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Abstract
In this report we define characteristic control design elements and show how
conventional single-agent MPC implements these. We survey recent litera-
ture on multi-agent MPC and discuss how this literature deals with decom-
position, problem assignment, and cooperation.

1 Introduction
Already back in 1978, Sandell et al. [22] surveyed a wide range of alternative
methods for decentralized control. They find that a good combination of engi-
neering judgment and analysis can be used to define in a reasonable way an ad-
hoc control structure for a dynamic system. They conclude that methodologies
are needed that present a designer with several good control structure candidates
for further consideration.

In this report we look at how research since 1978 has advanced distributed
control. We consider the control of large-scale systems like power networks, traf-
fic networks, digital communication networks, flexible manufacturing networks,
ecological systems, etc. In particular, we survey some of the literature on Model
Predictive Control (MPC) in distributed settings. We will refer to this as Multi-
Agent Model Predictive Control. We are interested in the control design methods
that have been developed so far.
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The structure of this reported is as follows. In order to classify and find struc-
ture in the literature on multi-agent MPC, in Section 2 we first consider control
methodologies in general. Control methodologies involve different kinds of mod-
els. Depending on the actual models chosen, different issues rise that have to be
considered. In Section 3 we focus on Model Predictive Control (MPC). We ex-
plain the general idea behind MPC and characterize the MPC framework in terms
of the models of Section 2. As it turns out, the standard MPC framework may be
seen as single-agent MPC. In Section 4 we move on to the discussion of multi-
agent MPC. We refer to multi-agent MPC as a general term for methods that apply
the MPC strategy using multiple agents to control a system. Important aspects of
multi-agent MPC are the way in which a system is decomposed into subsystems
(centralized, decentralized, hierarchical), the way in which control problems are
formulated on these decomposed systems (centralized, decentralized, hierarchi-
cal), and the way in which agents communicate with one another in order to solve
these control problems. We describe how recent literature on multi-agent MPC
implements these issues. Finally, we end this report with open issues and con-
cluding remarks in Section 5.

2 Control Methodologies
In this section we consider different types of concepts that play a role in general
control methodologies. We consider the underlying task of control problems, sys-
tem models that may be used for control, control problem models formulating a
control problem, and agent architectures useful in solving control problems.

2.1 Control Task
In a control context, typically a system is supposed to behave in a certain way.
It should accomplish some task, which may involve reaching a certain number
of goals. The task has to be accomplished while making sure that any possible
constraints are not violated.

Tasks may be provided by a human or some artificial entity, or they may follow
from some behavioral characteristics or reasoning of the system. Goals can be
short-term goals, e.g., to bring the system in a certain state, or long-term, e.g.,
to maximize the long-term performance or to minimize the long-term operation
costs. Note that tasks need not have one single goal. They may have multiple,
possibly conflicting, goals. In that case they are referred to as so-called multi-
objective tasks.

Actions that can be performed on the system have to be chosen in such a
way that the task of the system is achieved, keeping in mind the dynamics of the
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Figure 1: General scheme for controlling a system. The control agent measures
the state of the system and determines an action such that the behavior of the
system approaches the desired behavior as close as possible.

system, and possible constraints on the actions. Finding the actions that achieve
the goal is called the Dynamic Control Problem (DCP). A typical DCP setting is
shown in Figure 1. The general DCP can be formulated as:

Find the actions such that the goal is achieved optimally

subject to

a model of the dynamic system
including constraints on the actions and states.

This problem can be seen as an optimization problem, since the actions have to be
chosen such that they achieve the goal in the best possible way. Note that the goal
is independent of the model of the dynamic system.

This section defines the elements that play a role in controlling a general sys-
tem. As mentioned, controlling a system comes forth from having the desire to
have the system achieve a certain goal. In order to obtain the goal we will assume
that there is a system model of the system under consideration.1 Such a model can
be used to define more precisely what the goal is and to predict how the system
will behave given certain actions. A control problem model defines what the exact
control problem is, often based on the system model. A control problem model
is used by agents that solve the problem. The agents are organized in an agent
architecture and follow some communication protocol.

1It is not always necessary to have a model of the system, e.g. when using PID controllers.
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2.2 System Models
Dynamic system models describe the behavior of the physical system given ac-
tions on the system, the state of the system, and possibly disturbances. Besides
the dynamics of the system, there may be limits on possible actions and states.
That is, the models are only valid in a certain operating area. These operating
constraints may be due to technical limitations, regulations, safety measures, etc.
System models may change over time. That is, the structural parameters of the
model need not stay constant.

We can distinguish four different types of system models: centralized, decen-
tralized\distributed, and hierarchical models.

• We may model the system with one system model, describing the whole
system. This model may be very large if a high degree of detail is required,
or very abstract if this is not the case. We call such a model a centralized
model. E.g., if we consider the system of a car, we can determine one single
system model which describes the dynamics of the car completely.

• In some cases, the overall system can naturally be seen as a collection of
smaller subsystems that are completely decoupled from one another, or of
which it is assumed that they are completely decoupled. Each system is
autonomous. We refer to a system model consisting of several smaller de-
coupled subsystem models as a decentralized model. E.g., when we have a
number of cars, the individual dynamics are decoupled and we have a de-
centralized setting. If we do have couplings between the subsystems, we
have a distributed model. E.g., a car that has another car connected to it
with a rope can be modeled as a distributed system.

• We may also be able to distinguish system models with different layers of
abstraction. The highest layer may model the dominant characteristics of
the system, whereas lower layers may model more detailed characteristics.
Information at higher layers is typically used in lower layers and vice versa.

We can see a centralized model as a special form of a hierarchical model in which
there is only one layer and one system model. Also a decentralized model can be
seen as a hierarchical model in which there is one layer with all the subsystems
of the decentralized model and no higher layer. And finally a distributed model
can be seen as a hierarchical model by defining a two-level hierarchy in which
the lowest layer consists of the two subsystems, with links to a higher layer that
connects the variables of one system to the other.
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2.3 Control Problem Models
Depending on the structure of the system model the overall goal may consist of
one centralized goal, a set of decentralized goals, or a set of hierarchical goals.
When using a centralized goal there is one overall goal for the whole system.
Decentralized goals appear when subsystems in an overall system each have their
own independent goals. Hierarchical goals arise when subsystems have goals that
(partially) overlap, or when goals for a system can be defined on different levels of
abstraction/detail. The goals typically have a close relation to (part of) the overall
system.

Similar to the three different types of system models, we can define three types
of control problem models:

• A centralized problem model consists of one single DCP.

• A decentralized problem model consists of multiple smaller, independent,
DCPs. If the smalled DCPs have no conflicting goals, the combination of
the problems is equivalent to the overall DCP. However, if there are con-
flicting goals, the combination of the problems need not be equivalent.

• A hierarchical problem model consists of a number of abstraction layers,
in which higher layers contain more abstract DCPs, and lower layers more
concrete DCPs. The higher layers depend on information from lower layers
and vice versa.

The structure of the problem model may be closely related to the structure of the
system model. However, this need not always be the case. E.g., we may have a
centralized system model with a hierarchical problem model, or vice versa.

2.4 Agent Architectures
Solving DCPs is done through the use of controllers, or agents. In general, agents
are problem solvers that have abilities to act, sense, reason, learn, and communi-
cate with each other in order to solve a given problem. Agents have an information
set containing their knowledge (including information from sensing and commu-
nicating), and an action set containing their skills.

Agents may be organized in architectures, e.g., through communication links.
We can again distinguish three agent architectures:

• a centralized agent architecture, in which there is only one single agent,

• a decentralized agent architecture, in which there are numerous agents that
do not have any interaction among one another,
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Figure 2: Hierarchically structured agent architecture. Higher level agents provide
targets for lower level agents. The agents at the lowest level control the physical
system. Besides structured in layers, agents may also be organized in groups
within which the agents are able to communicate with one another directly.

• a hierarchical agent architecture, in which there are different layers of
agents. Higher layers may supervise and receive information from lower
layers. Lower layers may follow instructions from and provide information
to higher layers. Agents on the same layer may be allowed to communicate
directly with one another, or through the higher layers. See Figure 2 for an
example of a hierarchically structured agent architecture.

Note that communication between two agents on the same layer can be replaced
by a virtual communication agent one layer higher in order to satisfy a no-com-
munication-on-a-layer assumption. Note that when considering hierarchical ar-
chitectures, it is not only important to determine which information is communi-
cable, but also in which order information is accessible to agents. That is, there
needs to be a communication protocol.

2.5 Design Decisions
The models introduced in the current section leave many questions when it comes
to designing control systems. First of all, how should the system be modeled?
Is there a logical subsystem structure? Can it be found from a centralized system
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model? Second, how should control problems be formulated on the chosen system
model. Third, how should the agent architecture be designed to solve the control
problem? More precisely, what acting, sensing, and communication skills should
agents have in order to solve the problems? According to what protocol should
they communicate with each other?

Sometimes the agent architecture already exists; in that case the questions may
be reversed: what subproblems can the agents solve? How can the subproblems
be designed in such a way that the overall goal of the system is obtained? How
should the subproblems be assigned to the agents?

At a higher level we may consider agents clustered in groups. How can agents
be clustered in groups such that the information exchanged within the group is
maximized and between groups minimized? Similarly, how can the agents be
clustered such that the combined skills in each group are sufficient to solve the
combined subproblems of the group?

3 Single-Agent Model Predictive Control
Over the last decades MPC [5,11,18] has become the advanced control technology
of choice for controlling complex, dynamic systems, in particular in the precess
industry. In this section we introduce the MPC framework. We relate the standard
MPC formulation to the models introduced in the previous section and find that
MPC can be referred to as single-agent MPC.

Control Design Characteristics In terms of the previous section, the MPC for-
mulation is based on a centralized system model, with a centralized control prob-
lem model, and a centralized agent architecture.

• The centralized system model is given by a (possibly time-varying) dynamic
system of difference or differential equations and constraints on inputs,
states, and outputs.

• The goal of the control problem is to minimize a cost function. The control
problem is stated as a single-objective optimization problem.

• The problem is solved by a single centralized agent, the information set of
which consists of measurements of the physical system, and the action set
of which consists of all possible actions. The agent solves the problem with
a three-step procedure, see also Figure 3:

1. It reformulates the control problem of controlling the time-varying
dynamic system using a time-invariant approximation of the system,
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Figure 3: Example of conventional MPC. The control problem is to find actions
uk to uk+Nc , such that after Np steps the system behavior y approaches the desired
behavior y∗. In this example, y indeed reaches the desired set point y∗.

with a control and a prediction horizon to make finding the solution
tractable, and a rolling horizon for robustness.

2. It solves the reformulated control problems, often using general, nu-
merical solutions techniques, while taking into account constraints on
actions and states.

3. It combines the solutions to the approximations to obtain a solution to
the overall problem. This typically involves implementing the actions
found from the beginning of the time horizon of the current approxi-
mation, until the beginning of the next approximation.

Since the MPC framework uses a single agent, we can refer to it as single-
agent MPC.

Advantages Single-agent MPC has found wide success in many different appli-
cations, mainly in the process industry. A number of advantages make the use of
single-agent MPC attractive:

• The framework handles input, state, and output constraints explicitly in a
systematic way. This is due to the control problem formulation being based
on the system model which includes the constraints.

• It can operate without intervention for long periods. This is due to the
rolling horizon principle, which makes that the agent looks ahead to prevent
the system from going in the wrong direction.
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• It adapts easily to new contexts due to the rolling horizon.

Disadvantages However, the use of single-agent MPC also has some significant
disadvantages:

• The approximation of the DCP with static problems can be of large size.
In particular, when the control horizon over which actions are computed
becomes larger, the number of variables of which the agent has to find the
value increases quickly.

• The resources needed for computation and memory may be high, increasing
more when the time horizon increases. The amount of resources required
also grows with increasing system complexity.

• The feasibility of the solution to DCP is not guaranteed. Solutions to the
approximations do not guarantee solutions to the original DCP.

Research in the past has addressed these issues, resulting in conditions for
feasibility and stability, e.g., using contracting constraints, constraint relaxation,
and classical stabilizing controllers at the end of the horizon. Most of the MPC
research has focused on centralized computations. In the following section we
look at research directed at extending the single-agent MPC framework to the
use of multiple agents. Using multiple agents to tackle the control problem may
reduce the computational requirements compared to a single agent approach.

4 Multi-Agent Model Predictive Control
In the remainder of this report we discuss the use of Multi-Agent MPC. As the
name suggests, in multi-agent MPC multiple agents try to solve the DCP. Al-
though not strictly necessary, when considering multiple problem solvers, it is
typical to have multiple different problems. The DCP is therefore typically bro-
ken up into a number of smaller problems. The main advantage of this is that the
computational burden can be lowered. Agents can communicate and collaborate
with other agents to come up with a good solution. If the agents can work asyn-
chronously then they can run in parallel and at their own speed. This is a desirable
situation for control of large-scale systems. However, synchronization problems
may be hard to solve.

Many authors have considered using MPC as part of a distributed control ar-
chitecture. Some examples of these are architectures in which a single MPC
controller is used as replacement of decentralized PID controllers (Pomerlea et
al. [21]), multiple different MPC controllers are manually engineered as replace-
ment of decentralized PID controllers (Irizarry-Rivera et al. [14], Ochs et al. [20]),
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or MPC is used as supervisory layer in a cascaded setting (Silva et al. [25], Vargas-
Villamil et al. [27]). The control architectures involved are typically engineered
with insight in the specific application domain. Other architectures consider mul-
tiple subsystems that depend on one another, and that employ MPC in order to
optimize system performance. These kind of applications are among others dis-
cussed by Braun et al. [4], Katebi and Johnson [17], Georges [12], Camponog-
ara [7], Aicardi et al. [2], Acar [1], Sawadogo et al. [23], El Fawal et al. [10],
Gómez et al. [13], Baglietto et al. [3], Jia and Krogh [15, 16], and Dunbar and
Murray [8]. In this survey we mainly focus on this last class, since the methods
described in this class are more general (less application specific) and therefore
more widely applicable than the methods described in the first class.

Control Design Characteristics In general, the main difference between the
multi-agent MPC and single-agent MPC framework is that in the multi-agent MPC
several agents are used to solve the DCP. We can characterize the multi-agent
MPC framework as follows:

• The system model is typically a hierarchical system model.

• The control problem is typically formulated to minimize a hierarchical cost
function.

• The control problems are typically solved by a hierarchical agent architec-
ture.

In multi-agent MPC, the centralized system and control problem are first decom-
posed into smaller subproblems. The subproblems will in general depend on each
other. To solve the problems the agents therefore need to communicate with each
other.

In this section we survey some of the approaches recent research has taken for
decomposing the DCP into sub-DCPs and finding a suitable solution to those. We
are particularly interested in seeing how different authors decompose the overall
system into subsystems, how they define the subproblems, and how agents com-
municate with each other to come to a solution.

4.1 System Model Decomposition
Typically there are two ways in which a decentralized or hierarchical system
model is formed, based on the way the overall system is considered:

• The centralized system model can be used explicitly. In this case, a central-
ized system model is first explicitly constructed and then decomposed into
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several subsystems using structural properties that are present in the system
model. This is a top-down approach. E.g., Motee and Sayyar-Rodsari [19],
and Katebi and Johnson [17] analytically decompose a linear dynamic sys-
tem into an equivalent set of subsystems with coupled inputs.

• The centralized system model can also only be considered implicitly. This
means that the decomposition into subsystems is based on engineering in-
sight and typically involves modeling a subsystem and the relations with
other subsystems directly. In this case we have a bottom-up approach. E.g.,
Georges [12], El Fawal et al. [10], Braun et al. [4], and Gómez et al. [13]
design the subsystems without first considering a model for the overall sys-
tem.

In general, as Sandell et al. [22] point out in their survey, dividing a system into
subsystems may be done by considering different time scales in a system and
looking for weak couplings between subsystems. By our knowledge there are no
generic methods to do the decomposition.

Decentralized Model Decomposition In our definition of a decentralized de-
composition, all subsystems are independent of one another. This situation is not
discussed in the articles surveyed for this report. However, many authors do use
the word decentralized to address a group of subsystems that can communicate
with one another. We see this group of subsystems as a special case of a hierar-
chical system model. Purely decentralized model decomposition only is possibly
when two subsystems are completely independent of each other, or when they
are assumed to be independent of each other. The term decentralized should not
be confused with the more general term distributed. The latter refers to systems
consisting of subsystems in general, and not in particular to systems consisting of
strictly independent subsystems.

Hierarchical Model Decomposition Hierarchical system model decomposition
arises when subsystems depend on each other, they are coupled. Higher levels in
a hierarchy may be more abstract or may span a longer time period (e.g., they
may have a lower communication, computation, or control rate). The coupling
between subsystems can have different foundations:

• Sometimes the coupling is based on physical variables and modeled explic-
itly, like in Sawadogo et al. [23]. They consider control of a water system
divided in different sections as subsystems. In each subsystem model the
controls and state of a neighboring subsystem are taken into account. Dun-
bar and Murray [9] consider multi-vehicle formation stabilization. The sys-
tem models of the vehicles (including constraints) are uncoupled. However,
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one layer higher, at a more abstract level, the state vectors of the subsystems
are coupled due to constraints that make the vehicles drive in a formation.
Baglietto et al. [3] consider optimal dynamic routing of messages in a store-
and-forward packet switching network. The nodes in the network are seen
as subsystems with connections to neighboring subsystems. In particular,
by reformulating the subsystem model they get rid of constraints.

• Sometimes the coupling is more artificial and does not have a clear physical
meaning. E.g., Georges [12] and El Fawal et al. [10] define a subsystem
model for each section in a water distribution network. They introduce
compatibility equations between subsystems that have to be satisfied. The
decentralized approach is based on an augmented Lagrangian formulation,
where the flow balancing equations are dualized. In this formulation, the
Lagrangian multipliers become the coupling variables.

4.2 Control Problem Decomposition
In the reviewed literature there is no distinction between the structure of the sys-
tem model and the structure of the problem. So, with each subsystem a control
problem is associated with its own goal. We believe that in general it may not
always be necessary to assign a control problem with each subsystem. It may be
easier and sufficient to define goals over a number of subsystems, rather than for
each subsystem individually. In the reviewed literature, the goals of the subprob-
lems are obtained from:

• an analytical decomposition of a centralized goal. E.g., Georges [12] and
El Fawal [10] take some sort of worst-case approach by defining for each
subsystem a subproblem of finding the Lagrangian multipliers that maxi-
mize the problem of finding the controls that minimize the augmented La-
grangian.

• an ad-hoc engineered subproblem goal. E.g., Baglietto et al. [3] formulate
a goal for each subsystem.

Dunbar and Murray [9] consider no special goal for the lowest layer. However,
one layer higher, a centralized goal is defined over the subsystems of the lowest
level. Katabi and Johnson [17] take a similar approach. Jia and Krogh [15, 16]
consider agents that exchange predictions on the bounds of their state trajectories.
Thus agents have information about the trajectories that the subsystem of the other
agents will potentially make.
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4.3 Problem Solving
As mentioned in Section 2.5, it is important to consider the problem of design-
ing the agent architecture and assigning suitable subproblems to the agents in the
architecture. Once this assignment has been made a suitable coordination proto-
col should be used in order to find a good solution. This coordination protocol
specifies how and what information is exchanged between agents.

4.3.1 Agent Design and Problem Assignment

Agent Design The information set of the agents is often implicitly assumed to
contain sufficient information for solving the subproblems. Also the action sets
of the agents are assumed to be sufficient (Georges [12], El Fawal [10], Baglietto
et al. [3]). If an agent does not have access to certain information that it needs
directly it has two options: obtain the information through communication, or
have some means to predict the information.

There has been some interesting research put into optimally partitioning agents
into groups [7]. Motee and Sayyar-Rodsari [19] remark that the elimination of the
communication requirements between agents (at least among agents in different
sub-groups) is of crucial importance. The less communication between agents,
the easier they can work at their own speeds. This requirement must be balanced
against the total cost of control actions. The authors propose a formulation in
which such a trade-off can be trivially exercised by finding a matrix assigning
agents to groups.

Motee and Sayyar-Rodsari [19] also consider how information must be com-
municated to the groups. They propose a sensitivity-based criterion. For the sys-
tem with the grouped agents, the sensitivity of the closed-loop control action to
the output measurement can be used as a criterion for deciding whether a certain
output measurement must be made available to that group of agents. This analysis
is done offline.

Problem Assignment In the reviewed literature each control subproblem is as-
signed a specific agent to solve the problem. Most designs for agent architectures
are made offline and do not change online [17]. The information that agents may
share with each other is determined a priori by, e.g., minimizing a minimal com-
munication cost, or objective at the level of the overall system.

4.3.2 Coordination Schemes

The way in which agents communicate with one another is crucial in whether
or not a useful, feasible, preferably optimal, solution is obtained. Agents com-
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municate and exchange information according to a certain coordination scheme.
Important attributes of these schemes are: iterative solution, choice of actions,
subproblem modification, and automatic learning [7]. Choices for these attributes
have directly influence the performance of solving the control problem. In the fol-
lowing we will go into more detail on these items and relate them to the existing
literature.

Iterative Solutions It is often convenient and practical to find a solution by
iterations, particularly when decisions are shared among agents whose goals are
conflicting [7]. Each agent continually revises its decisions, taking into account
the decisions of its neighbors. If the dynamic subproblems are decoupled, then the
agents reach optimal decisions independently. If this is not the case, the couplings
can be dealt with in two ways: synchronously or asynchronously. See also Figure
4.

• In the synchronous case precedence constraints are imposed on the itera-
tions, which makes that faster agents have to wait for slower agents. A
distinction can be made between serial synchronous methods and parallel
synchronous methods. In the former case only one agent takes a step at a
time. In the latter agents wait for all other agents to finish the current step
before proceeding.

• Asynchronous treatment allows all agents to run at their own speed and is
therefore preferred over the synchronous case, since the agents spend no
time waiting for one another. However, this comes at the price of uncertainty
in information, since agents might not know exactly what other agents will
do.

Georges [12] and El Fawal et al. [10] deal with parallel synchronization in
their two-step algorithm. In their approach first each agent solves its subproblem
using certain parameters of the previous step. These parameters are optimized us-
ing information from other agents. This information is obtained in the second step
in which each agent communicates its parameters with the other agents. In some
cases agents communicate their expected plans to each other after each optimiza-
tion step. For example, Jia and Krogh [15, 16] let the agents solve local min-max
problems to optimize performance with respect to worst-case disturbances. Pa-
rameterized state feedback is introduced into the multi-agent MPC formulation to
obtain less conservative solutions and predictions. Dunbar and Murray [9] have a
similar approach. Shim et al. [24] also include the capability for agents to combine
the trajectory generation with operational constraints and stabilization of vehicle
dynamics by adding to the cost function a potential function reflecting the state
information of a possibly moving obstacle or other agent.
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Figure 4: Different types of iterative schemes. a) Serial, synchronous: one agent
takes a step at a time, after which a next agent takes a next step; b) Parallel,
synchronous: all agents take a step at a time, but they wait with taking the next step
until all agents are finished taking the step of the current time; c) Asynchronous:
all agents take steps at their own speed and they do not wait for one another.
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Choice of Action Agents can apply different ways of actually choosing which
action to perform at a certain point. Typically, in single-agent MPC, the agent
implements the first action of the action sequence found by solving its control
problem. However, in multi-agent MPC there are alternatives since an agent may
accept suggestions from neighboring agents regarding its actions. These sugges-
tions could be, e.g., values to set:

• An agent may exclusively choose its action and implement it, e.g., by sim-
ply choosing the first action taken from the sequence of optimal actions.
Georges [12] and El Fawal et al. [10] consider a higher-layer agent that
obtains information from multiple lower layers to exclusively update pa-
rameters for each agent.

• Actions may be shared. That is, actions of a certain agent can be chosen by
other agents as well. In [6], Camponogara discusses this. Other agents may
be allowed to use capabilities of a certain agent that only that agent has.

• Agents may choose which action to perform in a democratic way by letting
multiple agents vote about which action to take. Camponogara [6] shows
that this can be beneficial, assuming that the majority knows what is right
to do.

• Agents may trade their actions, in which case the agent with the highest bid
gets to choose the action that an agent will perform. This might be useful in
situations where there is a limited resource that needs to be shared.

Subproblem Modifications Ideally protocols that agents use for cooperation
can deal with the subproblems of the agents directly. Sometimes a protocol may
however to some extent require the modification of the subproblems. It may de-
mand

• the reformulation of subproblems as unconstrained subproblems, that is, to
remove all limits,

• the relaxation of subproblems with tolerance factors, that is, to allow going
over certain limits,

• tightening of subproblems with resource factors, that is, to lower the limits
as much as possible.

In particular when asynchronously working agents are considered, these modifi-
cations may be needed. As an example, each agent needs to know what the other
agents might want to do, so it can anticipate these actions if it chooses to be un-
selfish. Shared resources need to be shared in ways that seem fair. However,
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faster agents may grab all the resources. Resource factors may help here. Cam-
ponogara [6] investigates each of the modifications. Jia and Krogh [15,16] impose
predicted state bounds as constraints in subsequent multi-agent MPC iterations to
guarantee their subsystem satisfies the bounds broad-casted to other agents.

Automatic Learning Automatic learning may boost the effectiveness, widen
the scope of applications and improve the adaptability of cooperation protocols.
Learning can for example be introduced for parameter identification, or for im-
provement of problem-solving and decision-making abilities. Learning may en-
able an agent to predict what its neighbors will do. Learning is in particular useful
when agents work asynchronously.

Georges [12] and Katabi et al. [17] include an on-line identification procedure
based both on a MIMO parametrized model of the physical characteristics of the
system and Kalman filtering. Besides that the authors use a Kalman optimal es-
timator defined on the basis of the on-line identified control to estimate the state
of the subsystems over which the subproblem of an agent is defined. Baglietto et
al. [3] assign neural networks to the agents representing nodes in a network. These
neural networks are trained offline to improve online computational requirements.
In Gómez et al. [13], the models of the nodes depend on future state values of
neighboring nodes. Each agent estimates these values.

4.4 Conditions for Convergence
Motee and Sayyar-Rodsari [19] remark that the optimal action for a subproblem
can only be obtained if the optimal action to the other subproblems is available
(when the problems depend on each other). This is also discussed by Talukdar et
al. [26] with elements from game theory.

Let the reaction set of an agent contain the actions that the agent would make
when it knows what the other agents will do. The set of Nash equilibria is the in-
tersection of the reaction sets of all the agents. The Pareto set is the set of feasible
solutions to the overall problem. Talukdar et al. [26] make three observations:

• The elements of the Pareto set are the best trade-offs among the multiple
objectives of the subproblems. These may be better trade-offs than those
provided by Nash equilibria.

• Constraints can change the solution sets of (sub)problems significantly.
With techniques like Lagrange multipliers, penalty functions and barrier
functions, it is always possible to convert a constrained problem into an
unconstrained one. However, these conversions should be used with care.
Both conceptually and computationally it is advantageous to preserve the
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separate identities of constraints, not the least of which is the option of spe-
cialized, adaptive handling of each constraint during the solution process.

• The solution to the overall centralized problem and the completely decen-
tralized problem are two extremes. The centralized problem is often in-
tractable but the Pareto solutions are the best that can be obtained. The
subproblems are smaller and more tractable. For an agent, the collection
of the solutions for all possible actions of its neighboring agents constitute
its reaction set. The intersection of the reaction sets of all agents identify
the Nash equilibria. The calculation of a reaction set requires the repeated
solution of the subproblems, which can be tedious.

Depending on the cooperation scheme used, the resulting performance will be
different. When considering multi-agent MPC it is important to look at the ques-
tion whether or not the agents are capable of cooperatively obtaining an optimal
solution to the overall control problem.

In [7], Camponogara et al. consider under what conditions iterations converge
to a solution of the subproblems and under what conditions the solutions of the
subproblems compose a solution to the overall problem. Baglietto et al. [3] re-
mark that team-optimal control problems can be solved analytically in very few
cases, typically when the problem is LQG and the information structure is partially
nested, i.e., when any agent can reconstruct the information owned by the deci-
sion makers whose actions influenced its personal information. Aicardi et al. [2]
address the problem of the existence of multi-agent MPC stationary control strate-
gies in an LQG decentralized setting. The possibility of applying a multi-agent
MPC control scheme derives from the assumptions on the information structure
of the team. The authors of [2] show how applications of such a scheme generally
yield time-varying control laws, and find a condition for the existence of station-
ary multi-agent MPC strategies, which takes only a-priori information about the
problem into account. Dunbar and Murray [9] establish that the multi-agent MPC
implementation of their distributed optimal control problem is asymptotically sta-
bilizing. The communication requirements between subsystems with coupling in
the cost function are that each subsystem obtains the previous optimal control
trajectory of the other subsystems to which it is coupled at each receding hori-
zon update. The authors of [9] note that the key requirement for stability is that
each action sequence computed by the agents does not deviate too far from the
sequence that has been computed and communicated previously.

Camponogara et al. [7] develop conditions on the agents’ problems and co-
operation protocols that ensure convergence to optimal attractors. Unfortunately,
they find that the conditions have some severe disadvantages for practical use:

• The convexity of the overall objective function and constraints cannot be
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guaranteed in practice. The dynamics of real-world networks can be highly
nonlinear and nonconvex.

• The protocols developed in [7] require that the initial solution is feasible.
This feasibility is hard to meet. The specifications on how the network
should behave in the future can introduce conflicts and make the problem
infeasible. The resolution of the conflicts stands as a hard problem.

• The differentiability of the objective and constraint functions cannot be ex-
pected in real-world problems. When the decisions are a mix of discrete and
continuous variables, non-differentiability is introduced in the functions.
The protocols developed in [7] cannot deal with this.

• The exact match of agents to subproblems is impractical. This means that
each subproblem has a specific agent capable of obtaining the information
and making the actions needed to solve the subproblem. The agent archi-
tectures could become too dense to induce an exact match.

• The protocols developed in [7] use interior-point methods. The use of these
methods is not convenient since interior-point methods are sensitive to im-
plement and less robust than algorithms such as sequential quadratic pro-
gramming.

• The enforcement of serial work within neighborhoods is quite impractical
and unattractive. The convergence speed would be very slow and therefore
the network of agents would not respond promptly to disturbances.

Although these issues may be difficult to remove, Camponogara et al. show that it
is not always necessary to fulfill all the conditions. However, there are no general
conditions under which this is not necessary.

5 Conclusion
In this report we have given an overview of recent literature on multi-agent MPC.
We have identified common aspects in each of the reviewed papers. This has led
to the identification of certain groups and attributes at a rather non-mathematical
level. This allows us to identify directions for further research. Although since
the survey paper of 1978 by Sandell et al. [22] a significant amount of progress
has been made, many issues remain to be investigated. Some of these are:

• The decomposition of system models and control problems may be auto-
mated. Methods could be developed that propose different decompositions.
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• In the current literature only one or two layers are considered. It is not clear
how hierarchies with more layers can be automatically used. Perhaps more
layers can be used in similar ways or with some form of nesting.

• The assignment of subproblems to agents may be automated. Perhaps
agents can negotiate about who solves which subproblem. The assignment
should be efficient, robust, etc.

• The conditions for convergence to optimal solutions to the overall problem
are too restrictive for practical application. Perhaps classes of systems or
control problems could be identified in which multi-agent MPC may have
fewer conditions for convergence.

• Until these classes have been identified, heuristic coordination schemes
need to be developed that give good results. Further research into asyn-
chronous cooperation protocols is needed.

With enough research in these directions, applications of truly autonomous multi-
agent control may become possible.
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