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Abstract: For several reasons, control of transportation networks like road traffic net-
works, power transmission networks, water distribution networks, etc. has to be done us-
ing a multi-agent control approach. We consider a multi-agent control approach in which
each control agent uses Model Predictive Control (MPC) to determine its actions. Each
control agent uses a model of its subnetwork and communication with its neighboring
control agents to come to agreement on the evolution of interconnections and to determine
optimal local inputs and states. The challenge that is addressed in this paper comes from
the situation that arises when the models that the agents usecontainbothcontinuousand
discrete elements, instead of one of the two exclusively. Wepropose an approach that
deals with this hybrid behavior and results in agreement between the agents with respect
to the evolution of interconnections and that moreover provides integer inputs to obtain
these evolutions.Copyright c© 2006 IFAC

Keywords: Multi-agent systems, model predictive control,transportation networks,
hybrid systems.

1. INTRODUCTION

Transportation networks, like road traffic networks,
power distribution networks, railway networks, water
distribution networks, gas networks, sewer networks,
etc. are usually large in size, consist of multiple sub-
networks, have many actuators and sensors, and there-
fore show complex dynamics. These transportation
networks can be considered at a generic level, at which
commodity is brought into the network at sources,
flows over links to sinks, and is influenced in its way of
flowing by elements inside the network. The similari-
ties between several types of transportation networks
are the motivation for studying these networks in a
generic way. Results obtained for generic transporta-
tion networks can then be specialized and fine-tuned
for specific domains.

Transportation networks can often be considered as
consisting of both continuous and discrete elements.
E.g., commodity flows or speeds could be expressed in
continuous variables, while control actions like traffic
signal or speed limit settings are often expressed in
discrete variables. Conventionally either only contin-
uous or only discrete elements are considered. We
consider both elements at the same time.

Control goals for transportation networks often in-
volve avoiding congestion of links, minimizing costs
of control actions, maximizing throughput, etc. For the
type of networks that we consider centralized control,
in which a single control agent determines the actions
for the whole network, is often not feasible or im-
practical for several reasons. Some of these reasons
are communication delays, too high computational
requirements, unavailability of information from one



network operator to another, etc. Also, robustness and
reliability of the network cannot be guaranteed when
the single control agent breaks down.

For these reasons, employing a multi-agent, or dis-
tributed, control approach for control of these net-
works is a necessity (Bertsekas and Tsitsiklis, 1997;
Siljak, 1991; Traveet al., 1989). We consider a sit-
uation in which a division of the overall network
into multiple smaller subnetworks is given. This is
a situation that typically appears in practice, where
different control authorities control different parts of
the transportation network, e.g., the freeway network
and the urban road networks are typically controlled
by different road authorities.

Our starting point is a multi-agent Model Predictive
Control (MPC) scheme that we introduced for control
of transportation networks consisting of only contin-
uous elements (Negenbornet al., 2006). This scheme
converges to an optimal overall solution in the case of
a convex overall control problem. However, when also
discrete variables are involved, e.g., as control actions,
the overall optimization problem, i.e., the single con-
trol problem of controlling the whole network, is no
longer convex. We now extend the scheme considered
earlier to the situation where discrete variables play a
role as local actions to the subnetworks, and where
continuous variables only show up in interconnect-
ing constraints between subnetworks. This situation
appears, e.g., in transportation networks, when local
actions consist of discrete speed limit settings and
interconnecting constraints between subnetworks are
expressed in terms of continuously modeled car flows.

This paper is organized as follows. In Section 2 we
introduce the way in which we model transportation
networks. In Section 3 we briefly discuss the multi-
agent MPC scheme that we employ. In Section 4 we
discuss the difficulties that arise when extending the
multi-agent MPC scheme to the case involving both
continuous and discrete variables and we propose an
approach to deal with these difficulties. In Section 5
we give an example that indicates the workings of the
proposed approach.

2. TRANSPORTATION NETWORK MODEL

Consider a transportation network partitioned inton

subnetworks, each controlled by a control agent that
has only a model of its own subnetwork. The inter-
connections between subnetworks are modeled using
so-calledinternetwork variables. These variables ex-
press, e.g., what the continuous flow of cars between
two subnetworks is. We distinguish two types of in-
ternetwork variables: internetworkinputvariables and
internetworkoutputvariables. On one side, the model
of subnetworki contains an internetwork input vari-
ablew

ji
in,k ∈ R

nw,in,ji that represents the input caused
by subnetworkj on the state of subnetworki at time
stepk. On the other hand, the model of subnetwork
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Fig. 1. Each subnetwork model has a set of variables.
Internetwork variables form interconnecting con-
straints between variables of two subnetwork.

j contains an internetwork output variablewij
out,k ∈

R
nw,out,ij that represents the influence that subnetwork

j has on subnetworki. In the physical network the in-
ternetwork input to subnetworki from j must be equal
to the internetwork output from subnetworkj to i, e.g.,
the commodity flow going out from subnetworkj into
subnetworki has to equal the commodity flow going
into subnetworki coming out from subnetworkj. This
means that so-called interconnecting constraints have
to be satisfied between subnetworki and its neighbor-
ing subnetworksj ∈ Ni, (whereNi = {ji

1, . . . , j
i
mi

}
is the set of indexes of themi subnetworks connected
to subnetworki), i.e.,

w
ji
in,k = w

ij
out,k, w

ji
out,k = w

ij
in,k, ∀j ∈ Ni, (1)

at all time stepsk, as illustrated in Fig. 1.

We model the dynamics of subnetworki by a linear
discrete-time difference equation:

xi
k+1 = Aixi

k + Bi
1u

i
k + Bi

2d
i
k

+ B
j1i
3 w

j1i
in,k + . . . + B

jmi
3 w

jmi
in,k (2)

w
j1i
out,k = C

j1i
out x

i
k, (3)

...
...

w
jmi
out,k = C

jmi
out xi

k, (4)

where at time stepk, for subnetworki, xi
k ∈ R

nx,i

are dynamic states,ui
k ∈ [ui

min, . . . , ui
max] are discrete

inputs that take on discrete values of the interval from
ui

min until ui
max, di

k ∈ R
nd,i are local disturbances,

andw
ji
in,k andw

ji
out,k are the continuous internetwork

input and output variables respectively. The matrices
Ai, Bi

1, B
i
2, B

i
3 are of appropriate dimensions and de-

termine how the different variables influence the state
of subnetworki, while the matrixC

ji
out is of appro-

priate dimensions and contains 0 entries on each row,
except for a single 1 corresponding to a variable that
is an internetwork output of subnetworki with respect
to subnetworkj.

Note that the inputsui
k are limited to discrete values.

There are two different types of discrete inputs: dis-
crete inputs that have a direct meaning as a quantity
since they are represented as numbers, and discrete
inputs that only have a symbolic meaning. E.g., in
the former class of discrete inputs we have discrete



numbers of cars that are allowed to enter a road; in
the latter class we have, e.g., the switching of traffic
signals from red to green. Here we are interested in
the first class of discrete inputs. Note that however
the second class of discrete inputs can sometimes be
transformed into the first class of inputs.

Note moreover that with the inputsui
k we refer to

the actions of controllers, and not the physical inputs
at the border of the network. The physical inputs to
the network and the physical demands leaving the
network at the border are modeled as disturbancesdi

k.

In the following the elements ofxi
k, ui

k, and di
k are

referred to aslocal variableszi
k of agenti, while the

variableswji
in,k andw

ji
out,k together are referred to as

internetworkvariableswji
k of agenti.

3. MULTI-AGENT MPC

From here on, we assume that the network has been
divided into subnetworks, each subnetwork has been
assigned an agent, and each agent has a subnetwork
model (2)–(4) of its own subnetwork.

To determine which actions to take each agent uses
an MPC scheme (Maciejowski, 2002; Morari and
Lee, 1999). Advantages of MPC are its explicit way of
dealing with constraints and its easy way of integrat-
ing forecasts. For transportation networks MPC pro-
vides a convenient way to include, e.g., capacity limits
on links, maximums on queue lengths, measurements
from upstream sensors, profiles of demands, etc.

In MPC, each agent has to determine inputsui
k to

its actuators that give good local and overall perfor-
mance over a horizon ofN steps according to an
objective functionJ i

z(z̃
i
k), where the symbol̃ over

a variable indicates variables over the horizon, e.g.,
z̃i
k = [(zi

k)T . . . (zi
k+N−1

)T ]T . In this paper we
take the local cost term to have a quadratic structure,
i.e., J i

z(z̃
i
k) = (z̃i

k)T Qi
z z̃

i
k, whereQi

z is a weighting
matrix, although the following can also be extended to
the case where we would have a tracking cost term of
the formJ i

z(z̃
i
k) = (z̃i

k − z̃i
ref,k)T Qi

z(z̃
i
k − z̃i

ref,k).

Since the subnetwork model that each agent has de-
pends on neighboring subnetwork models through the
internetwork input and output variables and the inter-
connecting constraints, the agents have to use a nego-
tiation scheme to obtain agreement on how these vari-
ables should evolve over the prediction horizon. Using
such a scheme, the agents reduce the uncertainty in
making predictions of the evolution of the variables
of their own subnetwork model. To obtain agreement,
the agents perform at each decision step a series of
iterations of solving the following problem:

min
z̃i

k
,w̃i

k

J i
z(z̃

i
k) +

∑

j∈Ni

J i
w(w̃ji

k ), (5)

subject to the dynamics of the subnetwork (2)–(4) over
the horizon, where the additional cost termJ i

w(w̃ji
k )

deals with the internetwork variables. The particular
structure of this additional cost term depends on the
negotiation scheme used. Its shape is adjusted at the
end of each iteration in such a way that at the end of
the iterations, ideally, the interconnecting constraints
(1) are satisfied and moreover the actions that the
agents choose are overall optimal.

The multi-agent MPC scheme that we employ is a
serial scheme that is the result of using aBlock Coor-
dinate Descent(Bertsekas and Tsitsiklis, 1997; Royo,
2001) to decompose an Augmented Lagrangian for-
mulation (Bertsekas, 2003) of the control problem
at hand. The scheme is serial in the sense that one
agent after another minimizes its problem (5) to de-
termine its optimal local and internetwork variables,
while the variables of the other agents stay fixed.
When the agents have reached agreement on the in-
ternetwork variables after a number of iterations, the
iterations terminate and the determined actions are
implemented. We use this serial implementation since
in earlier studies this scheme showed to outperform a
parallel implementation in terms of convergence speed
and required computations (Negenbornet al., 2006)

The serial implementation uses the following structure
for the additional cost termJ i

w(w̃ji
k ):

J i
w(w̃ji

k ) =
[

(λ̃ji
s )T (−λ̃ij

s )T
]

[

w̃
ji
in,k

w̃
ji
out,k

]

+
c

2

∥

∥

∥

∥

∥

[

I 0
0 I

]

[

w̃
ij
in, prev,k

w̃
ij
out, prev,k

]

−

[

0 I

I 0

]

[

w̃
ji
in,k

w̃
ji
out,k

] ∥

∥

∥

∥

∥

2

,

where given are:

• the informationw̃
ij
prev,k = w̃

ij

s+1|k computed at
the current iterations for each agentj ∈ Ni

that has solved its problembeforeagenti in the
current iterations,

• the informationw̃ij
prev,k = w̃

ij

s|k computed at the
previousiteration for the other agents,

and wherec is a positive scalar penalizing intercon-
necting constraint violations, and where theλs are
Lagrangian multipliers, updated at the end of each
iteration to encourage convergence to internetwork
variables that satisfy the interconnecting constraints.

The serial multi-agent MPC implementation can now
be outlined as follows: at decision stepk, iterations:

(1) Fori = 1, . . . , n, one agent after another:
(a) Agenti determines̃zi

s+1|k, w̃
ji

s+1|k by solv-
ing (5).

(b) Agenti sends to agentj ∈ Ni the computed
valuesw̃ji

s+1|k.
(2) After all agents have solved their problems at one

iteration, they update their Lagrangian multipli-
ers using:

λ̃
ji
s+1 = λ̃ji

s + c(w̃ji

in,s+1|k − w̃
ij

out,s+1|k) (6)

λ̃
ij
s+1 = λ̃ij

s + c(w̃ij

in,s+1|k − w̃
ji

out,s+1|k). (7)



(3) Each agent moves to the next iterations+1, and
the cycle starts over, unless the infinity norm of
the termsw̃ji

in,s+1|k − w̃
ij

out,s+1|k is below a small
positive thresholdǫ.

Theλ variables can be initialized arbitrarily, although
choosing them closer to optimalλ∗ yields improved
performance in terms of convergence speed. There-
fore, initializing the Lagrangian multipliers with val-
ues computed at the previous decision step yields im-
proved performance in terms of number of iterations
required.

Depending on the problem at hand, convergence will
or will not appear. For the case of an overall convex
problem, thus involving only continuous variables,
this scheme will indeed converge to an overall optimal
solution (Negenbornet al., 2006), or at least as opti-
mal as indicated by the magnitude ofǫ. The closerǫ is
to zero, the closer the found solution is to the overall
optimal solution, since at the overall optimal solution
the update (6)–(7) will not change the Lagrangian
multipliers anymore.

However, when discrete inputs appear in the control
problem, the overall control problem is no longer
convex and measures have to be taken to guarantee
that the iterations terminate with at least a feasible
solution, and even better with a solution that is close
to or equal to an overall optimal solution. In the next
section we propose an approach to this problem.

4. DEALING WITH DISCRETE VARIABLES

We consider the case where the local actions to the
subnetworks are modeled with integer variables that
take on values from the finite set{ui

min, . . . , ui
max}.

When discrete elements appear in the optimization
problem, the optimization problem (5) for each agent
i can be formulated as a mixed-integer quadratic pro-
gramming problem. Due to the discrete elements, the
convexity assumption that guarantees that the scheme
discussed in the previous section converges to an over-
all optimal solution does not hold anymore.

In this situation it may be the case that the agents can-
not come to agreement on the internetwork variables,
while choosing locally optimal integer inputs. So, a
periodic sequence might arise of agents making sug-
gestions for values of the internetwork variables that
not all other agents agree with. This periodic sequence
will continue without converging.

In practice at some point a decision has to be made on
which actions to implement. A common approach to
deal with integer inputs is to relax them to continuous
variables and at the end of the optimization round
them to the closest integer value. In particular when
making predictions over a longer horizon this round-
ing can cause at least sub-optimality and sometimes
even infeasibility. This is due to the fact that in general

a rounded input has a different influence on the evolu-
tion of the network over a time step then a continuous
input would have. So in practice the evolution of the
network will be different than the evolution used in
the optimization. In the following we discuss a num-
ber of alternative approaches, ultimately leading to an
approach that does not relax the integer inputs to con-
tinuous variables and that moreover ensures that the
evolution of the network as used in the optimization is
the same as the evolution that will be encountered in
practice.

That the iterations continue means that the stopping
criterion is not met. We discuss 5 ways to deal with
this and to make the iterations stop:

1. Accuracy threshold increments.The accuracy thresh-
old ǫ is used in the stopping criterion to determine
when the iterations should stop. If this threshold is
increased, the iterations will sooner stop. However,
this of course reduces the quality of the determined
solutions. In addition, ignoring the violations of the
interconnecting constraints can obviously lead to sub-
optimally chosen inputs and since no agreement has
been achieved on the values of the internetwork vari-
ables the predictions that each agent has over the evo-
lution of its subnetwork will be inaccurate.

2. Discretization refinements.By making the dis-
cretization of the inputs finer, at some point the dis-
cretization will be fine enough to let the Lagrangian
multipliers converge to values that make the stopping
condition satisfied. For a specific toleranceǫ there is
a certain minimum discretization at which the itera-
tions converge to Lagrangian multipliers that satisfy
the stopping condition. If a coarser discretization is
chosen, then the periodic behavior could emerge. In
practice, however, the discretization of the inputs may
be given and may not be adjustable.

3. Addition of continuous dummy inputs.Continuous
dummy inputs can be included in the optimization
problems to compensate constraint violations of the
interconnecting constraints by providing the remain-
ing part of the desired input that the integer input
cannot provide. A very high cost will be associated
with this type of input such that it will only be used if it
is really not worth changing the integer inputs. Due to
the dummy inputs the agents can obtain agreement on
the internetwork variables. The dummy inputs indicate
how much more or less control action the agent has to
provide in order to fulfill the agreements that an agent
made.

4. Penalty term increments.The penalty termc can
be increased to a very high value once the periodic
behavior has been detected, which can be done by
either waiting a minimum number of iterations or by
monitoring the sequence of solutions. In this way the
interconnecting constraints are forced to be satisfied,
and the inputs that come with this can be imple-
mented. However, by the time that the periodic behav-



ior emerges, the agents have already determined cer-
tain local values for their local variables. By imposing
a very highc, it will still take a significant number
of iterations before the agents obtained values that do
make the interconnecting constraints satisfied.

5. Integer input fixations.The integer inputs can be
fixed once the periodic behavior has been detected.
E.g., the integer inputs can be fixed to the locally
most optimal integers, or they can be fixed to the
most frequently appearing value for the integer inputs
over the last periodic cycle. The remaining overall
optimization problem will become convex and the iter-
ations will converge to optimal values for the remain-
ing variables. The remaining variables will be optimal
with respect to the fixed setting of the integer inputs,
which however may be sub-optimal from a network-
wide perspective. More importantly though, at the end
of the iterations the interconnecting constraints will
be satisfied and thus the agents will have agreed on
how the internetwork variables should evolve over the
prediction horizon. Furthermore, they will have deter-
mined inputs that ensure that this agreement is fulfilled
within a reasonable number of iterations (contrarily to
the previous case).

In the following section we experimentally assess the
performance of this last scheme. We consider this
last scheme, since this is the only scheme that both
guarantees agreement between the agents within a
reasonable number of iterations and provides feasible
integer inputs. The scheme has the following outline:

(1) Start as in the continuous case with a fixed, low,
value for c, e.g., 1 or 10, arbitrarily initialized
Lagrangian multipliers, and, e.g.,ǫ = 0.00001.

(2) If the iterations converge to a fixed solution, then
the interconnecting constraints will be satisfied
and the resulting integer inputs will be optimal.

(3) Otherwise, if a periodic switching between solu-
tions of different agents is detected, the integer
inputs are fixed to the value that appeared most
frequently over the last periodic cycle. After this,
the iterations continue as before, but with fixed
integer inputs.

By fixing the integer inputs, the optimization problems
become convex and the subsequent iterations will
bring the internetwork variables to values that make
the interconnecting constraints satisfied with feasible,
although not necessarily optimal, integer inputs.

5. EXAMPLE

5.1 Setup

We consider a general transportation network divided
into two subnetworks, each being controlled by a
control agent, see Fig. 2. Through the network there
is a flow of a continuous commodity, e.g., a flow
of cars. The two subnetwork are connected to each

d1 d2

model of subnetwork 1 model of subnetwork 2

subnetwork 1 subnetwork 2

u1 u2

w12
in

w12
outw21

in

w21
out

x1 x2

Fig. 2. Illustration of an abstract transportation net-
work consisting of two subnetworks (top), and
the variables of the subnetwork models consid-
ered by the 2 control agents (bottom).

other through an interconnecting link, e.g., a shared
road or highway. Each subnetworki ∈ {1, 2} has
as control input a controllable source or sink, that
generates or consumes commodityui

k in discrete steps
respectively. E.g., an on-ramp metering installation at
the border of each subnetwork with sufficiently high
demand represents a source, while a forced queuing
of cars represents at some times a sink, while at
others a source. In addition, each subnetwork has as
local disturbance an unexpected addition or removal
of commodity,di

k, e.g., a flow of cars that come and
go to a car park or a shopping mall outside the control
of the control agents. The state of subnetworki is
denoted byxi

k and may encode, e.g., the average
number of cars in each part of the subnetworks over
a time step. We assume that the dynamics of the
subnetworks can be modeled by (2)–(4). See for more
details of such a model (Negenbornet al., 2006).

In order to make good local decisions, the agents have
to obtain agreement on the commodity flowing over
the line from subnetworki to j. To compute this flow
elements of both the statexi

k and the statexj
k have

to be known. These elements are the internetwork
variables that form the interconnecting constraints be-
tween the control problems of both agents.

Assume in subnetworki a sudden commodity injec-
tion. In order to prevent the subnetwork from ending
up in an undesirable state, e.g., a state with traffic con-
gestion, the agents controlling the subnetworks have to
come to agreement on how much commodity should
be transported over the interconnecting link.

5.2 Results

Figure 3 shows a typical evolution of the constraint
violation of the interconnecting constraint associated
with a prediction step. This constraint violation is
simply the difference between the internetwork input
variable of one agent and the corresponding inter-
network output variable of the other agent, and can
represent, e.g., the mismatch between the commodity
flow that each of the two agents wants to send over
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Fig. 4. Evolution of the integer inputs as computed by
the two agents over the iterations. From iteration
step 40, the integer inputs are kept fixed.

the interconnecting link. As can be seen, the agents
are not able to come to agreement on values for the
interconnecting constraints over the first 40 steps. This
is also seen in Figure 4, which shows the integer inputs
as computed by the two agents for the first prediction
step. We clearly see that the inputs do not converge
to an optimal input, but keep switching. At iteration
step 40 the input fixation function is activated and the
integer inputs are kept fixed at the values that appeared
most frequently over the last periodic cycle. Once
the integer inputs have been fixed the agents quickly
obtain agreement on the interconnecting constraint.

6. CONCLUSIONS & FUTURE RESEARCH

In this paper we have considered control of trans-
portation networks, like road traffic networks, power
networks, water distribution networks, and so on using
multi-agent Model Predictive Control (MPC), to be
used when a single-agent approach is inapplicable.
In this setting, the network is divided into a number
of subnetworks, each being controlled by a control
agent that uses a model of its subnetwork and MPC to
determine its actions. We have focused on approaches
that deal with subnetwork models that contain both
continuous and discrete elements, contrarily to con-
ventional approaches where only either one of the two

is considered. In our setup, discrete elements appear
in the form of discrete control actions, while continu-
ous elements appear due to, e.g., continuous flows of
commodity over the network.

We have started with a serial multi-agent MPC scheme
that converges to optimality for convex overall op-
timization problems, involving only continuous vari-
ables. We have pointed out why this scheme may not
converge (and therefore not stop) when also discrete
variables are included. We have discussed a number
of approaches that could be considered to make the
scheme terminate. We have chosen an approach that
may give sub-optimal integer inputs, but that will en-
sure that the interconnecting constraints between sub-
networks are satisfied. An example confirms this.

Future research lies in determining how large the sub-
optimality of the resulting solutions is compared to
a hypothetical centralized controller that has access
to all relevant information. Moreover, the detection
of when periodic solutions start appearing can be
improved to reduce the number of iterations required
before termination. We will also perform experiments
on transportation networks of more realistic size to
further assess the potential of the proposed approach.
And finally, we will investigate in which situations a
multi-agent approach is more efficient than a single-
agent approach.
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