can shorten the minimum size of the own fleet while
addressing personalized demand fluctuations in real-time.

Modeling AMoD-H poses several challenges since requests have to be handled dy-
namically in the face of (i) irregular FAV availability and (ii) uncertain demand. First,
while fleet availability is mostly taken for granted, we assume that the location, an-
nouncement time, and total service duration of freelance vehicles are uncertain. For
example, FAV availability may resemble that of future AVs whose owners commute by
car to work and decide to rent out their vehicles to an AMoD platform during designated
intervals such that they have a chance to profit from otherwise unproductive parking
times. Second, analogously to service offers in the aviation and rail industry, we seg-
ment users into first and second classes, such that the former is willing to pay a premium
to enjoy higher service levels. We consider not only the stochastic trip distribution but
also class membership distribution when designing anticipatory rebalancing strategies.
Based on such details, platforms can improve decision making by taking into account
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demand patterns arising within its user base, besides moving forward in the direction of
a more personalized user experience. Since we consider a real-world transportation de-
mand setting, determining an optimal policy would incur all “curses of dimensionality”,
and we are unable to enumerate all possible states and decisions, let alone the uncer-
tainty associated with requests, and FAV hiring. We therefore develop an approximate
dynamic programming (ADP,[81]) using value function approximations (VFAs). In the
proposed approach, the dual variables of the underlying assignment problem, defined
through a mixed integer linear programming (MILP) formulation, are iteratively used to
approximate value functions representing the benefit of having an additional vehicle
of either type at a certain location and time. Moreover, particularly for the freelance
fleet, such approximations also indicate whether it is worthwhile to engage an FAV in
further rebalancing or pickup actions, based on its remaining available time or how far
it is from its owner’s location. At the same time, VFAs are actively used in the objective
function of the MILP formulation to weigh the outcome of present decisions (e.g., vehi-
cle rebalancing, parking, and hiring). Eventually, after a number of iterations and value
function updates, these learned approximations more accurately represent future states,
such that solution quality improves over time. From a methodological perspective, the
approach offers:

1. An ADP algorithm for a novel AMoD application that sustains contracted service
levels of a heterogeneous user base by controlling vehicle supply on the operation
level through on-demand hiring. Requests and third-party AVs arrive stochastically
within the service area, such that the platform needs to determine a policy to fulfill
the demand using either vehicle type (i.e., PAV or FAV).

2. A hierarchical aggregation structure that summarizes state features using both
time and space dimensions. Spatial levels are comprised of increasingly larger
clusters (regional centers) set up according to a minimum coverage set formula-
tion on a high-resolution street network of Manhattan, New York City. In turn,
temporal levels conform with the level of responsiveness demanded by modern
mobility-on-demand applications, in which decisions (e.g., user-vehicle matching,
vehicle dispatching, and rebalancing) need to be derived in short intervals.

3. An online discount function that dampens value function approximations arising
from decisions involving multiperiod travel times (i.e., resource transformations
that take more than one period). Besides leading to more robust estimations and
simplifying the state representation, we show that such a discount function enables
more complex rebalancing strategies since vehicles can consider varying distance
ranges.

From a managerial viewpoint, we show that our policy addresses the requirements
of all stakeholders:

• Users enjoy personalized service levels and are compensated when these are vio-
lated.

• Cities can impose strict street use regulations, such as the maximum number of cars
per intersection, congestion pricing, and parking schemes. This level of control is
enabled by our network representation, which is directly anchored to the real-
world physical structure.
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• Independent AV owners can profit from their cars’ idleness by making them avail-
able to join a transportation platform during predefined time windows.

• AMoD platforms may keep the minimum number of cars necessary to maintain
customers’ service levels, or instead, rely entirely on the freelance fleet, while
maximizing profits.

4.2 Related work

The goal of this literature review is threefold. First, we identify the underlying dial-a-ride
problem (DARP) our model stems from (Section 4.2.1). Second, we survey studies on
transportation platforms in which the demand (parcels or passengers) is fulfilled both
by company- and/or third-party-owned vehicles (Section 4.2.2). Third, we analyze the
mobility-on-demand literature that considers anticipation mechanisms (Section 4.2.3).
We show that our work is the first to address two different sources of uncertainty, namely,
third-party vehicle availability and user service levels.

4.2.1 The dynamic and stochastic dial-a-ride problem

In this chapter, we introduce a generalization of the classic dynamic and stochastic dial-a-
ride problem (DSDARP) (see [45] for a comprehensive survey on DARP). Regarding the
sources of uncertainty linked to our problem, as pointed out by Ho et al., stochasticity
is generally on the side of demand, and rarely on the side of the supply. The lack of
studies on supply stochasticity can also be seen across other transportation problems. For
instance, on the vehicle routing problem (VRPs) literature, the bulk of stochastic models
also focus on uncertain demand features (see [75] for a review on stochastic VRPs) with
a few exceptions (e.g., vehicle breakdown). On the other hand, when the demand is a
source of uncertainty, service level stochasticity was not explored in the literature yet.
This type of stochasticity arises from a user base with heterogeneous customer profile
segments whose transportation patterns, as well as their expectations regarding service
quality, differ markedly.

4.2.2 On-demand and crowdsourced vehicles

In this section, we review studies in which a crowdsourcing platform matches the de-
mand (partially or entirely) to third-party vehicles. Most studies in this category refer to
ridesharing or crowdshipping scenarios, in which a platform seeks to fit riders or parcels
into already planned driver routes. Moreover, in contrast with our work, these studies
do not consider vehicle automation, such that the availability and preferences of the
drivers (rather than the AV owners) have to be taken into account to design feasible
routes. Since we only focus on dual-fleet models, the reader may refer to Furuhata et al.
[37] and Le et al. [52] for comprehensive reviews on ridesharing and crowdshipping,
respectively.

First, regarding the ridesharing scenario, Lee and Savelsbergh [53] assume dedicated
drivers complement the ad-hoc fleet, satisfying rider requests that would otherwise re-
main unmatched. The authors argue that ensuring service levels is essential to retain
more participants and investigate the cost-benefit of employing dedicated drivers. Their
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findings suggest this cost-benefit depends on the number and time flexibility of the par-
ticipants, as well as on the similarity between their travel patterns. Santos and Xavier
[87] consider a setting where passengers are willing to share both taxis and rides, as
long as sharing leads to lower costs than private trips. On the other hand, vehicle own-
ers can reduce costs by servicing multiple passengers on the way to their destination.
A greedy randomized adaptive search procedure (GRASP) heuristic is used to solve the
dynamic version of the problem in a realistic scenario, with requests arriving at every
minute and private vehicles at every hour, throughout a twelve-hour horizon. Although
the underlying DARP variant they propose is general enough to accommodate our prob-
lem, leveraging passenger and vehicle stochasticity is out of the scope of their study.
Moreover, following the ridesharing tradition, they assume drivers stop servicing cus-
tomers as soon as they reach their destination. In contrast, our formulation is closer to
the general pickup and delivery problem (GPDP) considered by Savelsbergh and Sol [88],
where vehicles are stationed at a home depot, from where they can go back and forth
within a designated time window.

Second, regarding the crowdshipping scenario, Archetti et al. [5] consider that a
company can rely on occasional drivers (ODs) besides their own fleet to deliver goods.
After arriving at the company’s depot, each OD can make at most one delivery, provided
that the extra travel distance required to do so, does not violate a flexibility threshold.
Arslan et al. [6] build on Archetti et al.’s work by considering ODs can realize multiple
pickup and/or drop-off tasks as long the extra time and number of stops does not in-
convenience the drivers. Similarly to traditional ridesharing approaches, however, they
assume that the delivery platform relies solely on third-party vehicles and consider tasks
can be eventually handled by an emergency backup fleet to keep service levels high.
Dahle et al. [27] also extend Archetti et al.’s by assuming ODs can perform multiple
pickup and delivery operations within a time window. Later, Dahle et al. [28] focus on
the design of compensation schemes that can fulfill ODs personal expectations, which
are modeled through threshold constraints. They show that even sub-optimal compen-
sation schemes, which do not attract as many ODs, can yield substantial cost savings.

Table 4.1 offers an alternative view on the pickup and delivery literature where re-
quests can be fulfilled both by dedicated and third-party vehicles. In the first column,
papers are subsumed under parcel and passenger categories. In the second column, we
identify how authors refer to the provider’s fleet and the third-party fleet. We also in-
dicate whether the model considers a multi-trip (i.e., vehicles can return to their depot
multiple times), or single-trip (i.e., vehicles stop the service as soon as they reach their
depot or destination) setting. A checkmark in the “capacity” column indicates each ve-
hicle can handle multiple requests at a time. To highlight how information regarding
the third-party vehicles and the customer demand unfolds throughout time, we adopt
the standard taxonomy used to classify transportation problems (e.g., VRPs, DARPs).
Traditionally, these problems can fall into four categories, namely, static-deterministic
(SD), dynamic-deterministic (DD), static-stochastic (SS), and dynamic-stochastic (DS).
Dynamic or static classes indicate whether new information (e.g., demand, third-party
vehicles) can modify existing plans. In turn, deterministic or stochastic classes indicate
whether information about the uncertainty (e.g., demand and third-party vehicle distri-
butions) is available at decision time. Finally, the last column shows the method used
to solve each problem.
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Table 4.1: Transportation problems in which demand is (partially) fulfilled by third-party vehicles.

Reference Terminology
Third-party
fleet supply

Single(S)/
Multi(M)

trip Capacity Demand Method

Parcel transportation

Archetti et al. [5]
company vehicle
occasional driver SD S SD TS

Arslan et al. [6]
back-up vehicle
ad hoc driver DD S DD Heuristic

Dahle et al. [27]
company vehicle
occasional driver DD, DS S

p
DD LP, MILP

Dahle et al. [28]
company vehicle
occasional driver DD S

p
SD LP, MILP

Savelsbergh and Sol [88]
company vehicle

independent driver SD M
p

DD B&P

Passenger transportation

Lee and Savelsbergh [53]
dedicated driver

ad hoc driver DD S
p

DD NS

Santos and Xavier [87]
taxi

car owner SD, DD S
p

SD, DD GRASP

This chapter
platform AV
freelance AV DS M DS ADP

Supply & Demand: SD (static-deterministic), SS (static-stochastic), DD (dynamic-deterministic), DS(dynamic-stochastic).
Method: TS (Tabu Search), LP (Linear Programming), MILP (Mixed Integer Linear Programming),

B&P (Branch and Price), ADP (Approximate Dynamic Programming),
GRASP (Greedy Randomized Adaptive Search Procedure), NS (Neighborhood Search).

4.2.3 Stochastic mobility-on-demand problems

Assuming a fleet of centrally controlled (autonomous) vehicles, Alonso-Mora et al. [2],
Vazifeh et al. [112], and Fagnant and Kockelman [34] have demonstrated that historical
taxi demand could be almost entirely fulfilled with significantly fewer vehicles, espe-
cially when passengers are willing to share their rides. Studies have also shown that
service levels can be substantially improved through anticipatory rebalancing strategies.
For example, demand data has been already successively exploited using frequentist
approaches (e.g., [3]), reinforcement learning (e.g., [41, 58, 115]), model predictive
control (e.g., [48, 106, 121]), and approximate dynamic programming (e.g., [1]). Most
of these approaches, however, dimension fleet size experimentally, by simulating con-
figurations that can service the target demand under predefined minimum service level
requirements. As pointed out by Vazifeh et al., fleet-size inflation can be required as
a consequence of trip-demand bursts, occurring, for instance, after concerts or sports
matches. Hyland and Mahmassani [47] refer to this ability to change the fleet size to
flex with demand as “fleet size elasticity” and highlight that the benefits of increasing
vehicle supply in the short term are likely significant. The authors also point out that,
despite uncommon within the context of shared autonomous vehicle (SAV) fleet manage-
ment research, current TNCs rely entirely on this feature, constantly manipulating prices
to attract more drivers. Likewise, vehicle ownership may be highly disseminated in the
future autonomous mobility market, with most AVs owned by individuals and small fleet
operators rather than a single service provider [14]. Although some models are flexible
enough to handle dynamic fleet inflation (e.g., [41, 63]), research on short-term SAV
fleet size elasticity is still lacking [72].
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4.3 Problem description

The AMoD-H emerges on AV-based transportation platforms aiming to fulfill a set of
pickup and delivery requests P arising on an street network comprised of a set of nodes
N (locations) and a set of directed edges E (streets). Requests arrive in batches Pt ,
where all requests r ∈ Pt have arrived at continuous times in the interval [t−1, t), for
discrete time t ∈ T = {0,1,2,3,. . . , T}. We consider that request arrival follows a known
stochastic process F P concerned with two sources of uncertainty:

• Request distribution: The number of requests, arrival times, and origin-destination
nodes depend on user demand patterns.

• Request class: Each request is associated with a service quality class c ∈ C that iden-
tifies minimum service level requirements, particularly maximum pickup delays.
Requests render the highest contributions when these requirements are respected,
or, otherwise, incur in class-dependent waiting and rejection penalties.

To ensure these service quality requirements are met fully, the platform can hire
additional vehicles online to address unexpected supply-demand mismatches. The fleet
is comprised of a set of platform-owned autonomous vehicles KPAV and a set of freelance
autonomous vehicles KFAV, such that the total fleet set is K=KPAV∪ KFAV. While PAVs can
initiate service at any location n ∈ N , FAVs are distributed throughout a set of locations
O ⊆ N where they are typically parked. We refer to locations o ∈ O as stations since
FAVs are required to return to them upon finishing the service contract. Although O is
known in advance, the platform deals with three sources of uncertainty (which follow a
stochastic process FO) when dealing with FAVs, namely:

• Vehicle-station distribution: Some parking locations can be more prone to accom-
modate FAVs. For example, vehicles can routinely park in the surroundings of their
owner’s locations (e.g., workplace, garage), or in more affordable parking places
on the outskirts of the city.

• Announcement time: Vehicles are available to pick up users at stations at different
times for a given day. For example, FAVs can become available downtown as soon
as they drop their owners at work. Alternatively, some owners can make their
FAVs available (possibly, from their garage) during the night or over the week-
end. Regardless of the case, provided that one’s itinerary is somewhat irregular
due to external factors (e.g., weather, congestion) or particular preferences (e.g.,
appointments, company’s culture), the announcement time can change. For ex-
ample, a station that typically accommodates a hundred vehicles can have 20%,
50%, and 30% of them arriving in the intervals [7 AM, 8 AM), [8 AM, 9 AM), and
[9, 10 AM), respectively.

• Contract duration: From the announcement time on, FAV owners make their assets
available only during a predefined time interval. Consequently, vehicles must stop
servicing users at the right moment, such that they have enough time to travel
back to their respective stations before their owner’s deadline. Analogously to
the announcement times, the contract durations may depend on several factors
related to an owner’s schedule, leading to varying return deadlines. For example,
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contracts can be short (e.g., shopping, doctor appointments), average (e.g., office
hours, evening), and long (e.g., the whole weekend, vacation).

Finally, over the planning horizon T , the platform aims to maximize the total con-
tribution accrued by adequately servicing the requests while minimizing the operational
costs associated with routing and hiring vehicles.

4.3.1 Example

In Figure 4.1, we illustrate the interplay between the elements of our model. For the
sake of simplicity, we represent both vehicle and request discrete locations on a one-
dimensional space for each time step such that N = {A, B, C, D, E, F, G, H, I, J, K} and
consider a time horizon T = {1,2,. . . ,10}. We assume it takes a single period to travel
between each location pair.

Figure 4.1: Example of the AMoD-H.
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We represent the stochastic processF P in time and space by manipulating the trans-
parency of yellow and red colors, corresponding to first- and second-class customers,
respectively (see the color bar at the bottom). Regardless of the class, the more opaque
is the color, the higher is the probability of finding a request. We assume first-class re-
quests (i) generate higher profits, and (ii) demand higher service levels, such that failing
to adhere to their performance requirements incur higher penalties. We illustrate such
higher service levels by assuming first-class users require to be picked up within one pe-
riod, whereas second-class users are willing to wait up to two periods. In turn, regarding
the availability of the freelance fleet, we represent the stochastic process FO using the
shades of gray on the axis tick labels. We assume that the darker is the shade, the higher
is the chance of an FAV appearing. Additionally, we assume FAV contract durations last
on average four time steps.

In the following, we describe the behavior of three vehicles in detail throughout ten
periods. First, at time t = 1, the PAV at location K is faced with two decisions; namely, it
can stay in its current location or move to a more promising location in anticipation of
future demand. Promising areas consist of high-demand locations that typically generate
the highest profits to the service provider. Pursuing such future profits, the PAV performs
two rebalance movements, moving empty from K to J, and from J to I. Once it arrives
at location I at time t = 3, the PAV is assigned to a second-class request (black square)
demanding a trip from G to F (solid upper arrow). From this moment on, we consider
the PAV is servicing the user, which covers both pick-up and delivery times. Once the
PAV delivers the second-class user at F, it stays in F for one period, and then rebalances
to location I, in anticipation of future passenger demand.

Second, at decision time t = 2, an FAV with an eight-period contract duration be-
comes available at location A and is immediately rebalanced to the high-demand area.
Upon arriving at location C, it is matched to a first-class request demanding a trip from
D to E. The FAV travels from C to D to pick up the user and finishes the service at loca-
tion E and time t = 6. By this time, the FAV is available for four additional periods but
spends this remaining time traveling back to its station at A to comply with the contract
deadline.

Finally, at location J and time t = 5, a second FAV with a four-period contract dura-
tion appears. However, since it cannot reach high-demanding areas in the subsequent
periods, this vehicle ends up not being hired by the platform, staying still until the end
of its contract at time t = 9.
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4.4 Problem formulation

We model the problem using the language of dynamic resource management (see [94]),
where AVs (resources) are servicing subsequent trip request batches (tasks) occurring at
a discrete-time t ∈ {0,1,2,. . . , T}. Subsequently, we present the elements of our model:
the system state (Section 4.4.1), information arrival (Section 4.4.2), decisions (Section
4.4.3), costs (Section 4.4.4), and objective function (Section 4.4.5).

4.4.1 System state

The state of a single resource is defined by an four-attribute vector a given by

a =


a1

a2

a3

a4

 =


Vehicle type

Remaining servicing time

Station

Current location

 =


atype

aremain

astation

acurrent

 .
We refer to a single vehicle k ∈ K with attribute a as ka. First, the vehicle type attribute
atype helps distinguishing between third-party-owned, freelance vehicles (FAVs), and
platform-owned vehicles (PAVs). This distinction is crucial because FAVs operate under
a stricter availability and different cost plan (owners are entitled to a higher share of the
profits).

The duration of such availability, in turn, is captured by the remaining servicing time
attribute aremain, which corresponds to the remaining time interval an FAV still can spend
servicing orders. PAVs, on the other hand, are assumed to be always available. Thus,
as time goes on, an FAV is increasingly unable to pick up new orders, especially those
whose destinations are far away from the vehicle’s station.

The station attribute astation corresponds to the start and terminal location of each
FAV, supposedly, the parking place where the owner expects the vehicle to return once
the remaining servicing time has expired. It is worth noting that attributes aremain and
astation are not taken into consideration for PAVs; we assume these vehicles are available
indefinitely, besides not being obliged to depart from or return to a station.

Finally, similarly to astation, the current location field acurrent expresses where a vehicle
is on the service area. The locations identified by attributes astation and acurrent integrate
the node set N of the street network.

By including the temporal dimension, we have at , or the attribute vector of an AV at
time t. LetA be the set of all possible vehicle attribute vectors. The state of all vehicles
with the same state vector is modeled using

Rta = Number of vehicles with attribute vector a at time t,

Rt = (Rta)a ∈A = The resource state vector at time t.

Each request, in turn, is modeled using a three-attribute vector b, given by

b =

b1

b2

b3

 =

 Origin

Destination

Class

 =

borigin

bdest

bclass

 .



4.4.2 Exogenous information 81

We refer to a single trip r ∈ P with attribute vector b as r b. Similarly to vehicle loca-
tions, origin (borigin) and destination (bdest) attributes correspond to nodes of the street
network (i.e., borigin, bdest ∈ N), whereas the bclass attribute identifies the requested
service quality c ∈ C .

Let B be the set of all possible request attribute vectors. The state of all rides with
the same state vector occurring at time t is modeled using

Dt b = The number of trips with attribute vector b at time t,

Dt = (Dt b)b ∈B = The request state vector at time t.

With the resource and request state vectors, we defined our system state vector as

St = (Rt , Dt).

4.4.2 Exogenous information

Although the underlying system is known to evolve continuously over time, we measure
states St before making any decisions at discrete periods t ∈ {0, 1, 2, 3,. . . , T}. Between
subsequent periods t −1 and t, we account for the exogenous information processes
concerning both vehicle and demand attribute updates using variables

R̂ta = The change in the number of FAVs with attribute a resulting from
information arriving between t−1 and t,

D̂t b = The number of new requests with attribute b placed between t−1
and t,

Wt = (R̂t , D̂t) = Exogenous information arriving between t−1 and t.

For the complete stochastic process, we let ω ∈ Ω represent the sample path W1,
W2, . . . , WT , where Ω is the set of all sample paths.

In this chapter, we consider R̂ta is concerned only with FAVs entering the system.
However, it could also account for several alternative sources of uncertainty, such as
travel delays, vehicle breakdowns, and early termination of FAV contracts. In any case,
whenever an AV attribute changes randomly from a to a′, we would have R̂ta =−1 and
R̂ta′ =+1.

4.4.3 Decisions

Regarding the types of decisions used to act on the fleet, we consider every vehicle can
service a user (which is reachable within his maximum pickup delay), stay parked in
its current location waiting to pick up users, rebalance to a more promising location,
or, in the case of FAVs, return to its station before the contract deadline. Decisions are
described using



82 4 Learning to fulfill service level contracts

dstay = Decision to stay parked in the current location,

dreturn = Decision to return to the station (FAV only),

DR = Set of all decisions to rebalance (i.e., move empty) to a set
of neighboring locations,

DS = Set of all decisions to service a user, where an element d ∈
DS represents the decision to cover a trip request of type
bd ∈ B ,

DS
c = Subset of decisions in DS associated with each service qual-

ity c ∈ C ,

D = Set of all decisions d ∈ DS∪DR∪{dstay}∪{dreturn},
x tad = Number of times decision d is applied to a vehicle with at-

tribute vector a at time t,

x t = (x tad)a ∈A ,d ∈D = Decision vector at time t.

Transition function

To model how decisions affect vehicle states, we consider a deterministic transition func-
tion aM . Hence, before any new information arrives, applying a decision d to a vehicle
with attribute vector a at time t, leads to a post-decision attribute vector

a′ = aM (a,d).

In turn, the new time of availability is given by

t ′ =
�

t+1, if d = dstay,
t+τ(t,a,d) , if d ∈ DS∪DR∪{dreturn},

where τ(t,a,d) is the travel time spent to carry out a decision d to service a user, rebal-
ance to another location, or return to the station. We consider that between t and t ′,
vehicles are busy, such that the system cannot exert any control over them. Therefore,
if, for instance, a decision d to cover a trip b is applied to a vehicle with attribute vector
a at time t, this vehicle will end up in state a′ (with a′current = bdest), and can only be
used again at t ′.

Abiding by the street network capacity

To avoid unrealistic vehicle distributions, we consider locations j ∈ N can only accom-
modate up to kmax

j vehicles. In a real-world setting, different locations have different
capacities, which may depend not only on the physical infrastructure (e.g., number of
parking places), but also on city regulations. An artificial threshold may be imposed,
for instance, to alleviate local congestion or improve accessibility to surrounding facil-
ities. To implement this restriction, we keep track of the number of vehicles kinbound

j

(0≤ kinbound
j ≤ kmax

j ) inbound to j and assure that at most kmax
j −kinbound

j extra vehicles
can enter j.
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Further, we define the set of all decisions leading vehicles ka to post-decision loca-
tions j as

Da, j = {d | a′ = aM (a,d), a′current = j, a′current 6= a′station, ∀d ∈ D \DS},
Using Da, j and kinbound

j , we can calculate the post-decision number of vehicles inbound
to j (through either rebalance or stay decisions), and ensure the maximum capacity of
j is not violated (see constraints (4.3)). One must notice that Da, j does not cover FAVs
inbound to their own stations (i.e., a′current= a′station= j). FAVs are assumed to have free
access to their home stations at any time.

Fulfilling contract time windows

An FAV with attribute vector a can only be acted on using a decision d to stay, rebalance,
or service users, when there is enough remaining servicing time to return to its station,
that is

τ(t,a,d)+τ(t ′,a′,dreturn)≤ aremain ∀a ∈ A , d ∈ D−dreturn.

Otherwise, the decision is deemed to be invalid, and the corresponding x tad variable is
preemptively discarded. At each period t, we define the set of vehicle attribute vectors
associated to FAVs that must return to their station using

A return = {a | ∀a ∈ A FAV, τ(t,a,dreturn) = aremain}.
Although FAVs will eventually realize the return decision, we consider that they can
always return to their station directly, even before their contract due time. Doing so adds
flexibility to FAV operation since they can rebalance back and forth from their station,
when suitable. This way, provided that FAV owners have already covered parking costs
at their stations, the platform may find it worthwhile rebalancing FAVs back sometimes,
to evade city parking costs.

Constraints

The decision variables x tad must satisfy the following constraints:∑
d ∈D

x tad = Rta ∀ a ∈ A (4.1)

∑
a ∈A

x tad ≤ Dt bd
∀d ∈ DS (4.2)

∑
a ∈A

∑
d ∈Da, j

x tad ≤ kmax
j −kinbound

j ∀ j ∈ N (4.3)

x tadreturn = Rta ∀a ∈ A return (4.4)

x tad ≥ 0 ∀ a ∈ A , ∀d ∈ D (4.5)
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Constraints (4.1) guarantee that all available vehicles (i.e., parked at the current pe-
riod t) are assigned to a decision, whereas constraints (4.2) ensure that any trip request
(identified by bd) can be assigned to at most one vehicle. In turn, constraints (4.3)
enforce that the number of vehicles inbound to a location j do not surpasses j’s remain-
ing capacity. Finally, constraints (4.4) ensure that every FAV whose returning trip delay
∆t (acurrent, astation) is equal to its remaining contract duration aremain is obliged to return
to its station.

4.4.4 Cost function

Applying a decision d to a vehicle ka at time t, takes the vehicle to state a′ at time t ′
and generates a contribution ctad given by

ctad =



Service user

β k ·�pc
base+ ptime ·∆ttrip − ck

time ·(∆tpickup+∆ttrip) − cc
delay ·wdelay

�
,

Rebalance vehicle

− ck
time ·∆trebalance,

Return to station (only FAVs)

− ck
time ·∆treturn,

Stay parked

c t, j
stay.

Contributions ctad are comprised of

β k = Platform profit margin when using vehicle k,

pc
base = Base fare of request b= bd of decision d from quality class c = bclass,

ptime = Time-dependent fare,

∆ttrip = Trip duration ∆t(borigin, bdest) of request b= bd ,

ck
time = Time-dependent operational cost of vehicle k,

∆tpickup = Pickup duration∆t(acurrent, borigin) from current location to trip b ori-
gin,

cc
delay = Penalty due to the excess delay wdelay,

wdelay = Excess delay over the pickup delay wc
pickup contracted by a user from

class c,

∆trebalance = Rebalance travel duration ∆t(acurrent, r) to target location r ∈ N ,

∆treturn = Return travel duration∆t(acurrent, astation) of vehicle with atype= FAV ,

c t, j
stay = Cost of staying at location j at time t, such that j= acurrent, and j ∈ N .

The profit margin β k determines the percentage owed to the platform by assigning
trips to a vehicle ka of type atype ∈ {PAV, FAV}. It allows us to adequately adjust, from
the perspective of the platform, the incentive FAVs have to serve at their available times.
Similarly to today’s MoD applications, we assume most profits belong to the independent
contractors, namely, FAV owners. In turn, constant ck

time represents typical operational
costs (e.g., tolls, fuel, wear and tear) for a vehicle k. We consider these costs are equal for
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all vehicles, regardless of the type. The basis of a pay-per-use parking system is captured
by the cost c t, j

stay of staying at the current location at time t, allowing city managers to
create incentives for vehicles to avoid parking in congested areas. A user who requests
a ride in class c expects to be picked up within wc

pickup time units, but can tolerate up
to wc

tolerance time units over wc
pickup to be serviced, as long as he is compensated for

the excess delay wdelay =max{0, ∆tpickup−wc
pickup} and wdelay ≤ wc

tolerance. From the
platform perspective, this compensation represents a delay penalty cc

delay incurred for
wdelay > 0, defined as

cc
delay = pc

base/w
c
tolerance.

This way, if wdelay = wc
tolerance, the base fare is totally offset by the penalty, and the

platform will only profit from the time-dependent fare. Further, we consider that when
the platform fails to pick up a user from class c within the class maximum waiting time
wc

pickup+wc
tolerance, the platform has to bear a rejection penalty

cc
rejection =ρ · pc

base,

where ρ is a penalty factor. Hence, when rejecting a request, the platform does not only
fail to profit but may be required to compensate the inconvenienced users for a breach
of contract, according to their service-level class. By setting up ρ, we can choose the
extent to which rejections incur further losses, allowing us to experiment with different
penalization schemes. Ultimately, for each period t, the total rejection penalty resulting
from failing to service users from different classes is given by the function

Pt (St , x t) =
∑
c ∈ C

cc
rejection

� ∑
b ∈B

bclass=c

Dt b−
∑

a ∈A

∑
d ∈DS

c

x tad

�
. (4.6)

We consider the service level violation penalties cc
delay and cc

rejection are an essential ele-
ment of SLCs, once they further back up the platform’s commitment to service level
fulfillment. By combining these two penalties, we guarantee that the platform is always
better off servicing a user, regardless of the service level violation. Even when the base
fare is totally offset by the delay penalty, the platform still can profit from the time-
dependent fare whereas rejecting a user always leads to losses. Finally, the contribution
function representing the profit a platform can accrue at each period t is given by

Ct (St , x t) =
∑

a ∈A

∑
d ∈D

ctad x tad − Pt (St , x t) . (4.7)
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4.4.5 Objective

Let Xπt (St) be a decision function representing a policy π ∈ Π that maps a state St ∈ S
to a decision x t ∈ Xt , where S is the state space, Xt is the set of feasible decisions in
state St , and Π is the set of potential decision functions. Starting from an initial state
S0, we aim to determine the optimal policy π∗ that maximizes the expected cumulative
contribution, discounted by a factor γ, over the planning horizon T :

F∗0 (S0) =max
π∈ΠE
¨ T∑

t=0

γCt
�
St ,X

π
t (St)
� | S0

«
. (4.8)

4.5 Algorithmic strategies

In principle, we can solve Equation (4.8) by means of classical dynamic programming,
recursively computing (backward through time) Bellman’s optimality equations

Vt(St) = max
x t ∈Xt

(Ct (St , x t)+γE{Vt+1(St+1) | St , x t}), (4.9)

where St+1 = SM (St , x t ,Wt+1). The transition function SM (.) describes how the pre-
decision state St evolves to the subsequent pre-decision state St+1, upon applying deci-
sions x t and receiving random information Wt+1. For each period, using the expected
contributions Vt+1 allows us to account for the downstream effect of decision making.

Solving (4.9), however, is computationally intractable for our problem setting. Do-
ing so, would incur in all the three “curses of dimensionality” [81]. First, we are unable
to enumerate all states St in state space S , to evaluate value functions Vt(St). Second,
we are unable to find the optimal decision from the decision spaceXt for all states in S .
Third, we are unable to determine the outcome space, whose dimensionality depends
on the random information Wt+1, which for our problem comprises the uncertainty as-
sociated with the appearance of requests and FAVs.

4.5.1 An approximate dynamic programming algorithm

To estimate the value functions around each state in Equation (4.9), we develop an ap-
proximate value iteration algorithm (see, e.g., [82]). This ADP algorithm relies on the
concept of post-decision state, which is a deterministic state immediately after imple-
menting a decision and before any new information has arrived. Thus, applying the
decision vector x t to state St leads to a deterministic post-decision state

Sx
t = SM ,x (St , x t),

where SM ,x (.) is a transition function describing how the system evolves from St to Sx
t

using decisions x t . Then, from the post-decision state Sx
t , we can compute the subse-

quent pre-decision state
St+1 = SM ,W
�
Sx

t ,Wt (ω)
�
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using SM ,W (.), a transition function that models the arrival of new information Wt (ω).
Through these functions, using a given policy π over the planning horizon T would
produce a sequence (S0, x0, Sx

0 , W1(ω), S1, x1, Sx
1 , W2(ω), S2, . . . , ST−1, Sx

T−1, WT (ω),
ST ). By breaking Equation (4.9) into two steps we have:

Vt (St) = max
x t ∈Xt

�
C (St , x t)+γVt(S

x
t )
�
,

Vt(S
x
t ) =E
�

Vt+1 (St+1) | Sx
t

	
.

Since we cannot compute Vt(Sx
t ) exactly, we aim to find V t(Sx

t ), that is, a value func-
tion approximation around the deterministic post-decision state Sx

t . Once we already
penalize rejections, we assume the unmet requests from the post-decision demand vec-
tor Dx

t are not carried over to future periods (i.e., we set Dx
t = ;). In practice, this

assumption implies that users will either walk away or re-enter the system in the next
period through a new request upon being rejected. Hence, the post-decision state is
equivalent to the post-decision resource vector, that is, V t

�
Sx

t

�
= V t
�
Rx

t

�
. Following the

ADP algorithm, we estimate these approximations iteratively, such that at each iteration
n= 1,2,. . . , I , a different sample path ωn is considered, and we can take decisions using
the value functions learned up to iteration n−1. Accordingly, to indicate the iterative
nature of the algorithm, a superscript n is added to all variables.

Assuming V
n
t

�
Rx ,n

t

�
is linear in Rn

ta, we have

V
n
t (R

x ,n
t ) =
∑

a′ ∈A
vn

t′a′
∑

a ∈A

∑
d ∈D

δa′(a,d)x tad , (4.10)

where

vn
t′a′ = Marginal value of a vehicle with post-decision attribute vector a′ at

arrival time t ′ at iteration n,

δa′ (a,d) = Transition function equals to 1, if aM (a,d) = a′, and 0, otherwise.

In our problem, the marginal values vn
ta have slightly different interpretations, de-

pending on vehicle type. For PAVs, these values approximate the overall contribution
(i.e., until the end of the simulation horizon T) of assigning an incremental vehicle to
a certain location at a certain time. For FAVs, however, a marginal value also reflects a
vehicle’s remaining contract duration and the station location. For example, FAVs with
higher remaining service durations, operating in locations close to their stations, are ex-
pected to draw higher contributions. Conversely, FAVs far from their stations and with
contracts about to expire, cannot render as high contributions since the last moments of
their contract are reserved to a return trip to their station.

Although we assume V
n
t

�
Sx ,n

t

�
is linear in Rn

t , we acknowledge this assumption is
prone to result in an oversupply of vehicles in regions associated with high marginal
values. Intuitively, the more vehicles rebalance to a certain region, the lower becomes
their average contribution since only a few of them actually will service users. Instead
of dampening these values as the number of vehicles increases (by using piecewise-
linear approximations as in [102]), we limit the number of vehicles arriving at each
network location. Our fine-grained spatiotemporal representation (featuring short pe-
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riods and exact street coordinates), allow us to restrict the number of vehicles entering
each location in constraints (4.3). Besides avoiding vehicles flooding certain areas, these
constraints add a degree of realism to the model since they are based on the physical
capacity of the actual infrastructure as well as city’s traffic rules.

We do not restrict the number of vehicles dropping passengers at the same location
because they are already bounded by the number of demands. Due to the characteristics
of our problem setting, especially the adoption of short periods and the spatiotemporal
distribution of the demand, it is unlikely that a high number of users are arriving at the
same location at the same time.

Finally, the problem of finding the optimal decision function is

Xπt
�
Sn

t

�
=argmax

x t ∈X n
t

� ∑
a ∈A

∑
d ∈D

ctad x tad +γ
∑

a′ ∈A
vn−1

t′a′
∑

a ∈A

∑
d ∈D

δa′ (a,d) x tad

�
(4.11)

=argmax
x t ∈X n

t

∑
a ∈A

∑
d ∈D

�
ctad +γ
∑

a′ ∈A
vn−1

t′a′ δa′ (a,d)

�
x tad (4.12)

=argmax
x t ∈X n

t

∑
a ∈A

∑
d ∈D

�
ctad +γvn−1

t′aM (a,d)

�
x tad . (4.13)

4.5.2 A discount mechanism for multiperiod travel times

Mobility-on-demand users typically require quick response times from transportation
platforms. For this reason, most studies on urban MoD applications either process re-
quests as soon as they are placed or in batches, usually considering short time intervals.
Following such practice in our ADP approach, however, prevents us from assuming that
all decisions acting on the resources will be completed in the subsequent period. In fact,
most pickup and rebalancing decisions can last longer than a single period. Although we
work with a high-resolution street network, our locations still correspond to a restricted
subset of all possible coordinates. The lower is the resolution of the underlying map,
the fewer are the locations available, and the more multiperiod travel times can be ex-
pected between location pairs. Therefore, incorporating such a feature helps to create
a more robust solution, independent of the length of the periods or the underlying map
structures.

Such multiperiod resource-transformation times have a significant influence on the
value function approximations. To avoid adding another attribute to our resource at-
tribute vector to account for the arrival time at the destination location (see [102]), we
implement an online discount mechanism to all value function approximations associ-
ated with post-decision states arising from rebalancing decisions. We dampen the value
function of post-decision states a′= aM (a,d) by discounting the opportunity cost of stay-
ing still (i.e., d = dstay) during the rebalancing periods t ′′ ∈ {t+1, t+2, .. . , t ′−1}
using

vn
t t′a′ = vn

t′a′ −
t′−1∑

t′′=t+1

vn
t′′aM (a,dstay)∀d ∈ DR. (4.14)
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In Equation (4.14), if the resource-transformation time takes a single period (i.e.,
t ′ = t+1) we have vn

t t′a′ = vn
t′a′ . Since we do not allow vehicles to interrupt a rebal-

ance trip, this adaptation is crucial to avoid vehicles are too far-sighted, pursuing future
rewards at long-distance locations while ignoring the requests that might occur (in the
next periods) in the surroundings of their starting location after their departure. On
the other hand, this adaptation also avoids that vehicles are stranded in low-demand
areas, allowing them to move directly to farther high-demand areas instead of endlessly
rebalancing to nearby low-demand neighbors. Therefore, at every decision time, an
idle vehicle can also rebalance to farther, high-value function locations, as long as this
decision is (i) at least as good as staying still for the whole rebalancing time, and (ii)
competitive in relation to rebalancing to its closest neighbors.

4.5.3 Value function updates

At iteration n, we consider a sample path ωn that determines R̂n
t = R̂t(ωn) and D̂n

t =

D̂t(ωn), such that Wt(ωn)=(R̂n
t , D̂n

t ). Let V
n−1
t (Sx ,n

t ) be an approximation of the value of
being in the post-decision state Sx ,n

t = SM ,x (Sn
t , x t) considering the first n−1 iterations.

Given the state Sn
t = SM ,W (Sx ,n

t−1,Wt(ωn)), we can make decisions at time t by solving
the optimization problem

F
�
Sn

t

�
= argmax

x t ∈X n
t

�
Ct
�
Sn

t , x t
�
+γV

n−1
t (Sx ,n

t )
�

, (4.15)

where we seek to determine the decision vector x t in the feasible region X n
t that maxi-

mizes the sum of the current contribution and the expected contribution (discounted by
a γ factor).

In Algorithm 4.1, we present how our optimization problem is inserted into a classic
ADP algorithm. First, all value function approximations are set to zero by default. Then,
we start from an initial state S1

0 = (R
1
0, D1

0 ), where R1
0 comprises the state vectors of

PAVs randomly distributed throughout the map, and D1
0 is empty (i.e., no requests have

arrived). We update value functions vn
ta using the samples v̂n

ta drawn from attribute
vector a at time t and iteration n. New samples are smoothed using stepsizes αn which
are updated every iteration according to the McClain’s rule (see [40]), such that

αn=
αn−1

1+αn−1−α ,

where α is a constant that is approached as n advances. Initially, we set α1= 1 such that
value functions can start with the first sample value measured for each state.

4.5.4 Approximating the value function

Since we are unable to enumerate all the attributes in the state-space A , we use hi-
erarchical aggregation to create a sequence of state spaces. Aggregating on the space
dimension helps to estimate the value function of states featuring locations that were
not yet visited, by using the estimates of regions in hierarchically superior levels. We de-
fine regions by clustering nodes in our street network that can be accessed from central



90 4 Learning to fulfill service level contracts

Algorithm 4.1: An approximate dynamic programming algorithm to solve the
AMoD-H assignment problem.

1 Choose an initial approximation V
0
t , ∀t ∈ T = {0,1,. . . , T}.

2 Set the initial state to S1
0 .

3 for n= 1,.. . , I do
4 Choose a sample path ωn.
5 for t = 0,1,. . . , T do
6 Let xn

t be the solution of the optimization problem (4.15).
7 Let v̂n

ta be the dual variable corresponding to the resource conservation constraint (4.1) for
each Rn

ta > 0.
8 Update the value function using:
9 vn

ta = (1−αn)v
n−1
ta +αn v̂n

ta .
10 Compute the subsequent pre-decision state:
11 Sx ,n

t = SM ,x (Sn
t , xn

t )
12 Sn

t+1 = SM ,W (Sx ,n
t ,Wt+1(ωn)).

13 Update the total number of vehicles K j inbound to each location j ∈ N .

locations within increasingly higher maximal delays. Besides aggregating across space,
near periods can aggregate up to larger time intervals since the value function of a vehi-
cle at a location (or region) is likely to carry some resemblance to the value functions of
anterior/posterior periods. Such resemblance, therefore, allow us to approximate value
functions across periods that belong to longer time intervals. Later, we present the final
spatiotemporal hierarchical aggregation structure, achieved experimentally by assessing
the performance of different aggregation structures on a single baseline scenario.

Hierarchical aggregation

In order to estimate the value function of attributes not yet observed, we use hierar-
chical aggregation coupled with the weighting by inverse mean squared errors (WIMSE)
formula proposed by George et al. [39]. Our hierarchical aggregation structure lays
out a sequence of state spaces {(T ×A )(g), g = 1,2,. . . , |G |} with successive fewer el-
ements, where (T ×A )(g) represents the g th level of aggregation of the time-attribute
space T ×A . Hence, each attribute ta ∈ T ×A can be aggregated up to an attribute
ta(g) = Gg(ta), where Gg : T ×A → (T ×A )(g). Doing so allows us to estimate the
value vn

ta associated with an attribute ta by combining the values v(g,n)
ta from superior

levels using
vn

ta =
∑
g ∈G

w(g,n)
ta · v(g,n)

ta .

Weights w(g)ta on the estimates of different aggregation levels are inversely proportional
to the estimates of their mean squared deviations, according to the WIMSE formula:

w(g,n)
ta ∝ 1�

σ2
ta

�(g,n)
+
�
µ
(g,n)
ta

�2 ,

where
�
σ2

ta

�(g,n)
is the variance of the estimate v(g,n)

ta , and
�
µ
(g,n)
ta

�2
is the aggregation

bias, that is, the difference between the estimate v(g,n)
ta at aggregate level g and the
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estimate v(0,n)
ta at the disaggregate level. Next, we normalize all weights by doing

w(g,n)
ta =

1�
σ2

ta

�(g,n)
+
�
µ
(g,n)
ta

�2
 ∑

g′ ∈G
1�

σ2
ta

�(g′,n)
+
�
µ
(g′,n)
ta

�2
−1

. (4.16)

The street network map

AMoD studies within the scope of reinforcement learning and ADP generally consider
cars can rebalance to their immediate neighboring zones. Moreover, such rebalancing
operations are expected to last at most a single period, such that, at decision time, all
vehicles are either servicing customers or idle (potentially, after finishing rebalancing).
Such zones, however, are defined using artificial grids (e.g., [1, 115]) or neighborhood
borders (e.g., [41, 58]), which not necessarily translate into realistic drivable streets.
In contrast, we work with a high-resolution transportation network of Manhattan com-
prised of 6,430 nodes and 11,581 edges. Therefore, pickup and rebalance decisions
consist of movements between real-world street coordinates, discretized in a set of net-
work nodes, which we guarantee to be no longer than thirty seconds away from one
another (at an average speed of 20km/h). Such a high-granularity setup allows us to
consider a more realistic demand matching scenario since real-world trip requests have
a larger set of candidate nodes to which their GPS coordinates can be approximated.

Hierarchical regional centers

In order to define hierarchical regions in our street-network map, we implement a vari-
ant of the facility location problem proposed by Toregas et al. [103], which is concerned
with the time that separates a location from its closest facility. The goal of this problem is
to determine the minimum set of facilities in the street network that together can cover
(reach) all others within s time units. Let

x j = 1, if a facility is located at j ∈ N , 0 otherwise,

t i, j = Travel time between nodes i, j ∈ N ,

s= The maximal service delay of a vehicle departing from a facility,

Np,s = Subset of locations able to reach location p ∈ N within s time units (i.e.,
Np,s = { j | t jp ≤ s, ∀ j ∈ N}).

The minimum set covering problem is defined as follows:

Minimize:∑
j ∈ N

x j (4.17)

Subject to:∑
j ∈ Np,s

x j ≥ 1 ∀ p ∈ N (4.18)

x i ∈ {0,1} ∀ i ∈ N (4.19)
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An optimal solution to this set covering problem would give us the location of the
minimum set of facilities Js ⊆N that would be required to service all locations p and still
ensure a maximal service time of s units for the entire system. We assume these facilities
are regional centers j ∈ Js, and consider that each node p ∈ N integrates the region of
its closest center j = arg min

i ∈ Js

t ip.

4.5.5 Benchmark policy

We benchmark our method against a myopic policy πmyopic comprised of two phases. In
the first phase we determine the optimal vehicle-request assignment at period t by max-
imizing the contribution function given by Equation (4.7). Next, in the second phase,
idle vehicles are optimally rebalanced to under-supplied locations using the linear pro-
gram proposed by Alonso-Mora et al. [2]. This program aims to minimize the total travel
distance of reaching the pickup locations of unassigned requests while guaranteeing that
either all vehicles or all requests are assigned. The original formulation is adapted such
that it abides by the contractual deadlines of freelance vehicles. We preemptively discard
FAVs that, although idle, cannot reach any rebalancing targets within their remaining
service time.

To increase the matching rate, we assume rebalancing decisions can be revoked at
every decision time. Hence, in the first phase of our policy, both rebalancing and idle
vehicles can be assigned to new requests. Thanks to our high-resolution network rep-
resentation, we can calculate the current location of all rebalancing vehicles at each
period t. Therefore, rebalancing vehicles can be matched to any request occurring in
the surroundings of their ongoing route (i.e., the shortest path to their destination).

4.6 Experimental study

We implemented our approach using Python 3.6 and Gurobi 8.1. Test cases were exe-
cuted on a 2.60 GHz Intel Core i7 with 32 GB RAM.

4.6.1 Training and testing datasets

We create our dataset by randomly sampling 10% of the 2011 Manhattan, New York
City taxi demand. Value functions are created using requests sampled from the 15th

Tuesday, and their effectiveness is assessed on testing instances created using samples
from the remaining 51 Tuesdays of 2011. This setup allows that we investigate how the
policy learned from a single weekday performs throughout the whole year. To assess the
quality of our VFA policy, we compare the average profit and service level across the 51
samples against the averages provided by the benchmark policy. Figure 4.2 shows the
total request count for each day. For the sake of fairness, the random processes associ-
ated with trip sampling, service class assignment, and fleet distribution are a function
of the iteration number (i.e., the seed). This way, regardless of the configuration, we
guarantee that the same information will be considered across all training iterations and
testing instances.
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Figure 4.2: Request count between 5 AM and 9 AM throughout all 52 Tuesdays of 2011 of the
Manhattan taxi demand dataset. VFAs are determined using only samples from the 15th Tuesday.
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Figure 4.3: Demand pattern of Manhattan taxi trips on a typical Tuesday, 2011. At every ADP
iteration, our simulation draws samples from the morning peak (the interval in red from 5 AM to 9
AM). The dashed lines at 4:30 AM and 10:00 AM mark the full length of the experiment. The interval
[4:30, 5:00) is a rebalancing offset, whereas the interval [9:00, 10:00) is a termination offset. The
former is laid out to provide extra time for vehicles to rebalance before any requests arrive, and the
latter allows enough time to deliver all requests picked up during the sampling interval.

Figure 4.3 offers a close-up on the transportation demand of the 15th Tuesday, high-
lighting the morning peak from which we draw samples. The dashed lines at 4:30 AM
and 10:00 AM delineate the full extent of our experiment. During the interval [4:30,
5:00), the fleet has a thirty-minute offset (30 periods) to rebalance in order to serve
the future demand. Request batches arrive every other minute in the interval [5:00,
9:00) (240 periods), and vehicles have a termination offset [9:00, 10:00) (60 periods)
to make sure all requests picked up around the end of the trip sampling threshold can be
delivered. The rebalance offset and the lack of requests at the end of the trip sampling in-
terval allow us to better assess the performance of our anticipatory rebalancing method.
Regarding the computation time, training and testing algorithms take on average five
and two minutes, respectively, to process a single ADP iteration.

4.6.2 Model tuning

In this section, we motivate our algorithmic choices by showing their effectiveness ex-
perimentally. First, we describe the baseline scenario we use throughout the tuning
process. Next, we present the spatiotemporal hierarchical aggregation structure we use
to approximate value functions. Then, we highlight the effectiveness of our discount
function when dealing with multiperiod travel times, show how we set up our rebalanc-
ing strategy, and describe the importance of setting a limit on the number of vehicles
allowed in each node of the street network. Finally, we offer a sensitivity analysis on the
maximum pickup times and base fares values.
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Regarding the tuning of the ADP parameters, we have found that letting the stepsize
α= 0.1 and the discount factor γ= 1 has led to superior performance experimentally
for I = 500 iterations. Hence, we adopted these values across all considered scenarios.

Baseline scenario

Before we study the impact of FAV hiring and service classes, we tune our model using
a baseline scenario that emulates a traditional MoD application with a fixed fleet size,
homogeneous users (i.e., no service quality classes), and no service level penalties. This
scenario features a fleet of 300 PAVs, which are randomly distributed throughout the
street network at the beginning of each iteration. Every minute, we sample the corre-
spondent request batch such that 10% of the requests are selected, totaling about 4,300
requests over all periods. We set up the PAV fleet size experimentally, aiming to service
the sampled demand partially. We assume such an undersupplied scenario to guarantee
that there are always unmet requests left to be addressed, eventually, by the freelance
fleet. Additionally, following constraints (4.3), we assume there can be only five vehicles
inbound to each location. Table 4.2 summarizes the baseline scenario parameters.

Table 4.2: Parameters for the baseline scenario, featuring a fixed PAV-fleet, homogeneous users, and
no service-level penalties.

Problem characteristic Attribute Value(s)

Fleet size (|K |) 300 PAVs
Max. #vehicles/location (kmax

j ) 5 (for all locations j ∈ N)

Base fare (pbase) €2.4
Distance fare (ptime) €1.0/km
Driving costs (ctime) €0.1/km

Pickup delay (wpickup) 10 min
Number of locations (|N |) 6,430

Period length 1 minute
Simulation length (T) 330 periods (morning peak)

- 30: rebalancing offset (30 min)
- 240: trip sampling (5 AM to 9 AM)
- 60: finalize delivery offset (1 h)

Demand stochastic process (F P) 10% of the real-world Manhattan
taxi demand on the 15th Tuesday
of 2011 (randomly sampled)

Hierarchical aggregation levels

We determine our aggregation levels experimentally by analyzing the quality of the so-
lutions provided by different schemes that combine both space and time. Figure 4.4
illustrates the underlying structure of our spatial aggregation configuration, showing to
which regional center each location in N aggregate up.

In Table 4.3, we show the decline in the attribute space size for each aggregation
level. At the most disaggregated level (i.e., g = 0), we consider that both FAV and PAV
value functions are indexed by time and location. FAVs, in particular, are also indexed by
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Figure 4.4: Regional center distribution on the Manhattan street network graph. Labels RC5 and
RC10 identify the regional centers determined using the facility location problem formulation consid-
ering maximal service delays 5 and 10 minutes, respectively. Each location in N is connected to its
respective regional center (white circle) by a red line.

their remaining contract durations and station locations. Since considering fine-grained
values for the FAV-only attributes could lead to an excessively large attribute space, we
replace them with coarser substitutes. First, for the remaining contract durations, we
assume values are discretized in hours. Assuming FAVs arrive in the system during the
240 one-minute trip sampling intervals (see Table 4.2), the longest contract can last four
hours. Therefore, contract durations in intervals 1-60, 61-120, 121-180, and 180-240,
aggregate up to one, two, three, and four remaining hours, respectively. Second, we
assume the station locations aggregate up to one of the 21 ten-minute regional centers.

At aggregation level 1, we aggregate time up to three-minute intervals and locations
to the closest five-minute regional center. Additionally, we stop considering FAV-related
attributes, therefore using only the spatiotemporal information to index them. Finally,

Table 4.3: Hierarchical aggregation levels. The symbol “-” indicates that the attribute is not consid-
ered.

g #Period #Location #Contract* #Stations* |T |×|A FAV| |T |×|A PAV|
0 330 (t = 1 min) 6,430 (N) 4 (4h/60 min) 21 (RC10) 178,239,600 2,121,900
1 110 (t = 3 min) 50 (RC5) - - 5,500 5,500
2 110 (t = 3 min) 21 (RC10) - - 2,310 2,310

*Only considered for FAVs.
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at aggregation level 2, we continue to aggregate time in three-minute intervals and
aggregate locations up to the coarser ten-minute regional centers. At this level, we are
left out with 2,310 possible attributes for each fleet type, substantially improving our
ability to estimate values v̂ta of states not yet visited.

We separate states by car type to emphasize that PAVs and FAVs are not interchange-
able: FAVs are expected to work harmonically with PAVs as a backup fleet. The marginal
value of an FAV at a certain time and location differs from its PAV counterpart, not only
because it depends on the contract duration and station location attributes, but mainly
because FAV operations entail a lower profit margin to the platform which consequently
leads to lower value functions.

Effectiveness of VFA discount function

We assess whether our discount function is able to produce high-quality value function
approximations by disabling it and allowing vehicles to rebalance to increasingly farther
distances. We assume vehicles can rebalance to eight regional centers determined using
one-, five-, and ten-minute maximal service delays. Accordingly, we label these experi-
ments as 8xRC1, 8xRC5, and 8xRC10, and add an extra label [P] to indicate the cases
where we apply the discount function. Therefore, in all test cases featuring the label [P],
rebalancing leads to penalties proportional to the trip duration. We benchmark these
results against a simple rebalancing procedure where vehicles can only move to their
adjacent neighbors. Since traveling to these neighbors in the street network graph is
guaranteed to take less than thirty seconds, no multiperiod travel times are incurred.
Figure 4.5 shows that for all three rebalancing strategies considered, applying the dis-
count function leads to superior results, with the 8xRC1[P] rebalancing configuration
having the highest profits and percentage of serviced users by the 500th iteration.
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Figure 4.5: Performance comparison of rebalancing strategies when using the discount function (rep-
resented by a label [P]).
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Rebalancing configurations

We study rebalancing configurations in which vehicles can move to a subset of increas-
ing distant regional centers besides its adjacent neighboring locations. Notably, in Figure
4.5, the 8xRC10[P] configuration allows high-quality results at the beginning of the sim-
ulation (first 200 iterations) but is later surpassed by the 8xRC1[P] configuration. The
performance of the long-distance configuration (8 × RC10[P]) is inferior to its counter-
parts because rebalancing to farther ten-minute region centers prevents vehicles from
consistently measuring a greater range of states, although it allows them to escape from
low-demand areas faster initially. Therefore, rebalancing to one-minute region centers
offers a more balanced trade-off between exploration and exploitation, since vehicles
can visit more locations (|RC1|= 758 ≈ 12% of node set N) and bypass the intricate
complexity of the real-world street networks.

In order to assess whether we could benefit from combining the short-distance 8xRC1
configuration with medium- and long-distance rebalancing movements, we created the
following configurations:

• Short + Medium (8 × RC1 + 4 × RC5) – Rebalance to eight one-minute region
centers and four five-minute region centers.

• Short+ Long (8× RC1+ 4× RC10) – Rebalance to eight one-minute region centers
and four ten-minute region centers.

• Short + Medium + Long (8 × RC1 + 4 × RC5 + 2 × RC10) – Rebalance to eight
one-minute region centers, four five-minute region centers, and two ten-minute
region centers.

Figure 4.6 shows that configuration 8 × RC1 + 4 × RC5 (i.e., adding four five-
minute region centers to the rebalancing pool of eight one-minute region centers) results
in higher performance than the 8xRC1 configuration initially while having comparable
convergence behavior after the 400th iteration. However, since the rebalancing configu-
rations perform similarly at the end of the training iterations, we select 8 × RC1 as the
default rebalancing configuration. We do so, mainly because this configuration requires
less processing time than its counterparts, once fewer targets are considered.
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Figure 4.6: Performance comparison of rebalancing strategies combining short-, medium-, and long-
distance targets.
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Setting the maximum number of vehicles per location

Our baseline scenario considers that no more than five vehicles can be inbound to any
location, according to constraints (4.3). To investigate how much these constraints con-
tribute to generating high-quality value function approximations, we run the test cases
8xRC1 and 8xRC1+4xRC5, allowing that an unlimited number of vehicles move to each
location. Figure 4.7 shows that besides reaching a subpar performance initially, disabling
the maximum number of vehicles/location constraints is a great source of instability as
the experiment progresses. Vehicles end up rebalancing in troves to locations associated
with high-value function approximations, producing a rather unrealistic scenario in our
problem setting, where locations correspond to GPS coordinates in a Manhattan street
segment. Figure 4.8 shows that allowing that up to five vehicles are inbound to each
location achieves the best performance for our baseline scenario and rebalance config-
uration 8xRC1+4xRC5.
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Figure 4.7: Effect of allowing an unlimited number of vehicles at each node for rebalancing strategies
8xRC1 and 8xRC1+4xRC5.
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Figure 4.8: Performance of rebalancing configuration 8xRC1+4xRC5 when allowing that at most
two, five, and ten vehicles are inbound to each location.
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Base fare values and service levels

We also analyze the impact of base fare values and pickup delays on the overall per-
formance. While base fare values directly influence the scale of value functions, the
maximum pickup delays limit the matching radius of vehicles. Table 4.4 presents the
average results of our testing instances considering our baseline scenario under nine
different combinations of maximum pickup delays and base fare values. Apart from the
average number of requests serviced, pickup delay, and the objective function, it also
shows the average trip distance of both serviced and rejected users as well as the share
of the fleet total time spent parked, rebalancing, picking up, and carrying users. Since
we consider 330 periods and a 300-vehicle fleet, this total fleet time corresponds to
990,000 periods (300×330).

Increasing base fares makes the contribution accumulated via distance rates more
and more irrelevant, as indicated by the increment in the average trip distance of rejected
requests. Therefore, adopting high base fares create a bias towards short-duration trips
as indicated by the decrease of both the share of the time picking up users and their
average trip distances. Accordingly, vehicle rebalancing also raises, once vehicles tend to
return more frequently to high demand areas. As for the influence of higher maximum
pickup delays, increasing delays from five to ten minutes can result in about a 10%
increase in the number of requests serviced. Such an increase, however, is moderate
when we contrast ten- and fifteen-minute delays (about 2 percentage points). This result
suggests that, for the fleet size we have set, it is unlikely that increasing pickup delays
even further will lead to more pickups. Since we consider the decision to pick up or
reject a user is taken within a single period, eventually, there are not enough vehicles to
fulfill the demand, regardless of how long users are willing to wait.

4.6.3 Platform fleet management

In this section, we illustrate the behavior of our πVFA policy. Besides the baseline param-
eters described in Table 4.2, we consider the best tuning settings achieved in Section
4.6.2, namely, the three hierarchical aggregation levels presented in Table 4.3, the five-
vehicle limit per location, and the rebalancing strategy 8 × RC1. Figure 4.9 and Figure
4.10 compare the performance of the proposed VFA policy against the myopic policy on
a single testing instance. Since the myopic policy reacts to request rejection, from Figure
4.9, we can see that the fleet can fulfill the demand entirely until about 6:45 AM, when
the first rebalancing movement appears. In contrast, under our VFA policy, most vehicles
are rebalancing before 6:30 AM. As can be seen in Figure 4.10, the πmyopic rejects fewer
users than πVFA until about 7:30 AM, but from this time on, the πVFA outperforms the
myopic approach, ultimately resulting in about 14% more users serviced. The difference
between the policies is further highlighted in the busiest period (from 8 AM to 9 AM).
The myopic policy reacts immediately to the demand peak, picking up as many users as
possible, disconsidering the future outcome of these decisions. In contrast, under the
VFA policy, caring about post-decision outcomes makes many vehicles to stay parked or
rebalance, which may result in some rejections initially, but leads to higher service rates
in the long-run.



10
0

4
Le

ar
ni

ng
to

fu
lfi

ll
se

rv
ic

e
le

ve
lc

on
tr

ac
ts

Table 4.4: Impact of maximum pickup delays and base fare values on the solution quality considering the baseline scenario. Each value corresponds to an
average of the results achieved for the 51 testing instances.

Max.
delay
(min)

Base
fare
(€)

Requests
serviced

Pickup
delay (min) Objective

function (€)

Trip distance (km) Fleet total time / Status

Serviced Rejected Rebalancing Picking up Carrying Parked

5 2.4 76.88% 2.49 15,305 2.95 3.32 10.36% 7.92% 28.11% 53.60%
4.8 75.49% 2.50 22,200 2.88 3.51 11.73% 7.82% 26.94% 53.51%
9.6 78.19% 2.49 38,190 2.81 3.83 12.91% 8.07% 27.29% 51.73%

10 2.4 85.74% 3.72 16,834 2.89 3.94 8.64% 13.17% 30.73% 47.47%
4.8 87.77% 3.72 25,540 2.80 4.77 10.31% 13.52% 30.48% 45.69%
9.6 89.34% 3.86 43,531 2.77 5.34 8.83% 14.29% 30.69% 46.19%

15 2.4 87.77% 4.35 17,335 2.93 3.80 7.98% 15.75% 31.94% 44.33%
4.8 89.35% 4.40 26,095 2.83 4.81 8.43% 16.24% 31.40% 43.94%
9.6 89.71% 4.47 43,594 2.77 5.46 9.88% 16.57% 30.79% 42.76%
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Figure 4.9: Comparison of the number of PAVs by state (parked, rebalancing, picking up, and car-
rying passengers) for each policy on a single testing instance.
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Figure 4.10: Comparison of the cumulative number of requests serviced throughout all time steps on
a single testing instance. The VFA policy leads to an 89.18% service rate, whereas the myopic policy
can reach a 78.17% service rate.

Figure 4.11 further illustrates where vehicles are likely to move to, based on the
dimension of the value functions exploited by πVFA. For each location in N , we average
the estimates across thirty-minute intervals from 6 AM to 9 AM. As can be seen from
Figure 4.11, having more vehicles in the middle section of Manhattan between 6:30 AM
and 7:30 AM is prone to lead to higher contributions. This period is consistent with the
predominance of rebalancing operations shown in Figure 4.9. After 7:30 AM, VFAs get
lower and lower, although demand is the highest. As demonstrated by Al-Kanj et al.
[1] for a similar AMoD setting, value functions monotonically decrease with time, since
they reflect the expected revenue vehicles can accrue until the end of the time horizon.
Hence, as time goes on, vehicles have less time to pick up users and make profits.
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VFA: Low                                   High  

Figure 4.11: Average value function approximations (VFAs) for each location in the street network
graph across sequential thirty-minute intervals. Value functions are the highest in the middle section
of Manhattan from 6 AM to 7:30 AM, shortly before the demand reaches its peak.

4.6.4 Enforcing service level contracts

In this section, we build upon the baseline scenario such that service level violation
penalties are taken into consideration. We show how the penalization mechanisms,
namely, the tolerance delays and rejection penalties, can lead to a higher service rate
while compensating users who have had their service levels violated. First, regarding
the service level preferences, we assume first-class users (SQ1) can wait at most five
minutes to be picked up, whereas second-class users (SQ2) can wait at most ten minutes.
Proportionally, we assume that the base fare of SQ1 users is twice the SQ2 base fare,
such that pSQ1

base= 4.8 and pSQ2
base= 2.4. One should notice that the parameters defined for

SQ2 users coincide with those used in the tuning.
As for the penalty parameters, we consider five-minute tolerance delays for both

classes and rejection penalties ρ ∈ {0,1,2}. For ρ = 0, we have a scheme where only
delay penalties are incurred, whereas, for ρ ∈ {1,2}, rejection penalties are equivalent
to one and twofold the user base fares. Finally, we also analyze the impact of these
penalties when servicing users from SQ1 and SQ2, both separately (scenarios A1 and
A2) and combined (scenario A3). In A3, the service class distribution follows a stochastic
process where first-class user locations and request times coincide with the 20% most
generous tippers (among tipping users) of the Manhattan demand occurring between
5 AM and 9 AM. To create this distribution, we first aggregate all requests from the
taxi demand considered (all 2011 Tuesdays) according to their location and placement
time (within five-minute bins). Next, we assign first-class labels to all requests whose
tip/fare ratio ranks over the 80th percentile, which is around 0.26. Then, we determine
for each location and time bin pair the ratio of first-class requests, which we consider
as the probability of them appearing. Table 4.5 summarizes the parameters that we use
to build upon the PAV baseline scenario to assess the impact of enforcing service level
contracts.
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Table 4.5: Summary of the parameters used to enforce service level contracts on different user bases.

Problem characteristic Attribute Value(s)

Classes (C) {SQ1, SQ2}
Max. pickup delay class c (wc

pickup) SQ1 = 5 min / SQ2 = 10 min

Waiting tolerance class c (wc
tolerance) SQ1 = 5 min / SQ2 = 5 min

Penalty factor (ρ) {0, 1, 2}
Base fare (pc

base) SQ1 = €2.4 / SQ2 = €4.8
User base Scenarios:

[A1] Only SQ1 users
[A2] Only SQ2 users
[A3] The 20% highest

tippers are SQ1

Sensitivity analysis of penalization schemes

In Table 4.6, we show for the homogeneous user base scenarios A1 and A2 to what extent
manipulating the penalization scheme alters the average performance of the fleet from
both user and platform perspectives. For comparison, in the top row of each user base,
we place the results for instances similar to those presented in Table 4.4, in which neither
delay nor rejection penalties are applied.

Although in practice, the same maximum delays are considered (i.e., ten and fifteen
minutes), applying tolerance delays alone (i.e., ρ = 0) leads to faster pickups for both
SQ1 and SQ2 classes. Since any time spent within the tolerance delay offsets the base
fare values, the πVFA policy ends up incorporating a greater sense of urgency. From
the perspective of the provider, such a penalty mechanism enables improved user ser-
vice levels at the expense of slightly lower total contributions. This tradeoff is more
prominent for the user base A1, in which pickup delays decreased in 41 seconds while
increasing in 0.25 percentage points the number of serviced requests, at the expense of
€1,287 fewer profits. Moreover, a close analysis of the fleet total time indicates that the
tolerance delays remarkably impact the fleet management strategy to service A2, since
vehicles spend more time rebalancing and less time parking. These relations suggest
that tolerance delays help to achieve more accurate VFAs, which adequately and quickly
drive vehicles to the most promising areas.

However, sole adopting tolerance delays only improves the ride experience of ser-
viced users, compensating them according to the inconvenience inflicted. A true com-
mitment to SLCs have to also adequately compensate those who have been through
the greatest possible inconvenience, namely, service rejection. By making up for rejec-
tions, platforms can improve customer loyalty, once users can trust the transportation
provider genuinely strives to keep consistent service quality, to the point of having “skin
in the game” (i.e., risking company profits). Our results show that, besides providing
such a guarantee, the application of rejection penalties can also increase the number of
requests serviced, with vehicles spending more time rebalancing and less time parked.
High penalty factors, however, creates a rejection bias against long distance requests (see
the increase in the mean trip distance associated with rejections). Conversely, the trip
distance of serviced requests decreases, indicating that the fleet management strategy
consists of fulfilling short trips and quickly rebalancing back to high-demand areas.
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Table 4.6: Sensitivity analysis on penalization schemes. Top lines feature results for comparable configurations where no penalties are applied (see Table 4.4).
Performance markers consist of the average results achieved by applying our πVFA policy on the 51 testing instances.

Base
fare
(€)

Max. delay (min) Rej.
pen.
(ρ)

Requests
serviced

Pickup
delay (min) Objective

function (€)

Trip distance (km) Fleet total time / Status

Pickup Tolerance Serviced Rejected Rebalancing Picking up Carrying Parked

No penalties
4.8 10 - - 87.77% 3.72 25,540 2.80 4.77 10.31% 13.52% 30.48% 45.69%

Delay and rejection penalties (user base A1)
4.8 5 5 0 88.02% 3.31 24,253 2.85 4.39 6.31% 12.05% 31.17% 50.47%

1 88.94% 3.48 21,584 2.79 5.05 6.43% 12.83% 30.81% 49.93%
2 88.91% 3.56 19,009 2.77 5.23 8.10% 13.11% 30.53% 48.26%

No penalties
2.4 15 - - 87.77% 4.35 17,335 2.93 3.80 7.98% 15.75% 31.94% 44.33%

Delay and rejection penalties (user base A2)
2.4 10 5 0 87.76% 4.32 16,956 2.94 3.77 9.07% 15.65% 31.96% 43.32%

1 89.13% 4.40 15,776 2.83 4.74 8.61% 16.19% 31.34% 43.85%
2 89.25% 4.50 14,489 2.80 5.10 10.28% 16.57% 30.95% 42.20%



4.6.5 Vehicle productivity and fleet size 105

Ultimately, our findings suggest that both measures are effective to improve service
quality, such that we incorporate them in our standard setup. Hence, we adopt the
five-minute tolerance delays and rejection penalties equivalent to the base fare (i.e.,
ρ = 1), since these offer a more balanced trade-off regarding users’ trips distances. To
illustrate how this scheme works in the current transportation setting, in the following,
we exemplify how the service provision unfolds for a regular SQ1 user. First, in case
the request cannot be fulfilled, the platform warns the user (within one minute) and
compensates him immediately a rejection penalty equivalent to the base fare. Otherwise,
when the user can be serviced, a vehicle takes in average 3.48 min to pick up him.
When the waiting time surpasses the five minute threshold, a fraction of the base fare
is discounted from the user’s total trip cost, proportional to the waiting time in the
tolerance interval.

4.6.5 Vehicle productivity and fleet size

Although we have demonstrated that our penalization scheme can improve PAV-fleet
productivity and user service levels, Table 4.6 shows that the platform still cannot service
about 10% of the users. Our results indicate that this inability to cover the demand
entirely is due to insufficient vehicle supply. As can be seen in Figure 4.9, under our VFA
policy, most vehicles are busy (i.e., rebalancing, picking up, or carrying users) during the
demand peak. When rejections start to accumulate from about 6:30 and on (see Figure
10), we can see that the number of parked vehicles drop dramatically, especially in the
myopic policy. In such a scarcity scenario, vehicles tend to reject users whose trips are
not economically efficient. Typically, a vehicle is better off parking in high-demand areas
than traveling to pick up users in low-demand areas, associated with unpromising future
returns. This fleet management strategy can also be seen during the busiest period in
Figure 4.9, which features two “idleness peaks” (at around 7:15 and 8:30) where about
fifty AVs are parked, waiting for future requests.

4.6.6 Freelance fleet management

In this section, we show how a third-party-owned fleet of FAVs can complement the PAV-
fleet to improve user service levels. First, we describe how we model the uncertainty
associated with the freelance fleet availability and then we assess the outcome of hiring
FAVs.

Modeling FAV availability

We assume both announcement times and contract durations are drawn from a truncated
normal distribution ψ(µ,σ, a, b; x), where µ and σ are the mean and variance of the
normal distribution, whereas a and b specify the truncation interval. Since our study
draws on Manhattan’s demand, we also harness the daily commuting patterns of the
island to establish realistic announcement times. We consider FAVs arrive between 5
AM and 9 AM, reaching an arrival peak at 8 AM. This arrival pattern is adapted from
the time workers leave home to go to work in Manhattan (see Table 4.7), where most
departures (54.60%) occur between 7 AM to 9 AM.
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Table 4.7: Time leaving home to go to work in Manhattan [110].

Time leaving home Workers

12:00 AM to 4:59 AM 1.10%
5:00 AM to 5:29 AM 1.40%
5:30 AM to 5:59 AM 1.10%
6:00 AM to 6:29 AM 4.10%
6:30 AM to 6:59 AM 4.60%
7:00 AM to 7:29 AM 9.70%
7:30 AM to 7:59 AM 10.20%
8:00 AM to 8:29 AM 20.10%
8:30 AM to 8:59 AM 14.60%

9:00 AM to 11:59 AM 33.00%

Regarding the contract durations, we investigated two scenarios. First, in scenario
D1, vehicles are available until the end of the trip sampling interval at 9 AM. Second, in
scenario D2, contracts can last from 1h to 4h (viz., trip sampling interval) and most FAVs
are made available for 2h, resulting in the distributionψ(2h, 1h, 1h, 4h; x). We generate
these contract durations in tandem with announcement times, adjusting durations that
surpass the maximum simulation time when added to their announcement times. For
this reason, contracts in the range [1h, 1.5h] become more common since FAVs arriving
after 8:30 AM have maximum contract durations of 1.5 hours.

Regarding the spatial distribution of these vehicles over the map, we investigate two
deployment scenarios with increasingly higher numbers of stations O⊆ N :

• Clustered [C] – Stations are drawn from 1% distinct randomly chosen locations
(|O| ≤ 64). In this scenario, AVs cruise to park in a small set of parking lots (e.g.,
due to incentives, city regulations).

• Scattered [S] – Stations are drawn from all available locations (|O| ≤ 6,430). This
scenario simulates the behavior of AVs which park nearby their owners’ locations.

We assume that across all iterations the station location set O remains stable for all
deployment scenarios. Thus, under scenario C, for instance, FAVs always start from the
same set of 64 nodes.

Table 4.8 summarizes the parameters governing an operational scenario in which
the fleet is comprised of PAVs and FAVs. This scenario extends our baseline scenario
by allowing extra 200 FAVs into the platform, distributed according to the availability
settings mentioned earlier.

Improving service quality with on-demand hiring

In this section, we offer different perspectives on the results achieved when FAVs, which
are available according to the parameters described in Table 4.8, join the PAV fleet to
uphold user SLCs. Table 4.9 and Table 4.10 present an average performance comparison
between the VFA and myopic policies on the testing data set for user base A3. Table
4.9 shows the influence of each FAV availability scenario (i.e., contract duration and
station distribution combination) on the mean objective function, percentage of requests
serviced, and pick up delay. Table 4.10 presents the fleet utilization breakdown, that is,
the percentage of the total fleet time spent in each vehicle status.
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Table 4.8: Summary of the parameters for on-demand hiring.

Problem characteristic Attribute Value(s)

Profit margin (β) 100% (PAVs) and 30%(FAVs)
Fleet size (|K |) 300 PAVs + 200 FAVs

Number of stations (O) Distribution scenarios:
[C] Clustered - 64 (0.01*N)
[S] Scattered - 6,430 (1.00*N)

FAV hiring stochastic process (FO) Station: chosen at random from O
#Vehicles/station: random
Announcement time: ψ(8AM, 1h, 5AM, 9AM; x)
Contract duration scenarios:
[D1] from announcement time until 9 AM
[D2] ψ(2h, 1h, 1h, 4h; x)

Table 4.9: Comparison of the average objective function, number of requests serviced, and pickup
delays between VFA and myopic policies on all FAV availability scenarios.

Contract
duration

Station
distr.

Obj.
func. (€)

Requests
serviced

Delay (min)

Policy SQ1 SQ2

Myopic D1 C 18,267 96.73% 3.0 4.6
S 18,306 96.63% 3.0 4.7

D2 C 17,628 92.66% 3.1 5.0
S 17,587 92.16% 3.1 5.0

No hiring 15,273 75.32% 3.2 5.0

VFA D1 C 18,869 98.80% 3.1 4.7
S 18,986 98.90% 3.0 4.7

D2 C 18,811 98.45% 3.1 4.7
S 18,809 98.43% 3.0 4.6

No hiring 17,442 89.25% 3.1 4.4

For the sake of comparison, the bottom line of each policy in both tables presents the
results achieved when hiring is not considered. As can be seen from Table 4.9, in the
no-hiring scenario the VFA policy can service about 18% more requests than the myopic
policy, besides providing lower pickup delays, especially for the SQ2 class.

Once hiring is enabled, over 90% of requests are picked up regardless of the policy
across all scenarios. However, substantial differences can be seen between the poli-
cies when different contract durations are considered. On average, we have found that
D1 contracts allow a surplus of about 6,000 more minutes of total fleet time than D2.
This extra time reflects positively on the platform profits and in the number of requests
serviced. While the average difference across station distribution between D1 to D2
contract durations is about 4 percentage points in the myopic policy, this difference is
less than 0.5 percentage points in the VFA policy. The same pattern can be seen on the
difference between SQ2 user pickup delays, which differ much dramatically across the
contract durations scenarios under the myopic policy. Hence, by better managing both
vehicle types, the VFA policy can sustain high service levels for all user bases, even under
a more restrict FAV availability. From a different perspective, FAV owners wanting to im-
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prove the odds of renting out their vehicles, have to set up service availability adequately,
such that the platform has enough time to rebalance and return these vehicles.

Moreover, as confirmed by the total fleet time breakdown in Table 4.10, FAVs tend
to stay idler under the proposed VFA policy. Although not highlighted by the objective
functions due to our low-cost setup, this characteristic is crucial for providers, especially
in the light of vehicle automation, when induced demand due to ease of use may play a
significant role. City managers are increasingly concerned about traffic, and proposals
for imposing congestion charges abound. Therefore, a platform owner is generally better
off using fewer vehicles, especially FAVs, which need to spend extra time returning to
their origin station. Ultimately, the proposed VFA policy can find a compromise between
service levels and vehicle activity, prioritizing the own fleet over outside hire to address
requests.
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Figure 4.12: Number of vehicles per status (parked, rebalancing, servicing passengers, and returning
to station) by one-minute step separated by fleet type for a single testing instance. The total number
of PAVs is constant throughout the whole time horizon, whereas the number of FAVs varies according
to a stochastic process.

Figure 4.12 further illustrates the impact of including 200 FAVs to service user base
A3 on a single testing instance. FAVs arrive according to the stochastic process FO

assuming contract duration scenario D2 and station distribution scenario S. It can be
seen that the vehicle/status distribution still resembles the results achieved by a PAV-only
fleet (see Figure 4.9), showing that the inclusion of FAVs does not disrupt the PAV-fleet
operation significantly. Since we assume 70% of the profits accrued by FAVs belong to
their owners, using FAVs returns fewer profits to the platform while inflicting similar
operational costs. That is the main reason why the service level improvement by hiring
vehicles (about 10% for the VFA policy) does not translate proportionally into the profits.
However, maintaining high service levels result in increased customer satisfaction, which
may improve the platform’s reputation and generate a higher turnover in the long run.
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Table 4.10: Comparison of the average fleet total time per status across all FAV availability scenarios considering the VFA and myopic policies.

Contract
duration

Station
distr.

Rebalancing Picking up Carrying Parked Returning

Policy PAV FAV PAV FAV PAV FAV PAV FAV PAV FAV

Myopic D1 C 0.49% 0.65% 13.56% 14.79% 31.39% 22.36% 54.57% 54.24% - 7.96%
S 0.52% 0.88% 13.60% 14.76% 31.46% 21.88% 54.42% 54.23% - 8.26%

D2 C 0.54% 1.10% 13.64% 21.89% 31.43% 26.06% 54.39% 38.91% - 12.05%
S 0.57% 1.65% 13.71% 21.69% 31.49% 25.38% 54.24% 38.29% - 12.98%

No hiring 0.75% - 14.17% - 31.82% - 53.25% - - -

VFA D1 C 8.14% 1.30% 15.08% 10.23% 31.53% 20.01% 45.25% 60.38% - 8.08%
S 7.34% 1.23% 14.90% 10.29% 31.61% 19.98% 46.15% 59.73% - 8.76%

D2 C 8.08% 1.31% 14.98% 13.10% 31.50% 24.08% 45.43% 51.15% - 10.35%
S 8.09% 1.12% 14.82% 12.48% 31.40% 24.23% 45.68% 50.88% - 11.29%

No hiring 8.57% - 15.25% - 31.28% - 44.90% - - -
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4.7 Conclusions

This chapter answers research sub-question SQ3. We propose a solution to control ser-
vice quality on an operational level using a learned-based optimization approach. We
introduce a model for a dynamic and stochastic dial-a-ride problem arising on an AMoD
platform that hires idle AVs to maintain consistent user service levels. Developing an ap-
proximate dynamic programming algorithm, we iteratively improve a policy to dispatch
and rebalance both platform- and third-party vehicles on a real-world street network of
Manhattan. The proposed policy deals with two seldomly considered sources of uncer-
tainty, namely, (i) the spatiotemporal distribution of user service level preferences and
(ii) the availability of third-party vehicles. While (i) allows providers to better address
heterogeneous user expectations by rebalancing more vehicles to areas featuring high
demanding users, (ii) enables the learning of routing policies that take into account
when, where, and how many third-party vehicles are expected to appear throughout
the planning horizon.

The proposed approach improves service quality for the ridesharing platform cus-
tomers in multiple ways. First, penalizing both excessive delays and rejections following
SLCs is shown to be an effective measure to increase the number of requests serviced.
Second, the policy learned by sampling the demand from a particular weekday was
shown to be generic enough to adequately address the demand patterns of all similar
weekdays throughout a whole year. Without any hiring, such a policy consistently out-
performs a reactive optimization policy, servicing on average about 18% more requests.
Moreover, although both policies manage to service most requests when hiring is con-
sidered, the proposed policy has been shown to do it more efficiently, using fewer FAVs,
and providing better service levels.

We conduct experiments on the historical Manhattan taxi demand considering a va-
riety of fleet and demand configuration scenarios. Using a baseline scenario featuring
only PAVs and homogeneous users, we define a hierarchical aggregation structure to
approximate value functions of unvisited states. Besides time and space, the proposed
layers also consider FAV-specific characteristics, such as contract duration and home
station location. In particular, the spatial hierarchical aggregation structure improves
existing configurations in which locations aggregate up to ad-hoc regions. We propose
a minimum set covering formulation to optimally determine regions whose nodes can
be accessed from a regional center within a maximal time limit. This formulation of-
fers a more robust and versatile approach to hierarchical spatial aggregation since it
automatically captures the peculiarities of any transportation network.

Optimal regional centers are also used to set up several rebalancing strategies, in
which vehicles can move to a subset of neighboring centers, determined through dif-
ferent maximal time limits. The obtained results show that rebalancing to short-range
regional centers allows vehicles to incrementally scape from perpetually low-demand ar-
eas, besides offering a good compromise regarding computational time. Since we adopt
short intervals, these rebalancing movements occasionally result in multiperiod travel
times (i.e., at decision time, vehicles are still acting on decisions from previous periods).
We show that by actively lowering VFAs of post-decision states of farther rebalancing
targets improves the performance of our solution for test cases with increasingly higher
rebalancing distances.
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Moreover, we develop a high-resolution state representation in which the spatial at-
tributes correspond to discretized GPS coordinates (rather than grids, zones, or areas)
and periods are no longer than one minute to comply with the demanding expectations
of current MoD users. Such characteristics prevent our policy from incurring into infea-
sible (concerning the infrastructure capacity) or illegal (concerning the city regulations)
decisions altogether in real-time. Ultimately, making use of the underlying street net-
work allows us not only to comply with real-world constraints but also improves the
solution quality. Our experiments demonstrate that constraining the maximum number
of vehicles inbound to each intersection is crucial to achieving stable VFAs, since these
constraints exempt us from modeling the behavior of nonlinear approximations.

This research can be extended in many promising directions. First, one could focus
on designing an inverse formulation to determine the minimum number of company-
owned vehicles necessary to complement third-party fleets available according to vary-
ing stochastic distributions. Second, the requirements of independent owners could take
into consideration alternative parameters. For example, they could establish minimum
profit margins or compensations to join ridesharing platforms. As a result, platforms
would have to consider these parameters to achieve balanced solutions, weighing cus-
tomer dissatisfaction and outsourcing costs. Additionally, by considering time travel
uncertainty, service quality contracts would have to be further adapted to compensate
users beyond the violations previously described. Ultimately, this uncertainty could lead
to service time window violations on the supply side, such that platforms could also
set up contracts prescribing compensations for inconvenienced FAV owners. Lastly, one
could also consider the impact of cities’ policies (e.g., congestion pricing, empty-vehicle
fees, parking costs, ride subsidization) on platform operations, such that vehicles are
steered to fulfilling overarching mobility optimization goals. This is the direction we
take in Chapter 4, where we investigate how subsidization and penalization policies can
steer vehicles to targeted areas, overriding natural rebalancing patterns arising from the
transportation demand.





Chapter 5

Overcoming mobility poverty

In chapters 3 and 4, we show how providers can optimize fleet utilization and vehicle
hiring in order to guarantee user service level requirements. Particularly in Chapter 4,
we demonstrate that regional service levels can be improved by applying anticipatory re-
location strategies that take into consideration when and where requests are more likely
to appear. The nature of transportation demand, however, invariably creates learning
biases towards servicing cities’ most affluent and densely populated areas, where alter-
native mobility choices already abound. As a result, current disadvantaged regions may
end up perpetually underserviced, therefore preventing all city residents from enjoying
the benefits of autonomous mobility-on-demand (AMoD) systems equally. In this chap-
ter, we extend the method presented in Chapter 4 to investigate how to overcome the
demand patterns naturally incorporated into value functions to improve service levels
of disadvantaged areas. We show for a case study on Rotterdam, the Netherlands, that
the proposed method can better cater to users departing from the city’s targeted areas,
substantially outperforming myopic and reactive benchmark policies.

This chapter is organized as follows. In Section 5.1 we describe the shortcomings of
current AMoD systems regarding service level distribution and in Section 5.2, we review
the most common service quality metrics. Next, we formulate the problem in Section 5.3
and present a solving strategy in Section 5.4. Then, Section 5.5 presents our experimen-
tal study, and Section 5.6 the results regarding the effectiveness of both subsidization
and penalization policies in rebalancing vehicles to targeted areas. Finally, Section 5.7
concludes the work and offers an outlook on the role of city managers in the deployment
of AMoD systems. Parts of this chapter have been published in [9]:

B. A. Beirigo, F. Schulte, R. R. Negenborn. Overcoming mobility poverty with shared autonomous vehi-

cles: A learning-based optimization approach for Rotterdam Zuid. In Proceedings of the 11th Interna-

tional Conference on Computational Logistics, pages 492-506, Enschede, the Netherlands, 2020.
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5.1 Introduction

Service levels of residents from different areas of a city can vary significantly due to an
uneven distribution of transport resources. Peripheral or low-income regions are typi-
cally more prone to suffer from accessibility poverty, that is, the difficulty of reaching
certain key activities (e.g., employment, education, healthcare) due to mobility poverty,
which is concerned with the systemic lack of transportation and mobility options [61].
Since low-income and mobility poverty are strongly correlated, offering sufficient trans-
portation choices to disadvantaged areas can ultimately improve social equity.

Shared autonomous vehicles (SAVs) and, more generally, autonomous mobility-on-
demand (AMoD) systems, offer an opportunity to overcome mobility poverty. Sharing
services reduce the cost of personal mobility once all expenses of purchasing, maintain-
ing, and insuring vehicles are distributed across a large user-base [98]. Recent research
has demonstrated that efficient SAV fleet management can help AMoD providers fulfill-
ing today’s transportation demand using much fewer vehicles. However, typical perfor-
mance measures fail to account for differences in demographics appropriately, lacking
nuanced equity implications [20].

Due to natural demand patterns or deliberate profit-seeking policies, SAVs can end
up re-enforcing existing inequalities by frequently moving to regions that are more prone
to generate higher profits. Such a preference for affluent regions can already be identi-
fied in the current transportation landscape, where mobility options (e.g., ride-hailing,
micro-mobility, ride-pooling, and transit) abound in cities’ central areas.

In this chapter, we propose an anticipatory relocation strategy to rebalance a fleet of
AVs to improve the mobility of targeted disadvantaged areas. Analogously to Chapter
4, this strategy consists of an approximate dynamic programming (ADP) algorithm that
uses demand data throughout an iterative process to derive value function approxima-
tions (VFAs). These lookahead approximations are then considered in the optimization
process to weigh the downstream impact of current decisions.

We illustrate our method using the case of Rotterdam, the Netherlands, where the
northern region (Rotterdam Noord) encompasses the entire city center, outperforming
the southern (Rotterdam Zuid) in a range of socio-geographical factors, such as income
and transport connectivity. To improve the mobility of the residents in the Zuid region
and ultimately their access to key activities, we investigate to which extent ride subsi-
dization and rejection penalties can contribute to overall fairness, adequately driving
vehicles to underserviced areas.

We consider a first-mile case study in which users request vehicles from a private
AMoD provider to access the closest train station (see Figure 5.1). This setup is par-
ticularly relevant for the deployment of mobility-as-a-service (MaaS) solutions, which
are based on the integration of different transport services. We show that a proper cost
scheme setup can overcompensate the rebalancing bias towards densely populated and
high-income areas improving mobility choices in underserviced areas. Ultimately, our
results help city managers to understand the cost of laying out equitable transportation
policies that balance providers’ profitability and the service levels of underserviced users.
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Figure 5.1: Rotterdam regions (Noord and Zuid) and the seven train stations that are the destinations
of all first-mile trips.

5.2 Related work

AMoD systems rely on rebalancing strategies to find a reasonable compromise between
asset utilization and user satisfaction. Supply and demand mismatches are typically ad-
dressed using ongoing imbalance cues (e.g., request rejections, idle vehicles) and pre-
dicted demand information (based on historical data). For example, Pavone et al. [79]
propose an optimal transport problem in which locations with a surplus of idle vehicles
continuously send empty vehicles to locations with a shortage of idle vehicles. Similarly,
Alonso-Mora et al. [2] present a reactive rebalancing approach that sends idle vehicles
to undersupplied areas, which are identified by the occurrence of unsatisfied requests.
Through a linear program, vehicles are assigned to the departure locations of these re-
quests, aiming to minimize the total sum of travel times. Later, Alonso-Mora et al. [3]
use past historical data to compute a probability distribution over future demand and
proposes an assignment algorithm to match vehicles to future requests. Fagnant and
Kockelman [34] relies on a rule to overcome supply-demand imbalances using a block-
based division operational map. For each block, they compare the supply of idle station-
ary vehicles versus the share of currently waiting travelers plus soon expected travelers
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in the near future (according to the block historical trip rate). Similarly, Chen et al.
[18] use a price-based strategy, encouraging trips originating in a cell with a surplus of
vehicles and penalizing trips originating in a cell with a deficit of vehicles.

Learning-based methods have also been successfully employed to enable anticipatory
rebalancing. Through a reinforcement learning (RL) framework, Wen et al. [115] train a
deep Q-network (DQN) using rewards based on waiting time savings of users picked up
due to rebalancing movements. Conversely, penalties are applied when vehicles remain
idle during the rebalancing period. Considering a grid map, they model states using
grid-wise idle-vehicle distribution, in-service vehicles, and predicted demand (based on
a Poisson process) in the surroundings. Gueriau and Dusparic [41] propose a decen-
tralized RL approach based on Q-learning. They show that agents (i.e., vehicles) can
contribute to global performance by learning how to optimize their own individual per-
formance with local information only. Lin et al. [58] also takes advantage of the RL
framework through a contextual multi-agent actor-critic (cA2C) algorithm. Their design
stands out due to two main features, (i) the adoption of centralized value functions
(shared by all agents), and (ii) context embedding that establishes explicit coordination
among agents. Iglesias et al. [48] design a model predictive control (MPC) algorithm
that leverages customer demand forecasts to rebalance vehicles. The forecasting model
is based on a long short-term memory (LSTM) neural network. Al-Kanj et al. [1] use
an ADP formulation that allows for anticipatory rebalancing and recharging of electric
vehicles. Their approach maximizes vehicle contribution over time, using value function
approximations to estimate the impact of each decision in the future.

Similarly to Al-Kanj et al. [1], we enable anticipatory rebalancing by using value
functions to steer vehicles towards high-demand areas. In contrast with all proposed
methods, however, we add nuance to service levels, acknowledging that users from dif-
ferent regions face distinct accessibility barriers to the transport system. Based on Lucas
et al. [62], we consider transport accessibility primarily in terms of availability and af-
fordability. Additionally, following Cohen and Cabansagan [20], our AMoD rebalancing
policy aims to complement public transit and redistribute transport resources towards
disadvantaged areas.

Table 5.1 summarizes the rebalancing literature aforementioned. References under
the first column are classified according to the rebalancing method, prediction mech-
anism, and performance metrics specially concerned with rider satisfaction under the
“Service quality metric(s)” column. For the sake of conciseness, alternative metrics (e.g.,
costs) as well as the typical service level achievement objective are left out of our com-
parison. Ultimately, from the user experience perspective, related literature focuses on
improving service levels (i.e., decreasing pickup and/or in-vehicle delays), whereas we
focus on increasing service rate (i.e., the ratio of serviced requests under minimum ser-
vice level requirements) throughout different regions.

5.3 Problem formulation

We model the problem using the language of dynamic resource management (see [1],
[94]), where AVs (resources) service a sequence of trip request batches (tasks) dynam-
ically revealed at discrete-time t ∈ {0,1, 2, . . . , T}.
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Table 5.1: Rebalancing methods, prediction mechanisms, and service quality metrics of MoD appli-
cations (“-” = absent).

Reference Rebalancing Prediction Performance metric(s)

Pavone et al. [79] ILP - PD
Alonso-Mora et al. [2] LP - ID, PD
Chen et al. [18] Rule - PD
Fagnant and Kockelman [34] Rule historical trip rate PD
Alonso-Mora et al. [3] LP probability distribution ID, PD
Wen et al. [115] RL Q-function, poisson process PD
Gueriau and Dusparic [41] RL Q-function ID, PD
Lin et al. [58] RL value function -
Iglesias et al. [48] MPC demand forecast PD
Al-Kanj et al. [1] ADP value function -
this chapter ADP value function RSL

Rebalancing: RL (Reinforcement Learning), MPC (Model Predictive Control), LP (Linear Programming), ADP
(Approximate Dynamic Programming)

Performance metric(s): ID (In-Vehicle Delay), PD (Pickup Delay), RSL (Regional Service Level)

We assume all requests arrive in batch intervals of five minutes, occurring within the
earliest time te = 6:00 and the latest time t l = 12:00. To ensure the system has enough
time to rebalance vehicles and deliver all users, we add thirty-minute offsets before te
and after t l , such that the total horizon T = 84 (i.e., 420/5).

The state of a single resource is defined by the attribute a representing the vehicle’s
location in the node-set N of G=(N , E), a strongly connected graph drawn from a section
of Rotterdam, the Netherlands. The city comprises six districts and 45 neighborhoods
from which we select 40 to exclude the peripheries, such that node and edge sets have
sizes |N |= 10,364 and |E|= 23,048, respectively (see Figure 5.1).

By including the temporal dimension to location a, we have at , or the location of an
SAV at time t. LetA be the set of all possible vehicle attributes. The state of all vehicles
with the same state attribute is modeled using

Rta = Number of vehicles with attribute a at time t,
Rt = (Rta)a ∈A = The resource state vector at time t.

Each request, in turn, is modeled using an attribute vector b comprised of origin and
destination attributes borigin, bdestination ∈ N . Let B be the set of all possible request
attribute vectors. The state of all rides with the same state vector occurring at time t is
modeled using

Dt b = The number of requests with attribute vector b at time t,
Dt = (Dt b)b ∈B = The request state vector at time t.

With the resource and request state vectors, we defined our system state vector
as St = (Rt , Dt). States St are measured before making decisions at each epoch t ∈
{0,1,2,3,. . . , T}. In this chapter, we consider each vehicle can realize three different
types of decisions, namely, service a single user at a time, stay parked in its current loca-
tion waiting to pick up users, and rebalance to a more promising location. Decisions are
described using
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dstay = Decision to stay parked in the current location,

DR = Set of all decisions d to rebalance (i.e., move empty) to a set of neighboring
locations,

DS = Set of all decisions d to service a user,

bd = Trip b ∈ B covered by decision d ∈ DS,

D = DS∪DR∪{dstay},
x tad = Number of times decision d is applied to a vehicle with attribute a at time

t,

x t = (x tad)a ∈A ,d ∈D .

The decision variables x tad must satisfy the following constraints:∑
d ∈D

x tad = Rta ∀ a ∈ A (5.1)∑
a ∈A

x tad ≤ Dt bd
∀d ∈ DS (5.2)

Constraints (5.1) and (5.2) guarantee flow conservation of vehicles and requests, respec-
tively. Once we aim to distinguish regions in N , we define U(a) : N→ L as a function that
maps each location a ∈ N to a discrete geographical area in L, with L= {Noord, Zuid}.
Applying a decision d to a resource with attribute a at time t generates a contribution
ctad , such that

ctad =



Service request

pa
base+ ptime ·∆ttrip− ctime ·

�
∆tpickup+∆ttrip

�
,

Rebalance to neighboring areas

− ctime ·∆trebalance,

Stay parked

0.

Contributions ctad of service, rebalance, and stay decisions are comprised of

pa
base = Base fare of trips departing from region U(a) ∈ L,

ptime = Time-dependent fare,

ctime = Vehicle time-dependent costs,

ca
penalty = Penalty for rejecting users from region U(a) ∈ L,

∆ttrip = Trip duration ∆t(borigin, bdest) of request b= bd .

∆tpickup = Pickup duration ∆t(a, borigin) from current location to trip b origin.

∆trebalance = Rebalance travel duration ∆t(a, r) to neighboring location r ∈ N .

Assuming contributions are linear, the contribution function for period t discounted
by the total rejection penalty is given by

Ct (St , x t) =
∑

a ∈A

∑
d ∈D

ctad x tad − P(St , x t), (5.3)
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where

Pt (St , x t) =
∑

b ∈B
c

borigin

penalty(Dt b−
∑

a ∈A

∑
d ∈DS

bd=b

x tad). (5.4)

Let Xπt (St) be a decision function that represents a policy π ∈ Π, which maps a state
St to a decision x t at time t. We aim to determine the optimal policy π∗ that, starting
from an initial state S0, maximizes the expected cumulative contribution, discounted by
a factor γ, over all the time periods:

F∗0 (S0) =max
π∈ΠE
¨ T∑

t=0

γCt
�
St ,X

π
t (St)
� |S0

«
. (5.5)

5.4 Algorithmic strategies

We address Equation (5.5) using the same algorithmic treatment presented in Chapter
4 (see Section 5.4). Therefore, in this section, we specifically describe the modeling of
the elements concerned with the problem at hand. In Section 5.4.1, we show how we
reduce the state space through hierarchical aggregation and in Section 5.4.2 we describe
the elements of our rebalancing strategy.

5.4.1 Hierarchical aggregation for value function estimation

As in Chapter 4, we aggregate the state space hierarchically using the method proposed
in [94]. We define three hierarchical levels experimentally, namely, 1, 2, and 3, that
aggregate states both in space and time. Spatially, the node set is aggregated in hexagon
bins of 0.17 km2, 0.46 km2, and 5.16 km2, resulting in 1,016, 198, and 38 bins, which
we integrate the location sets N1, N2, and N3, respectively (see Figure 5.2). Valid bins
cover at least one node of Rotterdam’s street network and are identified by the closest
node to their geographical center. As such, we assume that the travel time between two
bins is based on the shortest path between their corresponding center nodes at 20 km/h
speed. We aggregate temporally by increasing the length of the periods. We assume level
1 is the disaggregate five-minute period, whereas levels 2 and 3 correspond to ten- and
fifteen-minute periods, therefore totaling 42 and 38 periods, respectively. Ultimately,
the state-space size for each aggregation level declines from 85,344 to 8,316, and then
to 1,444.

5.4.2 Rebalancing strategies

Slicing the area of network G using a hierarchy of geometric shapes allows us to infer
a relation of proximity between nodes within the same region. We exploit this relation
by assuming vehicles are allowed to rebalance to the center of the surrounding hexagon
neighbors across all three hierarchical levels, totaling up to eighteen rebalancing options.
This way, vehicles can explore increasingly farther neighborhoods, insofar as rebalancing
targets become hexagon centers up in the spatial hierarchy.
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1     2    3

Levels

Figure 5.2: The three spatial aggregation levels set up for the Rotterdam area encompassing the street
network G. Starting from level 1, hexagon bins cover an increasingly higher number of locations of
the node-set N.

Similarly to Chapter 4, we prevent vehicles from flooding high demand locations by
bounding the number of vehicles they can accommodate. We consider that rebalancing
trips can take place only when the cumulative number of vehicles expected to arrive or
staying at node i ∈ N1 at time t, does not surpass a limit vmax.

5.5 Experimental study

The following sections describe the characteristics of our first-mile requests (Section
5.5.1), how we determine fleet size and distribute vehicles (Section 5.5.2), the cost
schemes we evaluate to drive vehicles to Zuid (Section 5.5.3), and present two alterna-
tive policies to benchmark our method (Section 5.5.4).

5.5.1 Demand configuration

Upon receiving a five-minute request batch, the system sets up available trip decisions
taking into account a pickup radius wpickup = 10 minutes. If users cannot be accessed
by any vehicle within wpickup, they are immediately rejected, having to resort to another
transportation means. Since we assume the AMoD system integrates a broader MaaS
ecosystem, a rejection means that the users will have to rely on alternative modes to
fulfill their trips. Hence, in the worst-case scenario, serviced users wait at most fifteen
minutes to be picked up. In the following, we describe the process we used to create a
series of spatiotemporal demand distribution scenarios.
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Spatial demand patterns

To generate r request departure points, we use a weighted random process to select an
origin neighborhood according to its relative population density using the Dutch census
[16]. Next, we use a regular random process to select a street node within this origin
neighborhood. We use this process to select 3,000 request origins, from which about
one-third end up within the Zuid region. Figure 5.3 presents the probability distribution
of selecting request origins across Rotterdam neighborhoods. Since we investigate first-
mile trips, destination points correspond to the closest train stations of each origin point.

Temporal demand patters

Regarding the time the requests arrive at the system, we propose five scenarios in which
we vary the demand patterns of residents departing from Noord and Zuid regions. We
consider that the number of requests always peaks at 8:00 for the residents of Rotterdam
Noord, whereas the number of requests originated in Rotterdam Zuid peak at 6:00, 7:00,
8:00, 9:00, and 10:00, leading to five request arrival scenarios labeled N8Z6, N8Z7,
N8Z8, N8Z9, and N8Z10. By varying the demand peaks in Zuid, we can investigate how
well the algorithm can distribute vehicles in the light of different levels of competition
with the Noord demand. Moreover, the relative position between Noord and Zuid peaks
allows us to assess the efficacy to which vehicles can move between regions in antici-
pation to demand. For instance, the earlier the demand peak in Zuid, the more time
vehicles will have to move from Zuid to Noord. Conversely, the later the demand peak,
the more time vehicles will have to move from Noord to Zuid. All these scenarios are
modeled using a normal distribution truncated by te and t l , with a standard deviation
of one hour and means equal to the demand peaks entailed by each region.

0.00
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Figure 5.3: Probabilities of choosing a departure location within each Rotterdam neighborhood based
on the part-to-whole ratio of the number or residents.
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5.5.2 Fleet configuration

We determine the fleet size following the model predictive control (MPC) algorithm pro-
posed by Iglesias et al. [48]. Their approach assumes perfect information throughout
the whole horizon and does not allow for delays, such that, at the end of each time step,
there is a sufficient number of vehicles to pick up all requests at each location. To de-
crease computation times, we assume that all trip origins and destinations are associated
with their respective third-level hexagon centers (38 in total). We have found that the
average fleet sizes achieved using the optimal MPC formulation across ten demand real-
izations for each demand pattern scenario range from 382.8 (N8Z10) to 499.9 (N8Z8).
The results also indicated that the closer the demand peaks of Noord and Zuid regions
are, the higher is the fleet size required. To deliberately create a scarcity scenario that
splits the vehicle workforce between the two regions, we carry out all experiments using
a 300-SAV fleet. At the beginning of each ADP iteration, we randomly distribute these
vehicles throughout level-one hexagon locations. Consequently, since Noord is broader
and more populated than Zuid, a service bias towards Noord will naturally emerge.

5.5.3 Cost schemes

We investigate the influence of six cost schemes on Zuid riders’ service rates by manip-
ulating both base fares and penalties. We refer to these schemes using the labels B1R0,
B4R0, B8R0, B1R1, B1R4, B1R8, where B and R correspond to the pbase and cpenalty
constants and the digits represent scaling factors. For instance, B1R0, B4R0, and B8R0
represent cost schemes in which the base fare pbase of Zuid users is one, four, and eight
times higher. Regarding the values adopted, we consider pbase = cpenalty = €2.5, time-
dependent fare ptime= 1€/km, and time-dependent operational costs ctime= 0.1 €/km.
Finally, we assume B1R0 is our reference cost scheme and use it for all Noord users.

5.5.4 Benchmark policies

We benchmark our ADP πVFA policy against two alternative policies, namely, πmyopic
and πreactive, in which no information about the future is available. Both policies aim
to maximize the cost function in Equation (5.3), but while πmyopic seeks only to deter-
mine the optimal vehicle-request assignment represented by Equations (5.1) and (5.2),
the πreactive policy relies on an additional vehicle rebalancing phase. The rebalancing is
based on the state-of-the-art algorithm proposed by Alonso-Mora et al. [2], which con-
sists of a linear program where idle vehicles are optimally rebalanced to under-supplied
locations. Ultimately, this program aims to minimize the total travel distance of reaching
the pickup locations of unassigned requests while guaranteeing that either all vehicles
or all requests are assigned.
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5.6 Results

We implemented our approach using Python 3.6 and Gurobi 8.1. Test cases were exe-
cuted on a 2.60 GHz Intel Core i7 with 32 GB RAM. For all case studies, we run our ADP
algorithm throughout 1,000 iterations, considering stepsizes α= 0.1, and maximum ve-
hicle count vmax= 5, which have been found to show good performance experimentally.
Since we aim to improve mobility for Zuid users, our analysis focuses mainly on the
service rate achieved for each region. Still, provided that users can be picked up timely,
delays are already bound to wpickup.

Table 5.2 presents the average service rates (across ten demand realizations) for
each policy π and cost scheme configuration. We separate the service rates between
users departing from each region to evaluate the effect of the proposed cost schemes on
driving vehicles towards Zuid. The results are subsumed under three categories, namely,
“Baseline”, “Base fare,” and “Rejection penalty.” The “Baseline” category comprises the
averages achieved using the myopic and reactive policies, which we use to benchmark
the performance of our learning-based method. As hypothesized, when equity concerns
are disregarded, service rates differ markedly between regions, being consistently higher
in Noord.

It can be seen from Table 5.2 that πreactive can already significantly improve the
service rate in Zuid, servicing about 10% more requests than πmyopic in all demand
scenarios. Since the reactive rebalancing policy relies on trip rejection stimuli to move
vehicles to undersupplied areas, the fleet is disproportionately driven to Zuid. However,
πreactive still leads to a moderate service bias towards the Noord region, regardless of
the demand scenario.

We separate the results of our proposed πVFA policy according to the main feature
entailed by each cost scheme. Hence, the figures subsumed under the “Base fare” and
“Rejection penalty” categories highlight the effect of scaling up fares and penalties, re-
spectively. It is worth noting that our πVFA policy performs better than the baseline
policies, even for cost scheme B1R0, in which no scaling is considered.

Table 5.2: Average ratio of serviced users departing from Noord and Zuid regions for each policy, de-
mand scenario, and cost scheme. Figures correspond to the mean average of ten demand distributions
over 3,000 requests.

Cost
scheme

Origin in Noord Origin in Zuid

Policy(π) N8Z6 N8Z7 N8Z8 N8Z9 N8Z10 N8Z6 N8Z7 N8Z8 N8Z9 N8Z10

Baseline (no penalties, default base fare)
myopic B1R0 .783 .788 .795 .790 .795 .637 .668 .688 .694 .682
reactive B1R0 .807 .846 .850 .852 .853 .778 .775 .783 .790 .773

Subsidization schemes
VFA B1R0 .926 .905 .908 .939 .963 .812 .876 .890 .904 .949

B4R0 .892 .870 .871 .903 .933 .888 .923 .944 .956 .967
B8R0 .883 .858 .828 .847 .925 .905 .946 .969 .976 .980

Penalization schemes
VFA B1R1 .903 .885 .886 .908 .949 .848 .919 .921 .935 .940

B1R4 .903 .848 .863 .892 .919 .881 .957 .948 .966 .968
B1R8 .874 .842 .812 .825 .899 .903 .961 .972 .956 .980
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The performance improvement is especially remarkable when demand peaks from
Noord and Zuid are far apart, for example, in scenarios N8Z6 and N8Z10. These sce-
narios provide enough time for vehicles to rebalance in anticipation from one region to
the other instead of reacting to imbalances on short notice. Moreover, during the thirty-
minute rebalancing offset previous to the requests’ arrival, vehicles also can harness the
value functions to reach areas where users are more prone to appear. This explains how
even the competitive scenario N8Z8 could benefit from using the πVFA policy.

To investigate the trade-off between profits and Zuid service rate, we average the
results of our VFA policy for each cost scheme over all the demand scenarios. Then,
we compare the schemes’ averages against the averages obtained for the reference cost
scheme B1R0. Average profits are determined in terms of base fare accumulation, con-
sidering the number of requests departing from each region and the ratios of serviced
users in Table 5.2. Cost schemes B4R0 and B8R0 lead to 104.8% and 249.6% higher
profits to service about 4.9% and 6.9% more Zuid users over B1R0. In contrast, cost
schemes B1R1, B1R4, and B1R8 incur 3.8%, 9.3%, and 16.7% losses compared to B1R0
average profit, to service about 2.6%, 5.8%, and 6.8% more Zuid users. For both cost
scheme categories, the results indicate that further scaling up incentives or penalties is
prone to diminishing returns once less and less service rate gains in the Zuid region can
be seen.

Throughout all instances considered, scenario N8Z6 has consistently presented the
lowest service rates. Since Noord starts with more vehicles than Zuid, and the demand
peak in Zuid occurs earlier, this scenario necessarily demands that vehicles move from
Noord to Zuid. With most requests happening at 6:00, most rebalancing operations have
to be performed within the rebalancing offset. Considering that vehicles can start from
remote parts of Noord, the results indicate that the thirty-minute offset is insufficient
to rebalance all necessary vehicles to Zuid adequately. As the demand peak in Zuid is
pushed forward (e.g., N8Z7), vehicles have more time to access Zuid user origins, and
service rates increase.

5.7 Conclusions

This chapter addresses research sub-question SQ4. In contrast with Chapter 2, where
we were concerned with guaranteeing that vehicles could physically access the whole
transportation network, in this chapter, we aim to improve people’s ability to access key
life opportunities through mobility systems. We presented a learning-based fleet rebal-
ancing method that determines a compromise between company revenues and social
equity between two distinct regions of Rotterdam, the Netherlands. Our anticipatory
rebalancing strategy caters to the needs of targeted regions, compensates for biases to-
wards more affluent and densely populated regions, and mitigates mobility poverty in
disadvantaged areas. Based on a range of cost schemes, we show the tipping point at
which cost manipulation can affect value function approximations enough to influence
the rebalancing process. Ultimately, our approximate dynamic programming algorithm
achieves superior service rates compared to myopic and reactive strategies, regardless
of cost scheme and demand scenarios considered.
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Our results illustrate how the public sector could work in tandem with private
providers to guarantee that new mobility solutions consider the patterns of disad-
vantaged populations. In this way, as mobility technologies develop, private market
innovation can be steered to achieve social equity goals, such as preventing mobility
poverty. It is worth noting, however, that adequately fulfilling such goals depends on
further policy making. Since the private sector is at the forefront of the development
of new mobility systems, the public sector could care for their deployment and has
to invest in incentives for the use of these systems in the broader scheme of city
transportation. For instance, new services could integrate existing MaaS frameworks,
complementing other transportation options (e.g., transit, walking, and cycling).

Future research will focus on designing equity-aware rebalancing strategies to in-
crease service rates based on alternative census tract information (e.g., age, gender,
income) rather than the departure location alone. Additionally, to improve the effec-
tiveness of location-based equity policies, regional transport accessibility can be further
investigated, for example, in terms of transit infrastructure, delays, and availability.

Up to this chapter, we focused on optimizing mobility service for passenger trans-
portation only. As a result, regardless of the optimization strategy used to improve fleet
productivity, vehicles will inevitably be idle at low-demand periods, most notably during
the early morning. Ultimately, fitting transportation services to a single type of demand
bounds providers’ profitability, making them inescapably dependent on this demand’s
particular patterns. However, once we consider the broader ecosystem AMoD systems
are expected to work in, alternative opportunities for deploying more flexible transporta-
tion systems arise. As cars become commodities and transportation systems increasingly
focus on offering high-quality rides, providers can explore more lucrative vehicle setups
that can accommodate different demand types. In Chapter 6, we model an AMoD system
where vehicles can handle both people and freight demands interchangeably. We show
that providers can improve profits by exploiting the intrinsic service quality requirement
differences between the two demand types.





Chapter 6

Integrating people and freight
transportation

Throughout the last chapters, we have demonstrated how AVs can fulfill user service
level requirements. So far, these requirements have been concerned with the needs of a
single type of commodity, namely, passengers. Their demand patterns alone dictate the
fleet productivity, invariably leading to suboptimal fleet utilization. In Chapters 3 and 4,
we already proposed strategies to remedy low fleet productivity. Instead of owning the
entire fleet, we showed that providers could rely partially or entirely on micro-operators,
that is, private AV owners. This chapter offers an alternative strategy to guarantee high
productivity, consisting of consolidating passenger and parcel flows. We focus on mod-
eling a variation of the people and freight integrated transportation problem in which
these commodities are pooled in mixed-purpose compartmentalized SAVs. Such vehi-
cles are supposed to combine freight and passenger overlapping journeys on the shared
mobility infrastructure network. Once parcels are more amenable to waiting, new op-
portunities to optimize fleet usage arise.

This chapter is organized as follows. Section 6.1 further motivates the consolida-
tion of different commodity flows and Section 6.2 formally describes the problem as the
share-a-ride with parcel lockers problem (SARPLP). Next, Section 6.3 offers a mathemat-
ical model for the problem and Section 6.4, presents an experimental study aiming to
compare the performance of single-purpose and mixed-purpose fleets. Then, Section 6.5
presents the results of our exact implementation and Section 6.6 provides concluding
remarks on the future of shared autonomous transportation of passengers and parcels.
Parts of this chapter have been published in [8]:

B. A. Beirigo, F. Schulte, and R. R. Negenborn. Integrating people and freight transportation using shared

autonomous vehicles with compartments. In Proceedings of the 15th IFAC Symposium on Control in

Transportation Systems, pages 392–397, Savona, Italy, 2018.
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6.1 Introduction

Improving fleet productivity has been an overarching concern of this thesis. Such con-
cern has led us to implement strategies to curb vehicle idleness, using both rebalancing
and fleet size inflation algorithms. Nevertheless, since passenger transportation demand
greatly varies throughout the day, any shared autonomous vehicle (SAV) fleet, hired or
not, would be inevitably idle during low-demand hours. In this chapter, we propose an
alternative strategy to make vehicle productivity less dependent on passenger demand
fluctuation. This alternative consists of a people and freight integrated (PFIT) system,
where transportation providers can use the same vehicles to fulfill both passenger and
parcel requests interchangeably.

Due to the growth of the e-commerce proportion in distribution channels, urban
goods’ demand tends to become more fragmented, unveiling a necessity for new logistic
approaches to deal with last-mile parcel deliveries [35]. For instance, Ford automaker
envisages an “autolivery” future in which self-driving vans are used to quickly transport
goods within a city but partnered with drones to realize the final leg of the journey [71].
Although some long-haul modes (e.g., aircrafts, ferries) already integrate passenger and
freight demands, short-haul integration is hardly observed in practice [89]. To the best
of our knowledge, integration on a ride-hailing setting was only explored in [55], [56],
and [57]. The authors describe the share-a-ride problem (SARP), a variation of the well-
known dial-a-ride problem (DARP), in which people and parcels can share the same taxi.
However, ridesharing is limited in their approach once each passenger request can only
share a ride with a single parcel request.

In contrast, we model a PFIT system in which both commodities (i.e., passengers and
parcels) are transported simultaneously by compartmentalized mixed-purpose SAVs. We
assume passenger compartments are private cabins tailored for human transportation,
whereas freight compartments can be parcel lockers of different sizes. Differently from
the SARP implementations previously mentioned, we consider all possible ridesharing
scenarios of people and freight requests. Hence, each vehicle is allowed to carry one or
more passengers, carry various sized parcels, and carry passengers and parcels. Finally,
to assess the performance of such mixed-purpose fleets, we compare them with equiva-
lent single-purpose fleets in which people and freight requests are handled separately.

6.2 Problem description
We consider a PFIT system comprised of mixed-purpose SAVs with compartments (i.e.,
shared vehicles equipped with people seats and parcel lockers). Next, we identify poten-
tial compartment types as well as the commodities they are supposed to accommodate:

S – Documents, small objects (e.g., jewelry, electronics);
M – Average sized objects (e.g., bags, purses);
L – Large objects (e.g., suitcases, groceries);
X – Extra-large objects (e.g., household appliances);
A – Adult seat;
C – Children seat (above 3 years of age);
B – Baby seat (under 3 years of age);

W – Wheel chair space.
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The set of human compartments is H = {A,C ,B,W} and the set of freight compart-
ments is F = {S, M , L,X }. We consider that passengers demand to be serviced on short
notice, and parcels have more flexible pickup and delivery times (i.e., they do not have
to be immediately addressed). For instance, an online store might determine a 24h de-
livery policy, whereas a restaurant might require a much shorter span. In this chapter,
we model a static formulation, where the details of both request types (e.g., number of
compartments, pickup/delivery coordinates, and time windows) are known in advance.
Still, pickup windows and travel delays are assumed to be much shorter for passenger
requests.

Regarding the fares of the transportation service, we consider that, besides time-
dependent fares, commodities are charged according to the number and type of compart-
ments requested. For freight transportation, for example, the cost can be proportional to
the dimensions of the compartments. Ultimately, to properly determine a service fare, a
request must include (i) the pickup and delivery coordinates and (ii) the number of units
required for a determined type of compartment. This information is essential during the
scheduling phase. Only vehicles whose available number of compartments match the
order specifications are suited to service a potential commodity transportation demand.

Theoretically, the problem can be modeled as a variant of the classic pickup and deliv-
ery problem (PDP), in which transportation requests consist of point-to-point transports
(i.e., movements of people or cargo between origins and destinations (ODs) [10, 104]).
According to Berbeglia et al. [10], depending on the way vehicles move between points,
such problems can be categorized as (i) many-to-many, (ii) one-to-many-to-one, and
(iii) one-to-one. In (i), any point can serve as a source or destination for any commod-
ity, whereas in (ii), commodities might be transported from the depot to the customers
and from the customers to the depot. Finally, in (iii), each commodity has a given origin
and a given destination, such as the door-to-door system presented in this chapter. Fig-
ure 6.1-a) highlights the differences from Li et al. [55] implementation, making explicit
the concept of compartmentalized requests.

Parcel request People request ODRoute

5 [3X]

2 [2X]

4 [2A]

6 [3A]

1 [1A]

3 [2A]

Mixed-purpose SAV
[5X-5A]

5 [3X]

2 [2X]

4 [2A]

6 [3A]

1 [1A]

3 [2A]

Mixed-purpose SAV
[5X-5A]

(a) (b)

Figure 6.1: Example of a PFIT system. (a) A mixed-purpose capacitated SAV must fulfill both people
and parcel requests. (b) Both request types are integrated into the same vehicle throughout the route.
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A mixed-purpose SAV comprised of five compartments of type “A” and five compart-
ments of type “X” (represented as 5X-5A) is supposed to find the best route to service a
set of six transportation requests (two parcels and four people). Besides the identifica-
tion number, each request also includes, between brackets, the number of compartments
of each type demanded. Figure 6.1-b) shows the resulting route from the problem pre-
sented in Figure 6.1-a). The occupancy status of the vehicle after visiting each point (in
terms of available compartments) is given by the sequence {1: 5X-4A, 3: 5X-1A, 1’: 5X-
4A, 3’: 5X-5A, 2: 3X-5A, 4: 3X-3A, 4’: 3X-5A, 6: 3X-2A, 6’: 3X-5A, 5: 0X-5A, 5’: 3X-5A,
2’: 5X-5A}. Assuming request IDs also indicate their order of appearance, one should
notice that the ridesharing route presented in Figure 6.1-b) privileges people demands,
occasionally postponing parcel demands.

6.3 Problem definition

We extend the MILP model presented by Li et al. [55] to define a pickup and deliv-
ery problem that can handle constraints involving our performance demands, vehicles’
specifications, and requests’ heterogeneity. Table 6.1 presents all the problem variables.
The share-a-ride with parcel lockers problem SARPLP is modeled on a directed graph
G= (N , E). The node set N is partitioned into {P, D,O}, where P = {1,2,. . . ,n} is the set
of pickup nodes and request indices, and D= {n+1,n+2,.. . ,2n} is the set of delivery
nodes. The set O comprises the origin nodes ok of vehicles k ∈ K . We consider that the
time spent by a vehicle k to go from node i to node j, with i, j ∈ N , is t i, j .

Each vehicle k is equipped with a set of compartment types c ∈ C , where C is the set
of all compartment types across the whole fleet. Transporting a compartment c from i to
j, generates a base fare pc

base and a time-dependent fare pc
time, while incurring in time-

dependent operational cost cc
time. For each compartment type c ∈ Ck, a vehicle k can

have a capacity Qc,k≥0. Since passenger and freight requests typically demand different
service levels, we further partition C into {F,H}, where F and H correspond to freight
and human compartment sets, respectively. Loading and unloading a compartment c ∈
C is associated to delays ωc

load and ωc
unload.

Requests consist of transportation demands of commodities between origin destina-
tion pairs (i,n+ i), with i ∈ P and n+ i ∈ D. These commodities can be accommo-
dated by compartment types c ∈ C , such that qc

i ≥ 0 represents the requested num-
ber of compartment types c. To guarantee an adequate flow of commodities, compart-
ment demands are associated with all nodes in N . We let qc

i = −qc
i−n, ∀i ∈ D, and

qc
ok = 0 ∀k ∈ K ,∀c ∈ C . A delay di is spent to load/unload cargo at node i ∈ N . If

i ∈ P, di =
∑

c ∈ C qc
i ·ωc

load and if i ∈ D, then di =
∑

c ∈ C qc
i ·ωc

unload.
All request nodes i ∈ P ∪D have time windows defined by earliest arrival time ei

and latest departure time li . For i ∈ P, ei is the time the request appears in the system
whereas li = ei+δi , where δi is the maximum pickup delay. For j ∈ D, e j = e j−n+d j−n+
t j−n, j and l j = l j−n+d j−n+ t j−n, j+∆ j , where ∆ j represents the maximum ride delay.
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The decision variable xk
i, j is 1 when vehicle k ∈ K traverses arc (i, j) ∈ E and the

variableωk
i is the load of a vehicle k upon leaving node i ∈ N . The ride delay of request

i ∈ P in vehicle k is defined by variable ∆k
i and the time at which vehicle k arrives at

node i ∈ N is given by the variable τk
i .

Table 6.1: Sets, parameters, and variables of the SARPLP.

Sets

K Vehicles
H Human compartments
F Freight compartments
C = H∪ F
P Pickup nodes and request indices
D Delivery nodes
O Vehicle origin nodes
N = P∪D∪O

Parameters

Compartments

pc
base Base fare of compartment c

pc
time Time-dependent fare of compartment c
ωc

load Loading delay of compartment c
ωc

unload Unloading delay of compartment c

Requests

ei Earliest time at node i
li Latest time at node i
δi Maximum pick-up delay of request i
∆i Maximum in-vehicle delay of request i
di Cumulative load/unload delay at node i
qc

i Number of compartments c requested by i

Vehicles

ok Origin node of vehicle k
Qc,k Number of compartments of type c ∈ Ck of vehicle k ∈ K
ck
time Average operational cost/s (fuel, tolls, etc.) of vehicle k

Distances

t i, j Travel time between nodes i and j, ∀i, j ∈ N

Variables

xk
i, j (Binary) 1 if vehicle k traverses arc (i, j), 0 otherwise

τk
i Arrival time of vehicle k at node i
∆k

i Ride time of request i in vehicle k
ω

c,k
i Load of compartment c ∈ Ck of vehicle k after visiting node i ∈ N
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To streamline the solution space, we define the set of valid vehicle-node combina-
tions

Q = {(k, i) | k ∈ K , i ∈ N , Qc,k ≥ |qc
i |,∀c ∈ C},

where each tuple (k, i) indicates that a vehicle k can completely accommodate all com-
partment demands associated to node i. In turn, the set of valid movements, where each
vehicle k can traverse arc (i, j), is given by

X = {(k, i, j) | k ∈ K , i, j ∈ N , (k, i) ∈ Q, (k, j) ∈ Q}.
The formulation of the SARPLP is as follows:

Maximize:∑
k ∈ K

∑
i ∈ P

∑
c ∈ C

(pc
base+ pc

time · t i,n+i) ·qc
i · xk

i,n+i − ∑
(k,i, j)∈X

ck
time · t i, j · xk

i, j (6.1)

Subject to:∑
(k,i, j)∈X

xk
i, j ≤ 1 ∀i ∈ P (6.2)

∑
(k,i, j)∈X

xk
i, j =
∑

(k,i,n+ j)∈X
xk

i,n+ j ∀k ∈ K , ∀ j ∈ P (6.3)

∑
(k, j,i)∈X

xk
j,i ≤
∑

(k,i, j)∈X
xk

i, j ∀k ∈ K , ∀ j ∈ D (6.4)

τk
j ≥ (τk

i + t i, j+di)x
k
i, j ∀(k, i, j) ∈ X (6.5)

ei ≤τk
i ≤ li ∀i ∈ N (6.6)

∆k
i =τ

k
n+i− (τk

i +di) ∀i ∈ P (6.7)

t i,n+i ≤∆k
i ≤ t i,n+i+∆i ∀i ∈ P (6.8)

ω
c,k
j ≥ (ωc,k

i +q j)x
k
i, j ∀(k, i, j) ∈ X , ∀c ∈ C (6.9)

ω
c,k
i ≥max{0, qc

i } ∀(k, i) ∈ Q,∀c ∈ C (6.10)

ω
c,k
i ≤min{Qc,k, Qc,k+qc

i } ∀(k, i) ∈ Q,∀c ∈ C (6.11)

xk
i, j ∈ {0,1} ∀(k, i, j) ∈ X (6.12)

ω
c,k
i ∈ N ∀(k, i) ∈ Q,∀c ∈ C (6.13)

τk
i ,∆k

i ∈ N ∀(k, i) ∈ Q (6.14)
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The objective function (6.1) maximizes the total profit obtained from the commodity
delivery revenue minus the operational cost of the active vehicles. Constraints (6.2)
guarantee there is at most one arc leaving every pickup point (i.e., service denial is
allowed in this formulation). Next, constraints (6.3) guarantee that vehicles visiting
request pickup nodes must also visit their associated delivery nodes. Constraints (6.4)
impose that every vehicle arriving at a delivery node can either stay or leave from it.
The minimum arrival time of each vehicle k at a node j is imposed by constraints (6.5).
This time corresponds to the sum of the arrival time of the previously visited node i,
the cumulative loading time at i, and the travel time from i to j. In turn, constraints
(6.6) enforce pickup time windows. Constraints (6.7) defines the ride time a commodity
spends inside a vehicle, whereas constraints (6.8) ensure in-vehicle delay tolerances are
respected. Next, Constraints (6.9), (6.10) and (6.11) ensure consistency of vehicle’s
compartment loading. Finally, model variables are defined in constraints (6.12), (6.13)
and (6.14).

6.4 Experimental study

We conduct a numerical study considering various experimental settings and instances
to determine the benefits of different fleet compositions. In particular, we focus on the
performance assessment of fleets comprised of mixed-purpose vehicles, whose internal
space is divided among freight and people compartments, and fleets composed of single-
purpose vehicle compartments dedicated to a specific class of commodity.

When creating the instance scenarios, our ultimate goal was to provide insights on
how distinct factors concerning particular characteristics of vehicles and requests may
influence the model’s outcome. We focus especially on (i) the number of vehicles used
to address the requests, (ii) the overall profit gleaned during the fleet’s operation, and
(iii) the overall occupancy level. Regarding (iii), we assume the occupancy level of a
single vehicle is proportional to the share of time and number of loaded compartments
occupied throughout the entire operational route (i.e., from the dispatching moment
until the delivery of the last customer). Hence, for a particular instance, the overall
occupancy level consists of the average occupancy levels of all vehicles actually involved
in the solution (i.e., dispatched from their origins).

SARPLP general operational settings

Table 6.2 presents the compartment-related parameters, which are shared by across
all instances. We consider the transportation of “A” and “X” compartments, assuming
they have similar dimensions and fares. Further, we consider that each vehicle can be
equipped with ten of these compartments and service costs ck

time =0.005 €/s, ∀k ∈ K .
Regarding the pickup and in-vehicle delays, we consider that passengers demand to be
picked up within three minutes and tolerate up to a ten-minute in-vehicle delay. In
contrast, freight requests are more flexible, allowing a one-hour time window to be
picked up and a five-hour in-vehicle delay. Additionally, we set the delays for embarking
and disembarking passengers to one minute and loading and unloading parcels to five
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Table 6.2: Compartment parameters settings.

Passengers Parcels

Parameter Value Parameter Value

H {A} F {X}
δA 3 min δX 1h
∆A 10 min ∆X 5h
ωA

load 1 min ωX
load 5 min

ωA
unload 1 min ωX

unload 5 min
pA

base 16 € pX
base 16 €

pA
time 0.0016 €/s pX

time 0.0016 €/s

minutes. Two fleet compositions are considered. In single-purpose vehicle fleet com-
positions, half of the vehicles are equipped with “A” compartments and the other half
with “X” compartments. In contrast, in mixed-purpose vehicle fleet compositions, every
vehicle has five “A” and five “X” compartments.

Transportation scenario settings

We define a series of parameters to generate a number of scenarios where many fleet
and request aspects are taken into consideration, namely:

1. Number of requests and fleet size – We consider nine combinations of number of
requests n and fleet sizes |K |, with |K | ∈ {4,8,16} and n ∈ {8,16,32}.

2. Share of freight requests – For each request set of size n, we check the influence
of the proportion of freight requests on the model outcome. Ride-hailing demand
typically varies throughout the day, and this may also be the case of freight de-
mand. To further investigate the differences in handling these two commodity
types, we consider freight requests may correspond to 25%, 50%, and 75% of the
requests.

3. Interval between requests – In real-world, large-scale transportation systems, many
new requests may occur every second. In contrast, in smaller systems or less busy
scenarios, intervals between requests might be longer. Let [il , iu] be the range of
possible integer intervals (in minutes) between requests. We investigate two pos-
sible interval ranges: 1) [0,0] (i.e., no interval between requests) and 2) [5,10].

4. Range of trip distances – We investigate small-distance trips, ranging from 0.5km
to 1km, and long-distance trips, ranging from 5km to 10km.

5. Compartment demand per request – The number of compartments associated with
a single request can be either low (≤ 50% of available vehicle compartments) or
high (≥50% of available compartments).

For each fleet composition (single-purpose or mixed-purpose), a total of 216 scenar-
ios are generated from the combination of the parameters investigated (summarized in



6.5 Results 135

Table 6.3). We run each scenario considering three different spatial distributions of ve-
hicles and requests, resulting in 1,296 instances (2 fleet compositions × 3 geographical
distributions × 216 scenarios). Each distribution is randomly created based on the ODs
present on the requests from a different time window of the taxi dataset from Manhat-
tan, New York. We sample vehicle origins from the set of request origins and requests
from the set of ODs whose distance required to cover the trip is within the scenario’s
range. Finally, we extract travel times between vehicle and request locations from the
Mapbox Matrix API (www.mapbox.com) using the driving profile.

Table 6.3: Summary of scenarios’ parameters.

Parameter Values

Number of vehicles |K | {4,8,16}
Number of requests n {8,16,32}
Share of freight requests {25%,50%,75%}
Interval between requests {[0,0],[5,10]}
Range of route distance {0.5km-1km, 5km-10km}
Compartment demand/request {low(≤ 50%), high(≥ 50%)}
Fleet composition {single-purpose, mixed-purpose}

6.5 Results

Test instances were solved on an Intel Core i7, 2.30GHz CPU, 16GB RAM computer.
Gurobi 7.0.2 Python interface was used to implement the SARPLP model, and the max-
imum runtime of each instance was set to ten minutes.

Table 6.4 presents the results achieved for both fleet compositions (i.e., mixed-
purpose and single-purpose). We only consider the instances where the MIP gap
is lower than 1%, such that we can draw more accurate conclusions on the fleet’s
performance. As a result, both fleet compositions are ultimately assessed over 149
scenarios (i.e., about 30% of the scenarios with non-optimal solutions were discarded).
For each combination of fleet size |K | and number of requests n, we present for each
fleet composition the number of vehicles dispatched in the solution (#Veh.), the
occupancy rate (Occ.) of these vehicles, and the total profit. In the last columns, we
indicate the number of scenarios whose instances could be optimally solved to calculate
the averages presented.

Mixed-purpose fleets have been found to reach superior results in 92% of the in-
stances tested, having profits, on average, 12.3% higher than single-purpose fleets.
However, the additional profits come at a cost. On average, 18% more mixed-purpose
vehicles must be assigned, resulting in a 22.5% lower occupancy rate. Nevertheless,
from the perspective of fleet operators, who want to make the most of their assets, idle-
ness is acceptable only when it does not harm profitability. It is also worth mentioning
that since we are dealing with a static setting, all people and freight demands are known
in advance. This way, single-purpose vehicles can be timely dispatched to service each
type of commodity request. However, when mixed-type demands occur dynamically,
single-purpose vehicles may miss several opportunities to address overlapping human
and freight routes.
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Table 6.4: Average results of SARPLP instances for each fleet composition.

Mixed-purpose Single-purpose
N. of

scenarios|K | n Occ.(%) #Veh. Profit(€) Occ.(%) #Veh. Profit(€)
4 8 28.5 3.4 253.6 34.7 2.7 224.6 24

16 27.8 3.7 465.4 39.7 3.2 375.0 17
32 29.6 4.0 731.5 42.7 3.3 551.6 8

8 8 29.3 4.3 273.8 33.5 3.6 260.7 24
16 27.6 6.1 542.7 33.3 5.4 504.7 17
32 25.7 7.1 972.0 31.8 6.3 861.0 8

16 8 30.0 4.8 294.4 33.2 4.3 275.8 24
16 29.4 8.4 590.7 33.7 7.4 566.5 18
32 27.9 11.4 1,074.9 30.7 10.2 1,010.1 9

Table 6.5: Profit breakdown of mixed-purpose and single-purpose fleets.

Mixed-purpose Single-purpose
Profit

increase|K | n Revenue(€) Cost(€) Revenue(€) Cost(€)
4 8 290.7 37.0 256.92 32.35 13%

16 528.9 63.5 423.62 48.63 24%
32 825.0 93.5 620.72 69.11 33%

8 8 310.8 36.9 296.08 35.41 5%
16 610.0 67.4 565.54 60.86 8%
32 1087.7 115.7 971.22 110.20 13%

16 8 330.0 35.6 310.77 35.00 7%
16 651.4 60.7 625.97 59.48 4%
32 1,156.6 81.7 1,093.53 83.39 6%

This phenomenon commonly arises in busy scenarios, where the fleet capacity is in-
sufficient to service requests adequately. In these scenarios, service will inevitably be
denied to a larger share of the demands, with vehicles seeking to fulfill the most prof-
itable set of requests while keeping low operational costs. Table 6.5 makes this relation
more explicit, compiling the average revenue and costs for both fleet compositions, as
well as the profit increase. The busier the logistical scenario, the higher is the superiority
of the average profit of mixed-purpose fleets over single-purpose fleets. This relation can
be particularly verified for the four-vehicle instances, where mixed-purpose fleets reach
13%, 24%, and 33% higher revenues when servicing 8, 16, and 32 requests, respectively.
For this small fleet size scenario, it can also be verified that profits are greatly influenced
by the increase in revenues, which far surpasses the increase in the operational costs.
On the other hand, both fleet compositions exhibit similar performance for larger fleet
sizes once virtually every request can be privately serviced by a vehicle.

6.6 Conclusions

This chapter answers research sub-question SQ5. We proposed a MILP formulation
to deal with a variation of the people and freight integration transportation problem,
in which mixed-purpose SAVs service both passenger and parcel requests. We assess
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whether dividing internal vehicle spaces among these commodities is financially ad-
vantageous for a fleet operator. Our results have shown that fleets of mixed-purpose
vehicles can accrue more profits than their single-purpose counterparts. In this novel
setting, overlapping people and freight itineraries can be further combined to design
more efficient routes. Nevertheless, although we have tested many different scenarios
with varied characteristics, the results are still highly dependent on the general param-
eters assumed. For instance, the adoption of different compartment fares could create a
bias towards a specific commodity. Alternatively, higher operational costs could drive to
solutions where farther requests are not worth attending. Hence, future research shall
be focused on striking a balance between these factors to provide a sensible range of
parameter options for fleet operators.





Chapter 7

Conclusions and future research

This thesis addresses the challenges entailed by the dynamic fleet management of shared
autonomous vehicles in a range of logistical scenarios. The underlying motif pervading
all chapters is a concern with service quality, especially in terms of responsiveness, re-
liability, privacy, and accessibility. Service quality is crucial for user acceptance and,
ultimately, widespread adoption, a prerequisite to enabling the benefits entailed by a
sharing paradigm. To this end, we have proposed dynamic and stochastic methods that
cater to heterogeneous user preferences while improving fleet utilization in a variety of
transportation settings. In this chapter, we summarize our conclusions (Section 7.1) and
contributions (Section 7.2), and provide an outlook on future research (Section 7.3).

7.1 Conclusions

This thesis aimed to answer the main research question:

RQ: How can AMoD systems leverage supply and demand information as well as cities’
infrastructure to balance the goals of all mobility stakeholders?

In Chapter 1, we defined five research sub-questions, which were subsequently ad-
dressed through Chapters 2-6. In Section 7.1.1, we summarize the answer to these
questions, and in Section 7.1.2, we present how the main research question is answered
across chapters from the perspective of each stakeholder.

7.1.1 Answers to sub-research questions

SQ1: How can fleet operators deal with the operational restrictions arising in the early
stages of AV deployment?

In Chapter 2, we developed a mixed-integer programming model for AMoD providers
operating on hybrid transportation networks, comprised of mixed autonomous and non-
autonomous vehicle zones. Our model allows providers to choose the optimal fleet size
and mix to cover the entire demand under a range of AVZ deployment factors, such

139
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as automation cost depreciation, intra- and inter-zone demand patterns, and automated
driving network coverage. In particular, we analyze the adoption of dual-mode vehicles,
consisting of vehicles driven manually (outside AVZs) and autonomously (inside AVZs),
therefore capable of servicing any request. We show that the request demand patterns
are the most critical parameter driving up the number of dual-mode vehicles. Once the
cost of operating dual-mode vehicles is the highest (the provider has to pay a driver over
the AV technology), our findings stress the necessity of deploying AVZs that reflect the
user demand patterns to avoid zone crossing. Hence, in the early stages of AV technology
deployment, providers may find it beneficial to work in tandem with cities to deploy AVZs
that can ultimately alleviate congestion, improve accessibility, and minimize operational
costs.

SQ2: How can AMoD systems guarantee service quality, in terms of responsiveness, relia-
bility, and privacy, while improving fleet productivity?

In Chapter 3, we introduced a new class of fleet management problems where AMoD
providers are no longer limited to static fleet sizes, increasing and decreasing the num-
ber of vehicles in the short term to meet diversified user expectations. In turn, these
expectations are the basis for establishing service quality contracts whereby heteroge-
neous users can choose ride experiences that best match their preferences (e.g., waiting
times and willingness to share). Since fully honoring these contracts may sometimes be
onerous, our proposed method allows providers to steer the vehicle supply to first ser-
vice the highest priority or most profitable customer segment. This way, providers are
better equipped to make a compromise between avoiding service level violations and hir-
ing extra vehicles, according to the particular conditions of an operational environment
(e.g., availability of idle vehicles, hiring costs, user dissatisfaction costs). Regardless of
the compromise chosen, however, our method is shown to guarantee that hiring occurs
only to the extent that it preserves minimum service level requirements. Using a lex-
icographic method, we solved a multi-objective function where the primary goal is to
minimize rejections (i.e., the most significant source of inconvenience) to subsequently
minimize fleet size and then service-level violations. We have formalized the problem
using a MILP formulation and proposed a matheuristic to assign vehicles to new requests
optimally. Based on an experimental study using New York City taxi data, we have found
that the developed approach allows us to significantly improve the service quality of all
considered user categories. By enforcing the proposed service-level constraints, we can
meet the expectations of 85.7% of the users across classes, a 53% average increase in
comparison to conventional ridesharing systems. Additionally, when hiring is enabled,
we can meet the expectations of 95.6% of the user requests, at the expense of a mild fleet
inflation (a maximum surplus of 168 FAVs is observed at the evening demand peak).

SQ3: How can AMoD systems explore the stochastic information surrounding privately-
owned vehicle supply and heterogeneous demand?

In Chapter 4, we propose an approximate dynamic programming algorithm to the
stochastic information related to both privately-owned vehicle supply and heteroge-
neous demand composition. Our approach rebalances and hires vehicles in anticipation
of transportation demand, positioning the fleet at promising locations according to the
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user distribution. We show that the policy learned by sampling the demand from a
particular weekday is generic enough to adequately address the demand patterns of
all similar weekdays throughout a whole year. Without any hiring, such a policy could
consistently outperform a reactive optimization policy, servicing on average about 18%
more requests. Although both policies manage to service most requests when hiring
is considered, the proposed policy has been shown to do it more efficiently, using
fewer FAVs, and providing better service levels. Additionally, we provide a detailed
experimental study on the performance of a range of fleet repositioning strategies that
combine both long- and short-range rebalancing targets, also consisting of regional
centers. To deal with multiperiod resource-transformation times, we propose a dis-
count mechanism to dampen post-decision states’ value functions, allowing vehicles
to consider varying rebalance ranges. This mechanism has been shown to perform
well and can be an option to typical formulations that add an extra attribute to the
resource attribute vector to account for arrival times at destination locations. Also,
since we consider a realistic transportation network, our method allows city managers
to exert greater traffic control by limiting the maximum number of vehicles inbound to
each intersection. Experimentally, we show that doing so can improve value function
approximations, leading to better quality solutions. Moreover, we propose a novel
method to define spatial aggregation levels based on the facility location problem. Our
method can harness high-granularity street networks’ properties to summarize locations
in increasingly broader regional centers. From these centers, vehicles can access a set
of neighboring locations within a set amount of time that ultimately can be tuned to
reflect user service levels.

SQ4: How can cities steer providers towards achieving equity goals?

In Chapter 5, we show that cities can make operators’ goals converge to improve equi-
table access to transportation. Since transport accessibility is a precondition to achieving
other life opportunities, our approach ultimately allows cities to improve social equity.
We propose an approximate dynamic programming algorithm to rebalance vehicles to
targeted city regions where accessibility is assumed to be lacking. We investigate the ex-
tent to which incentives to reach these regions can alter the natural rebalancing biases
arising from the transportation data. This way, cities could, for example, increase ser-
vice levels of disadvantaged regions without having to manage or owning transportation
assets.

SQ5: How can AMoD systems handle passenger and cargo demands interchangeably to
improve fleet productivity?

In Chapter 6, we propose a MILP formulation to model the operation of versatile mixed-
purpose SAVs able to deal with both passenger requests and parcel loads interchange-
ably. Our experiments suggest that consolidating different commodity flows in the same
vehicles can lead to further profits, compared to handling them separately, using tradi-
tional single-purpose vehicles. The advantages of using mixed-purpose fleets are even
more pronounced in busy scenarios, where additional people and freight overlapping
itineraries are likely to be matched, therefore increasing providers’ productivity.
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7.1.2 Answer to research question

In Chapter 1, we identified four stakeholders, namely, users, AMoD providers, indepen-
dent AV owners, and cities. In the following, we answer the research question from
the perspective of each stakeholder, describing how their needs were addressed across
chapters.

Users

Our first priority has been set to fulfilling the needs of heterogeneous users in terms of
responsiveness, reliability, privacy, and accessibility. First, Chapter 2 covers the trans-
port accessibility aspect from a mobility perspective, allowing providers to physically
reach request ODs in the early stages of vehicle automation where autonomous and
non-autonomous zones may co-exist. Chapters 3 and 4 are dedicated to fulfilling user
service quality expectations through the implementation of strict service quality con-
tracts. These contracts allow users to further personalize their ride experience by let-
ting them to choose precisely the expected minimum service quality requirements and
be compensated accordingly when these are not fulfilled. Further, Chapter 5 proposes
strategies to improving equitable access to transportation, enabling users from different
areas to enjoy the benefits of AMoD systems. Next, in Chapter 6, we consider the require-
ments of freight transportation requests. Since parcels are more amenable to waiting,
we show that platforms can improve fleet utilization by servicing them interchangeably
with people requests.

AMoD providers

Providers’ goals are inextricably linked to users’ goals once revenue maximization de-
pends on building customer loyalty, which, in an AMoD setting, is directly related to
meeting users’ service quality expectations. Hence, for providers, the goal has been
set to meeting these expectations while designing cost-efficient routes, improving fleet
utilization, and minimizing hires. We show for different AV development stages how
providers can employ heterogeneous vehicle fleets to fulfill a diverse set of user require-
ments. Starting from Chapter 2, we show how providers can thrive in the transition
phase of vehicle automation, determining the fleet composition necessary to operate in
various AV deployment scenarios. Next, in Chapter 3, we demonstrate how adopting
SQCs can add nuance to the standard user performance indicators. On the one hand,
SQCs let users bargain minimum service quality requirements with providers and be
compensated when violations occur. On the other hand, providers can enjoy greater
leeway in route creation by exploiting personalized user requirements (e.g., tolerance
delays, privacy preferences). Chapter 4 proposes a formulation where providers go the
extra mile to satisfy user needs by compensating users for contract breaches. We show
these compensations, which are penalties from the provider’s perspective, can improve
fleet utilization, increasing the effectiveness of our anticipatory rebalancing algorithm.
Lastly, Chapter 6 shows how providers can make use of fleet downtime even further by
addressing two commodity types, leveraging their different service quality requirements
to enable extra ridesharing options.
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Independent AV owners

From the perspective of independent owners, their vehicles are supposed to accrue the
highest possible revenue throughout the time they are available to work. In this thesis,
we assumed providers do not impose a minimum revenue threshold, that is, idle vehicles
are always better off by picking up requests. In Chapter 3, we focused solely on examin-
ing the impact of fleet elasticity. We assumed that privately-owned AVs were scattered
throughout the city and readily available in sufficient numbers to spontaneously join the
working fleet. In Chapter 4, we contemplated more realistic AV owner preferences. We
considered a fixed supply of freelance AVs was distributed throughout the city following
a stochastic process. Our approached accounts for a series of owner preferences, such
as the announcement time at the AMoD system, the availability period, and the origin
location.

Cities

From the perspective of city managers and traffic authorities, our work proposes several
ways of using city infrastructures smartly. We consider that these stakeholders aim to
reduce urban congestion and improving accessibility. In Chapter 2, we specifically eval-
uate the effect of deploying AV-ready zones on fleet management strategies. Chapter
3 addresses the major causes of increased congestion due to AMoD systems’ operation,
namely, the excessive number of vehicles and inefficient fleet management. We explic-
itly aim to minimize fleet size, ensuring providers can pick up users adequately without
having to own large fleets. In Chapter5, we integrate street network infrastructural limi-
tations to our rebalancing algorithms, making sure vehicles are prevented from flooding
intersections. Our method is general enough to deal with time-dependent parking costs
and congestion pricing, such that the proposed learning algorithm can be trained to con-
sider city constraints. Lastly, in Chapter 6, we present a model for integrating people and
freight flows, therefore increasing transportation efficiency due to cargo consolidation
and reducing the need for single-purpose vehicles.

7.2 Contributions of the thesis

This thesis addresses the challenges entailed by deploying AMoD systems in a range of
logistical scenarios. In summary, our contributions are the following:

• In Chapter 2, we propose a mathematical model for managing autonomous and
non-autonomous vehicles in a heterogeneous network where the infrastructure is
partially ready to accommodate automated operations. Parts of this chapter have
been published in:

B. A. Beirigo, F. Schulte, and R. R. Negenborn. Dual-mode vehicle routing in mixed autonomous

and non-autonomous zone networks. In Proceedings of the 21st International Conference on

Intelligent Transportation Systems (ITSC), pages 1325–1330, Maui, HI, United States, 2018.

• In Chapter 3, we consider a fully autonomous setting, where an AMoD provider
aims to meet user expectations fully. To overcome the limitations related to fixed-
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size models, we consider fleet size elasticity, a feature whereby providers can use
idle privately-owned AVs (hired on short notice) to sustain service quality. To
minimize hirings while improving user experience, we propose a multi-objective
matheuristic that uses a lexicographical method to hierarchically address a series
of objectives. Parts of this chapter have been submitted to:

B. A. Beirigo, F. Schulte, and R. R. Negenborn. A business class for autonomous mobility-on-

demand: Modeling service quality contracts in ridesharing systems. Submitted to a journal.

• In Chapter 4, we build upon Chapter 3 by considering the stochastic nature inher-
ent to the distribution of requests and the availability of privately-owned vehicles.
We harness this stochasticity to propose an anticipatory optimization approach
using an approximate dynamic programming framework to manage a heteroge-
neous fleet of company- and privately-owned AVs. Parts of this chapter have been
submitted to:

B. A. Beirigo, F. Schulte, and R. R. Negenborn. A learning-based optimization approach for au-

tonomous ridesharing platforms with service level contracts and on-demand hiring of idle vehicles.

Transportation Science (in press, 2021).

• In Chapter 5, we investigate service quality from a city-wide perspective, where
the ultimate goal is to guarantee even access to mobility across different regions
of the city. We propose an approximate dynamic programming algorithm to an-
ticipatorily distribute vehicles to targeted areas, where they service the first-mile
requests of disadvantaged populations. Parts of this chapter have been published
in:

B. A. Beirigo, F. Schulte, R. R. Negenborn. Overcoming mobility poverty with shared autonomous

vehicles: A learning-based optimization approach for Rotterdam Zuid. In Proceedings of the

11th International Conference on Computational Logistics, pages 492-506, Enschede, the Nether-

lands, 2020.

• In Chapter 6, we propose a mathematical model for a people and freight inte-
grated transportation system, where passenger and parcel demands are handled
interchangeably by a fleet of compartmentalized AVs. Parts of this chapter have
been published in:

B. A. Beirigo, F. Schulte, and R. R. Negenborn. Integrating people and freight transportation using

shared autonomous vehicles with compartments. In Proceedings of the 15th IFAC Symposium on

Control in Transportation Systems, pages 392–397, Savona, Italy, 2018.
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7.3 Future research

In this section, we describe future research directions related to enabling more robust
and versatile AMoD systems.

7.3.1 The edge of crowdsourced AMoD systems

In Chapters 3 and 4, we investigate the benefits of fleet size elasticity, a capability already
used at large by current TNCs but still overlooked in the AV fleet management research.
We considered idle freelance privately-owned AVs could occasionally join a company-
owned AV fleet to sustain user service quality expectations, especially at high-demand
times. As pointed out by Campbell [14], there are enough incentives for future AV own-
ers to simultaneously own and share their vehicles on ridesharing platforms, such that a
future where vehicle supply is crowdsourced from multiple sources, rather than a single
fleet owner, is likely to happen. In such a sharing-dominant future, an AMoD provider
relying on company- and private-owned AV fleets could aim to find the minimum fleet
size able to complement the available supply at crowdsourced vehicles, which unfolds
dynamically and stochastically throughout the day. Hence, in contrast with traditional
fleet sizing methods that use the transportation demand to determine the fleet size, in
this scenario, demand and third-party-owned AV supply would be used to determine
an adequate minimum fleet size. Further, by considering that privately-owned vehicles
have heterogeneous preferences regarding minimum workload or profits, formulations
could also weigh vehicle acquisition costs in the timeline of AV development and ex-
pected increase of the AV fleet.

7.3.2 Distributing accessibility based on fine-grained indicators

In Chapter 5, we proposed an approach to overcome mobility poverty by improving
transport accessibility for disadvantaged users departing from low-income areas.
However, by adopting more refined accessibility indicators (e.g., [111]), cities could in-
strumentalize AMoD systems to implement more robust plans to distribute accessibility
over different regions and demographics. Through detailed demand (e.g., itineraries,
social-economic profile) and supply (e.g., mode availability, schedule) information,
learning-based fleet management approaches could be tuned to fix both structural
or time-dependent accessibility shortcomings. As technology develops and AV rides
become more affordable, subsidizing AMoD transportation to evenly improve city
residents’ mobility may eventually become the best measure.

7.3.3 Learning-based parking and curbside management strategies

Since AVs do not have to necessarily park in the vicinity of the traveler [101], scheduling
and routing strategies of mobility services may be adjusted to make use of this feature.
Owners can make substantial savings if AVs opt for parking in central/urban areas or
suburban locations over central business districts [59], a trajectory change in future
parking demand validated in a simulation study by Zhang and Wang [122]. However,
cruising for parking and increased curbside usage may also incur underlying costs for
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AV owners and cities. The former must weigh out parking-related costs, additional fuel
expenditure, and longer delays, whereas the latter may suffer from increased traffic due
to empty vehicle driving and curbside parking-induced congestion. Hence, AVs may
have to account for a range of spatial- and time-dependent factors such as advanced
congestion pricing, empty vehicle cruising fees, curbside loading/unloading fees, traffic
delays, and parking availability. Modeling the details and stochasticity entailed by this
rich operational scenario can be a significant step in implementing realistic AV fleet
management strategies.

7.3.4 Scheduling maintenance and cleaning

The acceptance rate of AVs is known to be highly dependent on consumer’s safety per-
ception. When compared with regular vehicles, AVs rely on a greater number of hard-
ware and software components, and the slightest inaccuracy on them might result in
fatal events. Hence, a fleet owner must schedule regular maintenance appointments
to guarantee all elements empowering autonomous technology work effectively while
operating. Moreover, unless self-cleaning methods are developed and/or strict usage
norms are established, vehicles would also require frequent cleaning. Additionally, due
to rising concerns regarding the spread of infectious diseases, the demand for sanitation
measures could further increase. The experience with taxi and public transportation has
shown that some passengers litter, smoke, spill food and drinks, spit, bring pets, and in
some cases vandalize vehicles [59].

7.3.5 Modular autonomous vehicle (MAV) ecosystem

Modular autonomous vehicles (MAVs) consist of a conceptual vehicle design that allows
the separation of upper and lower parts. This design allows for flexible operation and
efficient asset utilization, once a generic lower part, or platform, can handle both passen-
gers and parcels throughout the day, provided that the upper part, or body, is swapped
accordingly and timely. Such setup creates an entirely new ecosystem comprised of
diverse body types, platforms, and swapping facilities, where parts are switched and
stored.

This ecosystem builds upon the solution presented in Chapter 6, where a transporta-
tion provider aims to minimize the operational costs of servicing both passenger and
parcel requests. This setting can be expanded in many interesting directions. For exam-
ple, one could consider the optimal facility deployment and size as well as heterogeneous
swapping delays (i.e., the time required to outfit a platform with a new body) at each fa-
cility. Alternatively, a scenario featuring body and platform independence could also be
investigated. In this scenario, one could assume that autonomy capabilities are embed-
ded in the lower part only, with upper parts coming from different suppliers, giving birth
to a new crowdsourced market. For instance, due to hygiene concerns (in the shadow
of pandemics) or for convenience’s sake, some passengers could own personal pods and
demand from operators independent lower parts to pick them up.



7.3.6 Demand-tailored fleet composition 147

7.3.6 Demand-tailored fleet composition

As an immediate consequence of the AV fleet elasticity model, providers have the chance
to configure fleets to precisely reflect the demand preferences. For instance, in Chapter
3, we showed that most hired third-party vehicles joined the platform to service users
belonging to the high-priority service quality class, consisting of the shortest delays and
private rides. In a scenario of disseminated ownership, it is likely that vehicles, or vehicle
bodies, differ markedly in their built and available features. Hence, besides leveraging
third-party vehicles’ stochastic distribution to decide where and when to hire (as done
in Chapter 4), providers can also decide which vehicle types best fulfill the demand
needs at a given time. This decision is crucial when independent owners can stipulate
their leasing preferences and cities impose further AV operation restrictions (e.g., empty-
driven distances, parking rates). Moreover, considering the MAV ecosystem described
in Section 7.3.5, tailoring fleet composition according to historical demand patterns
becomes even more flexible. Stochastic information about the availability of bodies
and platforms, as well as the working capacity of facility centers, could be exploited to
anticipatorily outfit vehicles, creating a time-dependent fleet configuration that reflects
future demand states.
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Glossary

List of symbols and notations

Below follows a list of the most frequently used symbols and notations in this thesis
divided by the modeling approach.

DARP variants

k Vehicle index
i, j Node/request indices
n Total number of requests

C Set of SQ classes or compartments
H Human compartments
F Freight compartments
K Vehicles
P Pick-up nodes and request indices
P c Pickup nodes and request indices of SQ class c
D Delivery nodes
O Origin nodes ok of vehicles k
N = P∪D∪O
E Set of edges (i, j)∀i, j ∈ N
G Graph with node set N and edge set E
Q Valid visits (k, i) for vehicle k and node i
X Valid rides (k, i, j) for vehicle k between nodes i and j
L Vehicle types and driving modes
Z Discrete street network locations
Zi, j Shortest path between locations i and j in Z

mk Type of vehicle k
ok Origin node of vehicle k
ek Contract start time of vehicle k
lk Contract end time of vehicle k
Qk Capacity of vehicle k
pk

base Base fare for attending a passenger using vehicle k
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pk
time Time-dependent rate for attending passenger using vehicle k

ck
time Time-dependent operational cost of vehicle k

σc Service-level enforcement rate of SQ class c
wc

pickup Expected max. pickup delay of users in SQ class c
wc

tolerance Total delay tolerance of users in SQ class c
ρc (Binary) 1 if SQ class c does not allow ridesharing, 0 otherwise

pc
base Base fare of compartment c

pc
time Time-dependent fare of compartment c
ωc

load Loading delay of compartment c
ωc

unload Unloading delay of compartment c

di Service duration at node i
qi Number of passengers of request i
qc

i Number of compartments c requested by i
wpickup Maximum pickup time delay
wride Maximum ride time delay
ei Earliest time at node i
li Latest time at node i
ci SQ class of request i
qc

i Number of compartments c requested by i

t i, j Travel time from node i to node j
tm
i, j Travel time from node i to node j in mode m ∈ L

xk
i, j (Binary) 1 if vehicle k traverses arc (i, j) 0 otherwise

yi (Binary) 1 if user i service level is achieved, 0 otherwise
τk

i Arrival time of vehicle k at node i
δi Pickup delay of user i
∆k

i In-vehicle delay of user i in vehicle k
ωk

i Load of vehicle k after visiting node i

Matheuristic

Z∗ Regional centers of street network locations Z
KPAV Company vehicles
KFAV

t Hireable vehicles at time t
KH

t Vehicles hired at time t
KP

t Parked vehicles at time t
P k Passengers (picked up requests) of vehicle k
Rk Assigned requests (non picked up) of vehicle k
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S k Node itinerary of vehicle k
vk Visiting plan {P k,Rk, S k} of vehicle k
V k

R Candidate visiting plans where k is in the rebalancing state
V k

S Candidate visiting plans where k is in the servicing state
vk

idle Candidate visiting plan where k is in the idle state
V k Feasible visiting plans V k

S ∪V k
R ∪{vk

idle} for vehicle k
V Visiting plans

⋃
k ∈ K
V k in ERTV graph

Vi Visiting plans in V including request i
V SL

i Visiting plans in V that meet request i target SL
PA Requests previously assigned to vehicles
Bt Request batch placed in period t
Pt = Bt ∪ PA

P c
t Requests in Pt of class c

O∗t Origins ok ∈ Z∗ of hired vehicles KH
t

PU
t Pickup nodes of service-level violated requests at time t

Jt Rebalancing targets O∗t ∪ PU
t

γhire Hiring penalty
γsl Service-level violation penalty
γreject Rejection penalty
κ Round duration
lk Contract deadline of vehicle k
T Total time horizon
s Maximal hiring delay

hk (Binary) 1 if vehicle k ∈ KFAV
t is hired, 0 otherwise

xv (Binary) 1 if visiting plan v is chosen, 0 otherwise
yi (Binary) 1 if service level of request i is achieved, 0 otherwise
zi (Binary) 1 if request i is rejected, 0 otherwise
δiv Pickup delay of user i in visiting plan v
∆v Delay sum of all requests in visiting plan v
∆c

v Delay sum of class c requests in visiting plan v
ac Number of service-level violations in class c

Approximate Dynamic Programming

N Set of nodes (locations)
N g Set of hexagon bins covering nodes in N at level g
E Set of directed edges (streets)
L Discrete geographical area comprising nodes in N
U(.) Function that maps each location in N to an area in L
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a Resource attribute vector
a′ Post-decision attribute
ka Vehicle k with attribute a
b Demand attribute vector
bd Demand associated wit decision d
d Decision vector
t Time period
t ′ Post-decision time
T Time horizon

A Set of all possible resource attribute vectors
B Set of all possible demand attribute vectors
T Set of time periods

Rta N. of vehicles with attribute vector a at time t
Rt = (Rta)a ∈A The resource state vector at time t
Rx

t Post-decision resource vector

Dt b The number of trips with attribute vector b at time t
Dt = (Dt b)b ∈B The request state vector at time t
Dx

t Post-decision demand vector

dstay Decision to stay parked in the current location
dreturn Decision to return to the station (FAV only)
DR Set of all decisions to rebalance
DS Set of all decisions to service a user
DS

c Subset of decisions in DS with service quality c ∈ C
Da, j Decisions leading vehicles ka to post-decision locations j
D Set of all decisions

x tad Number of times decision d is applied to ka at time t
x t Decision vector at time t

St = (Rt , Dt) System state vector
Sx

t Post-decision state vector

aM Transition function (attribute a to a′)
SM (.) Transition function (state St to St+1)
SM ,x (.) Transition function (state St to Sx

t )
δa′ (.) Transition function equals to 1, if aM (a,d) = a′, and 0, otherwise

R̂t FAVs entering/leaving the system between t−1 and t
D̂t Requests placed between t−1 and t
Wt = (R̂t , D̂t) Exogenous information arriving between t−1 and t
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β k Platform profit margin when using vehicle k
pc

base Base fare of request quality class c
ptime Time-dependent fare
ck
time Time-dependent operational cost of vehicle k

cc
delay Penalty due to the excess delay wdelay

wdelay Excess pickup delay of user from class c
c t, j
stay Cost of staying at location j at time t

Ct Total profit function at time t
Pt Total penalty function at time t

∆ttrip Request trip duration
∆tpickup Request pickup duration
∆trebalance Rebalance travel duration
∆treturn FAV return to station travel duration

g Level of aggregation
G Set of hierarchical aggregation levels
ta(g) Time t and attribute vector a at level g
(T ×A )(g) Space T ×A at the g th aggregation level
Gg(ta) Hierarchical aggregation function returning ta(g) given ta and g
w(g,n)

ta Weight put on approximations vta at level g and iteration n�
σ2

ta

�(g,n)
Variance of estimate v(g,n)

ta�
µ
(g,n)
ta

�2
Aggregation bias

v̂n
ta Samples drawn from a at time t and iteration n

vn
ta Value function approximation of a at time t and iteration n

Vt(.) Value function around St

V t(.) Value function approximation around Sx
t

n ADP algorithm iteration
I Number of iterations
γ Discount factor
αn Stepsize at iteration n
α Constant stepsize (McClain’s rule)

π Policy
Π Set of potential decision functions
S Set of feasible states
Xt Set of feasible decisions at time t
Xπt (.) Decision function representing a policy π that maps St to x t
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Facility location

x j 1, if a facility is located at j ∈ N , 0 otherwise
t i, j Travel time between nodes i, j ∈ N
s The maximal service delay of a vehicle departing from a facility
Np,s Subset of locations able to reach location p ∈ N within s time units

List of abbreviations

ACC Adaptive cruise control
AD Automated driving
ADP Approximate dynamic programming
AMoD Autonomous mobility on demand
AMoD-H Autonomous mobility on demand with hiring
AV Autonomous vehicle
AVZ Autonomous vehicle zone
B&P Branch and price
cA2C Contextual multi-agent actor-critic
CPU Central processing unit
CV Conventional vehicle
CVRP Capacitated VRP
CVZ Conventional vehicle zone
DAR Dial a ride
DARP Dial-a-ride problem
DD Dynamic and deterministic
DQN Deep Q-network
DS Dynamic and stochastic
DSDARP Dynamic and stochastic dial-a-ride problem
DSVRP Dynamic stochastic VRP
DTRP Dynamic traveling repairperson problem
DV Dual-mode vehicle
DVRP Dynamic VRP
ERTV Extended request trip vehicle
ETA Estimated time of arrival
FAV Freelance autonomous vehicle
FMS Fleet management system
GPDP General pickup and delivery problem
GPS Global positioning system
GRASP Greedy randomized adaptive search procedure
HDARP Heterogeneous dial-a-ride problem
HVRP Heterogeneous fleet VRP
ICT Information and communication technology
ID In-vehicle delay
LP Linear programming
LSTM Long short-term memory
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MAV Modular autonomous vehicle
MDSDDARP Multi-depot site-dependent dial-a-ride problem
MILP Mixed-integer linear programming
MIP Mixed-integer programming
MoD Mobility on demand
MPC Model predictive control
NS Neighborhood Search
OD Occasional drivers
OD Origin and destination
PAV Platform-owned autonomous vehicle
PD Pickup delay
PDP Pickup and delivery problem
PFIT People and freight integrated transportation
RAM Random access memory
RC Regional center
RL Reinforcement learning
RR Request request
RSL Regional service level
RTV Request trip vehicle
RV Request vehicle
RVRP Rich vehicle routing problems
SAE Society of automotive engineers
SAMoD Shared autonomous mobility on demand
SARP Share-a-ride problem
SAV Shared autonomous vehicle
SD Static and deterministic
SDVRP Site-dependent vehicle routing problem
SQC Service quality contract
SS Static and stochastic
TNC Transportation network company
TOD Transportation on demand
TS Tabu search
TW Time window
VFA Value function approximation
VKT Vehicle kilometers traveled
VOTT Value of travel time
VRP Vehicle routing problem
VRPPD VRP with pickups and deliveries
VRP-SL Vehicle routing problem with service levels
VRPTW VRP with time windows
WIMSE Weighting by inverse mean squared errors





Samenvatting

Autonome voertuigen (AV’s) zijn de sleutel tot een toekomst van gedeelde mobiliteit
waarin vervoer efficiënter, gemakkelijker en goedkoper is. Het ideaalbeeld van een AV-
utopie kan echter alleen werkelijkheid worden als de meerderheid van de gebruikers
erop vertrouwt dat autonome systemen voor vraaggestuurde mobiliteit (AMoD, Auto-
nomous Mobility-on-Demand) als de kwaliteit van de dienstverlening op hetzelfde ni-
veau is in vergelijking tot het bezit van een eigen voertuig. Aangezien de perceptie van
kwaliteit zeer subjectief is, stellen wij een meer gepersonaliseerde benadering van mobi-
liteit op aanvraag voor, waarbij gebruikers op basis van hun wensen in kwaliteitsklassen
voor vervoersdiensten worden ingedeeld. Deze klassen omvatten minimumeisen zoals
responsiviteit en privacy, waardoor wij een reeks gebruikersprofielen kunnen modelle-
ren die geformaliseerd zijn aan de hand van strikte kwaliteitscontracten voor vervoers-
diensten. Door deze contracten na te leven, kunnen aanbieders het vertrouwen van de
gebruikers winnen en hun loyaliteit versterken, wat op grotere schaal kan bijdragen tot
een snellere overgang naar een toekomst met gedeelde mobiliteit.

In deze dissertatie wordt een reeks strategieën gepresenteerd die de kwaliteit van
de dienstverlening garanderen in alle operationele scenario’s die zich voordoen in de
tijdlijn van de invoering van AV-technologie. De eerste maatstaf voor de kwaliteit van
de dienstverlening bij autonoom vervoer is de veiligheid. Tijdens een overgangsfase
naar volledige automatisering zal de exploitatie van AV waarschijnlijk worden beperkt
tot gebieden waar een veilige exploitatie is gegarandeerd, wat leidt tot de vorming van
hybride wegennetten die bestaan uit autonome en niet-autonome voertuigzones. Naast
de veiligheid is dekking de maatstaf om de kwaliteit van de dienstverlening te kunnen
beoordelen. Dit is ingewikkeld omdat de mobiliteitsdiensten toegang moeten hebben
tot gebieden die wel en gebieden die niet klaar zijn voor AV’s. In deze dissertatie wor-
den dan ook oplossingen voorgesteld om de uitdagingen te overwinnen die een dergelijk
overgangsscenario met zich meebrengt, waarbij infrastructuren, regelgevende maatre-
gelen en AV-technologie zich geleidelijk ontwikkelen.

Ervan uitgaande dat wijdverspreid geautomatiseerd rijden de nieuwe status quo is,
zijn we begonnen met het modelleren van rijke autonome transportscenario’s die be-
staan uit heterogene gebruikers en voertuigen. Centraal in deze analyse staat het vinden
van een goed evenwicht tussen de omvang van de vloot en de kwaliteit van de dienstver-
lening. In traditionele AMoD-systemen kunnen aanbieders beperkt in de mogelijkheden
om ontevredenheid bij de gebruikers te voorkomen, dit is vooral een kwestie van een
ruim aanbod van voertuigen creeren. Wanneer de vraag groter is dan het aanbod, krij-
gen gebruikers onvermijdelijk te maken met langere vertragingen of zelfs weigeringen,
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wat uiteindelijk leidt tot het verlies van vertrouwen in de dienst. Deze tekortkomin-
gen zullende toekomstige vervoerssystemen echter alleen parten spelen als het bepalen
van de omvang en samenstelling van de vloot een strategische beslissing blijft. In te-
genstelling tot de meeste verwante literatuur, onderzoekt deze dissertatie een verspreid
AV-bezitscenario, waarbij rittendeelplatformen af en toe beschikbare AV’s in privébezit
op aanvraag kunnen huren. In dit scenario kunnen klanten tegelijkertijd AV’s bezitten en
delen, een opzet die beter lijkt op de werking van de huidige transportnetwerkbedrijven
(TNC’s, Transportation Network Companies), die volledig afhankelijk zijn van micro-
operators. Als gevolg daarvan kunnen AMoD-systemen het aanbod van voertuigen op
korte termijn vergroten of verkleinen, waardoor de vlootomvang wordt verschoven naar
het operationele planningsniveau.

Bovendien moet het systeem, in overeenkomst met andere vervoerswijzen, rekening
houden met een gediversifieerd gebruikersbestand met uiteenlopende verwachtingen
met betrekking tot de kwaliteit van de dienstverlening. Deze opzet geeft aanbieders
meer speelruimte om de vertragingstoleranties van verzoeken te onderzoeken en zo ef-
ficiënte routes te ontwerpen. Om de verwachtingen van de gebruikers in evenwicht te
brengen en een overaanbod van voertuigen te vermijden, stellen we een multi-objectieve
matheuristiek voor die dynamisch AV’s van derden huurt om aan de vraag te voldoen.
Onze aanpak vormt een aanvulling op de recente literatuur door aanbieders in staat
te stellen prioriteit te geven aan verschillende klantensegmenten, naast het kiezen van
de precieze afweging tussen het voldoen aan de behoeften van elk segment en het in-
huren van extra voertuigen. Op die manier kan het optimalisatieproces bij een tekort
aan voortuigen de oplossing voor het afstemmen van de ritten sturen in de richting van
de verzoeken van de gebruikers, in volgorde van belangrijkheid (bv. het meest lucra-
tieve eerst). Om het maximum te halen uit de momenteel werkende voertuigenwordt er
ook een herpositioneringsalgoritme ontwikkelt dat de disbalans tussen vraag en aanbod
herstelt door de schendingen van het serviceniveau van de gebruikers als stimulans te
gebruiken.

Om anticiperende besluitvorming mogelijk te maken, integreert dit proefschrift de
stochastische informatie over zowel het aanbod van AV in privébezit als de heterogene
passagiersvraag in het vlootbeheerproces. Wij stellen een zelflerende optimalisatieaan-
pak voor die gebruik maakt van de duale variabelen van het onderliggende toewijzings-
probleem om de marginale waarde van voertuigen op elk tijdstip en elke locatie itera-
tief te benaderen onder verschillende beschikbaarheidsinstellingen. Deze benaderingen
worden op hun beurt gebruikt in de minimalisatiefunctie van het optimalisatieprobleem
om de effecten af te wegen van herdistribueren, herbalanceren en het incidenteel inhu-
ren van voertuigen. Door gebruik te maken van de historische kennis over zowel vraag-
als aanbodpatronen tonen wij aan dat AMoD-systemen aanzienlijk beter zijn toegerust
om aan de behoeften van de gebruikers te voldoen, met als bijkomend voordeel dat zij
niet noodzakelijk grote AV-vloten hoeven te bezitten.

Doorgaans versterken strategieën voor vlootbeheer op basis van leerprocessen de
vooringenomenheid in de vraaggegevens, waardoor ze vaak in de richting gaan van de
meest welvarende en dichtbevolkte gebieden van steden, waar reeds veel alternatieve
mobiliteitskeuzes bestaan. Hoewel lucratief voor de aanbieders, druist deze strategie
van vlootbeheer in tegen een bredere doelstelling van de stad om de bereikbaarheid
evenredig te verdelen over alle regio’s en bevolkingsgroepen. Om de vertekeningen in
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de vraag te compenseren, onderzoeken we in welke mate een beleid van tariefsubsidies
het leerproces kan sturen in de richting van het sturen van voertuigen naar bepaalde
regio’s waar de bereikbaarheid onvoldoende is. Onze resultaten suggereren dat beleids-
makers, door een adequaat systeem van stimulansen te gebruiken, vervoerders kunnen
aansporen om niet alleen de lucratieve keuze te maken, waardoor AV’s worden gebruikt
voor evenredig verdeelde mobiliteit.

Ten slotte, zodra we strategieën hebben ontworpen die de doelstellingen van steden,
onafhankelijke eigenaars, vlooteigenaars en gebruikers in evenwicht brengen, richten
we ons op een andere aanpak om de productiviteit van het wagenpark in stedelijke
omgevingen te maximaliseren. Hoe efficiënt een vlootoptimalisatiemethode ook kan
zijn, door AV’s te beperken tot één soort goederen (d.w.z. mensen), wordt het vlootge-
bruik en bijgevolg de winst beperkt door de vraagpatronen van de passagiers. Naarmate
de autonome technologie evolueert, ontstaan er echter nieuwe mogelijkheden om het
gebruik van mobiliteitsmiddelen te verbeteren. We eindigen dit proefschrift met een
model voor een veelzijdig transportsysteem waar gecompartimenteerde AV’s voor ge-
mengde doeleinden zowel passagiers als goederen tegelijk kunnen vervoeren. Met de
groei van e-commerce en leveringen op dezelfde dag, biedt onze aanpak een uitgangs-
punt om meer flexibele korteafstandsintegratiesystemen te bestuderen om passagiers-
en goederenstromen te consolideren.





Summary

Autonomous vehicles (AVs) have been heralded as the key to unlock a shared mobil-
ity future where transportation is more efficient, convenient, and cheaper. However,
the AV utopia can only come to fruition if the majority of users trust that autonomous
mobility-on-demand (AMoD) systems are on a par with owning a vehicle in terms of
service quality. Once the perception of quality is highly subjective, we propose a more
personalized approach to on-demand mobility, in which users are segmented into service
quality classes. These classes comprise minimum requirements regarding responsiveness
and privacy, allowing us to model a series of user profiles formalized using strict service
quality contracts. By honoring these contracts, providers can build users’ trust and gain
their loyalty, which on a grander scheme can contribute to a faster transition to a shared
mobility future.

This thesis presents a series of strategies to guaranteeing service quality throughout
operational scenarios arising in the timeline of AV technology deployment. First, a pre-
condition to providing service quality in autonomous transportation is safety. During a
transition phase to full automation, AV operation will likely be restricted to areas where
safe operations are guaranteed, leading to the formation of hybrid street networks com-
prised of autonomous and non-autonomous vehicle zones. In this setting, meeting user
service quality expectations is primarily a matter of coverage, once mobility services
will have to access both AV-ready and not AV-ready areas. Accordingly, this thesis pro-
poses solutions to overcome the challenges entailed by such a transition scenario, where
infrastructures, regulatory measures, and AV technology are gradually evolving.

Then, assuming that widespread automated driving is the new status quo, we set out
to model rich autonomous transportation scenarios comprised of heterogeneous users
and vehicles. Central to our analysis is finding an adequate tradeoff between fleet size
and service quality. In traditional AMoD systems, providers can do only so much to
prevent user dissatisfaction since, to some extent, this is a matter of having enough ve-
hicles. When the demand outstrips the supply, users inevitably experience longer delays
or even rejections, ultimately undermining trust in the service. However, these short-
comings may plague future transportation systems only if setting the fleet size and mix
remains a strategic decision. In contrast to most related literature, this thesis inves-
tigates a disseminated AV ownership scenario, where ridesharing platforms can occa-
sionally hire available privately-owned AVs on-demand. In this scenario, customers can
simultaneously own and share AVs, a setup that better resembles the operation of to-
day’s transportation network companies (TNCs), which rely entirely on micro-operators.
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As a result, AMoD systems can increase and decrease vehicle supply in the short term,
thus shifting fleet sizing to the operational planning level.

Moreover, analogously to other transportation modes, we consider that the system
must deal with a diversified user base with different service quality expectations. This
setup allows providers greater leeway to explore requests’ delay tolerances to design
efficient routes. To balance user expectations and avoid an oversupply of vehicles, we
propose a multi-objective matheuristic that dynamically hires third-party AVs to meet
the demand. Our approach adds to recent literature by allowing providers to priori-
tize different customer segments, besides choosing the exact tradeoff between meeting
each segment’s needs and hiring extra vehicles. This way, when vehicles are lacking,
the optimization process can steer the ride-matching solution towards addressing user
requests in order of importance (e.g., most lucrative first). To make the most of cur-
rently working vehicles, we also design a repositioning algorithm that fixes supply and
demand imbalances using users’ service level violations as stimuli.

Further, to enable anticipatory decision making, this thesis incorporates the stochas-
tic information surrounding both privately-owned AV supply and heterogeneous passen-
ger demand in the fleet management process. We propose a learning-based optimization
approach that uses the underlying assignment problem’s dual variables to iteratively
approximate the marginal value of vehicles at each time and location under different
availability settings. In turn, these approximations are used in the optimization prob-
lem’s objective function to weigh the downstream impact of dispatching, rebalancing,
and occasionally hiring vehicles. By harnessing the historical knowledge regarding both
demand and supply patterns, we show that AMoD providers are substantially better
equipped to meet user needs without necessarily having to own large AV fleets.

Typically, learning-based fleet management strategies end up reinforcing biases
present in the demand data, therefore frequently moving towards cities’ most affluent
and densely populated areas, where alternative mobility choices already abound.
Although lucrative for providers, this fleet management strategy runs counter to a
broader city goal of equitably distributing accessibility across all regions and population
demographics. To counterbalance the demand biases, we investigate the extent to
which fare subsidization policies can drive the learning process towards sending
vehicles to targeted regions where accessibility is lacking. Our results suggest that by
using an adequate scheme of incentives, policymakers can orchestrate transportation
providers to diminish the insidious effects of “cream-skimming” practices, thus using
AVs in favor of mobility equity.

Lastly, once we have designed strategies that balance the goals of cities, independent
owners, fleet owners, and users, we focus on a different approach to maximizing fleet
productivity in urban environments. No matter how efficient a fleet optimization method
can be, by limiting AVs to service a single commodity type (i.e., people), fleet utilization
and consequently profits are bounded by passenger demand patterns. As autonomous
technology evolves, however, new opportunities to improve asset utilization arise. We
end this thesis with a model for a versatile transportation system where mixed-purpose
compartmentalized AVs can address both passengers and goods simultaneously. With
the growth of e-commerce and same-day deliveries, our approach provides a starting
point to study more flexible short-haul integration systems to consolidate passenger and
freight flows.
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