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Abstract: We propose the use of Model Predictive Control (MPC) for controlling systems
described by Markov decision processes. First, we consider a straightforward MPC
algorithm for Markov decision processes. Then, we propose value functions, a means
to deal with issues arising in conventional MPC, e.g., computational requirements and
sub-optimality of actions. We use reinforcement learning to let an MPC agent learn a
value function incrementally. The agent incorporates experience from the interaction with
the system in its decision making. Our approach initially relies on pure MPC. Over time,
as experience increases, the learned value function is taken more and more into account.
This speeds up the decision making, allows decisions to be made over an infinite instead
of a finite horizon, and provides adequate control actions, even if the system and desired
performance slowly vary over time. Copyright c© 2005 IFAC
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1. INTRODUCTION

Over the last decades Model Predictive Control (MPC)
has become an important technology for finding con-
trol policies for complex, dynamic systems, as found
in, e.g., the process industry (Camacho and Bordons,
1995; Morari and Lee, 1999). As the name suggests,
MPC is based on models that describe the behavior
of a system. Typically, these models are systems of
difference or differential equations. In this paper we
consider the application of MPC to systems that can
be modeled by Markov decision processes, a sub-
class of discrete-event models. Moreover, we propose
a learning-based extension for reducing the on-line
computational cost of the MPC algorithm, using re-
inforcement learning to learn expectations of perfor-
mance on-line. The approach allows for system mod-
els to change gradually over time, results in fewer
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computations than conventional MPC, and improves
decision quality by making decisions over an infinite
horizon.

We consider an agent controlling a dynamic system
at discrete decision steps. At each decision step, the
agent observes the state of the system and determines
the next action to take based on the observation and
a policy. A policy maps states to actions and it is
the agent’s task to determine a policy that makes the
system behave in an optimal way.

This paper is organized as follows. We introduce con-
ventional MPC in Section 2. Then we propose MPC
for systems that can be modeled by Markov decision
processes in Section 3. We consider the use of value
functions in MPC in Section 4. To improve computa-
tional and decision making performance we improve
the method with reinforcement learning in Section 5.



2. MODEL PREDICTIVE CONTROL

MPC (Camacho and Bordons, 1995; Morari and Lee,
1999; Maciejowski, 2002) is a model-based control
approach that has found successful application, e.g.,
in the process industry. In MPC, a control agent uses
a system model to predict the behavior of a system
under various actions. The control agent finds a se-
quence of actions that bring the system in a desired
state, while minimizing negative effects of the actions,
and taking constraints into account. In order to find the
sequence of appropriate actions, the control agent uses
a performance function. This performance function
evaluates the preferability of being in a certain state
and performing a certain action by giving rewards.
Let us denote by rk the reward given by the perfor-
mance function at decision step k, by a0, . . . , a∞ the
actions to be determined by the agent, and by E the
expectancy operator taking the system uncertainty into
account. We may then write the task of the agent as
solving the optimization problem:

max
a0,...,a∞

E
{

∞
∑

k=0

rk

}

, (1)

subject to the system model, the performance func-
tion, and the constraints.

Basing actions on the model predictions introduces
issues with robustness due to the fact that models are
inherently inaccurate and thus predictions further in
the future are more and more uncertain. To deal with
this, MPC uses a rolling or receding horizon, which in-
volves reformulating the optimization problem at each
decision step using the latest observation of the system
state. However, the rolling horizon increases compu-
tational costs, since at each decision step a sequence
of actions has to be determined to make sure no
constraints are violated. In practice this is intractable
for many applications. To reduce computational costs,
MPC uses a control horizon, a prediction horizon, and
a performance-to-go. The control horizon determines
the number of actions to find. The prediction hori-
zon determines how far the behavior of the system
is predicted. The performance-to-go gives the sum of
the reward obtained from the state at the end of the
prediction horizon until infinity under a certain policy.
With these principles (1) can be rewritten as:

max
ak0

,...,ak0+Nc

[

E
{

k0+Nc
∑

k=k0

rk

}

+ E
{

k0+Np
∑

k=k0+Nc+1

rk

}

+

V
(

xk0+Np+1

)

]

, (2)

where V is the performance-to-go function, indicating
the expected sum of future rewards when in a cer-
tain state. In general the performance-to-go function
is not known in advance; it may be assumed zero,
approximated with a Lyapunov function (Jadbabaie et
al., 1999), or be learned from experience, as we shall
discuss in Section 5.

future

k
control horizon prediction horizon

k +1 +k Nc +k Np

computed control inputs u

predicted outputs y

past set point y*

Fig. 1. Example of conventional MPC. The control
problem is to find actions uk to uk+Nc

, such that
after Np steps the system behavior y approaches
the desired behavior y∗. In this example, y indeed
reaches the desired set point y∗.

Implementation details of (2) depend on the structure
of the system model and performance function. In
general, MPC methods have the following scheme
(see Figure 1):

(1) The horizon is moved to the current decision step
k0 by observing the state of the true system and
reformulating the optimization problem of (2)
using the observed state as initial state xk0

.
(2) The formulated optimization problem is solved,

often using general solution techniques (e.g.,
quadratic programming, sequential quadratic pro-
gramming, ...). The optimization problem is
solved taking into account constraints on actions
and states.

(3) Actions found in the optimization procedure are
executed until the next decision step. Typically
only one action is performed.

Advantages of MPC lie in the explicit integration of
input and state constraints. Due to the rolling horizon
MPC adapts easily to new contexts and can be used
without intervention for long periods. Moreover, only
few parameters need to be tuned, i.e., the prediction
and control horizon. However, the optimization prob-
lem may still require too many computations, e.g.,
when the control horizon becomes large. Resources
required for computation and memory may be high,
increasing more when the prediction horizon or sys-
tem complexity increases. Besides that, solutions to
the finite horizon problems do not guarantee solutions
to the problem over the infinite horizon.

Research in the past has addressed these issues for
conventional MPC, typically using models that are
systems of difference or differential equations. In
the following sections we propose MPC for sys-
tems modeled by Markov decision processes and con-
sider improving speed and decision quality using the
performance-to-go function and experience.



3. MPC FOR MARKOV DECISION PROCESSES

3.1 Markov Decision Processes

Markov decision processes (Puterman, 1994) are ap-
plicable in fields characterized by uncertain state tran-
sitions and a necessity for sequential decision making,
e.g., robot control, manufacturing, and traffic signal
control (Wiering, 2000). Markov decision processes
satisfy the Markov property, stating that state transi-
tions are conditionally independent from actions and
states encountered before the current decision step. An
agent can therefore rely on a policy that directly maps
states to actions to determine the next action. After
execution of an action, the system is assumed to stay
in the new state until the next action, i.e., the system
has no autonomous behavior. Figure 2 shows the graph
representation of some Markov decision process.
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Fig. 2. Example of a Markov decision process. A node
represents a state. An arc represents a transition
from one state to another under a certain action.
An arc is labeled with a transition probability and
a reward obtainable under the transition.

We use k as counter that indicates the decision step.
At each step the system is in one out of a finite set
of states X = {x1, x2, . . . , xN}. In each state x ∈
X there is a finite set of actions Ax that the agent
can perform (Ax = {a1, a2, . . . , aMx}). The system
evolves according to system model Σ : P (x′|x, a),
where P (x′|x, a) is the probability of transitioning
from state x to state x′ after action a is performed. The
performance function is given by r, where r(x, a, x′)
is the reward obtained with the transition from state x

to state x′ under action a.

Constraints can be included explicitly by restricting
actions and reachable states, or implicitly by imposing
a highly negative reward for certain transitions; as we
will see, the agent will try to avoid these transitions.

As an example, in local traffic signal control at an in-
tersection, a state can consist of the number of cars in
front of the traffic signals. Actions in each state consist
of traffic signal configurations. Transition probabili-
ties may depend on the number of cars leaving the
crossroad during a green signal. Rewards may depend
on the average waiting time, with lower waiting time
indicating higher reward. Constraints on actions con-
sist of admissible, safe, traffic signal configurations.

3.2 Straightforward MPC Approach

Let us consider the straightforward application of
MPC to Markov decision processes. Similar to al-
ternative approaches, the rolling horizon principle is
easily included by letting the agent synchronize at
each decision step its current estimate of the system
state with a new observation of the system state. The
control horizon should equal the prediction horizon,
since the systems we consider have no autonomous
behavior and the set of possible actions can change per
state. Therefore, as is usually assumed in conventional
MPC, assuming constant actions between the end of
the control horizon and the prediction horizon is not
reasonable in our case.

The agent uses the Markov decision process to find
a sequence of Nc actions that gives the best perfor-
mance over the control horizon. From the graphical
viewpoint of Markov decision processes this comes
down to finding the path of Nc steps that has the
highest expected accumulated reward. This yields the
following straightforward MPC algorithm for Markov
decision processes:

(1) Roll the horizon to the current step by observing
the state of the system. Define the optimization
problem of finding the actions over the control
horizon that maximize the sum of the rewards
starting from the observed state.

(2) Find all paths of length Nc and accumulate the
rewards. Determine the sequence of actions that
leads to the path with the highest accumulated
reward.

(3) Implement the first action of this sequence and
move on to the next decision step.

The proposed MPC algorithm can suffer from the dis-
advantages discussed earlier for general MPC tech-
niques. The amount of computational resources re-
quired to consider all paths over a length of the control
horizon depends on Nc and the number of actions
possible from each encountered state. In particular
when there is a very large number of actions from each
state, it may be intractable to consider all paths. Also
whether or not the system model or the performance
model are deterministic or stochastic has influence on
the speed at which the paths can be evaluated. Fur-
thermore, because of the limited horizon over which
actions are considered, the resulting policy may be
suboptimal. This is in particular the case since we ig-
nored the performance-to-go V , as is commonly done
in conventional MPC.

As a solution we can take a small control horizon.
However, this may result in increased sub-optimal
decision making, in particular when we keep ignoring
the performance-to-go. In the following we will not
ignore this performance indicator. We will from now
on refer to the performance-to-go as value function,
and use the information from this value function to
improve the computations required at each step.



4. MPC WITH VALUE FUNCTIONS

4.1 Value Functions

A value function V gives the expected accumulated
future reward for each state x and a policy π. The
optimal value function V ∗ gives the highest possible
expected accumulated future reward for each state.
This highest possible future reward is obtained by
following the actions that an optimal policy π∗ pre-
scribes 2 . Whereas in previous sections we considered
a deterministic policy, from now on we consider a
probabilistic policy. The optimal value function V ∗ is
then obtained by solving for each xk0

:

V ∗
(

xk0

)

= max
π

E
{

∞
∑

k=k0

r(xk, π(xk), xk+1)
}

.

Assume the optimal value function is known. From
the graphical viewpoint of Markov decision processes,
we can label each node with a value, or expected
accumulated future reward. In that case, the agent has
to consider only the actions a ∈ Ax possible in current
state x and find the action that gives the highest sum of
directly obtainable reward plus expected accumulated
future reward of the resulting state after the action
would have been executed. This sum, called the Q

value for the (x, a)-pair, is used by the agent to find
the action that gives the highest Q value as follows:

ak = arg max
a∈Axk

[

∑

x′

P (x′|xk, a)
(

r(xk, a, x′) + V ∗(x′)
)

]

.

Thus, when the optimal value function is known,
instead of considering Nc steps, the agent has to
consider only a one-step optimization procedure at
each decision step, i.e., the control horizon becomes
Nc = 1. Moreover, since the value function is optimal
over the infinite horizon, also the chosen actions are
optimal over the infinite horizon.

In general neither optimal policies nor optimal value
functions are known in advance. In our case, value
functions cannot be computed easily in a straightfor-
ward way, since the reward over an infinite horizon
cannot be summed explicitly. Instead, the value func-
tion can be approximated. Dynamic-programming
methods (Bellman, 1957) use one way of approximat-
ing the value function. Dynamic-programming meth-
ods approximate the value function by introducing a
discount factor. This discount factor lets the infinite
sum of rewards converge. Using a discount factor, the
value function is approximated as:

V π(xk0
) = E

{

∞
∑

k=k0

γk−k0r(xk, π(xk), xk+1)
}

,

(3)

2 For the sake of simplicity we assume a unique optimal policy.
Extension to the non-unique case is straightforward by choosing one
of the optimums.

where γ ∈ (0, 1) is the discount factor. The closer γ is
chosen to 1, the more long-term performance expec-
tations are taken into account. The value function (3)
can be written as:

V π(xk0
) =

∑

a∈Axk0

Pπ(a|xk0
) ×

[

r(xk0
, a, x′) + γ

∑

x′

P (x′|xk0
, a)V (x′)

]

,

where Pπ(a|x) is the probability that the policy π

will select action a in state x. This kind of equation
is called a Bellman equation. Dynamic-programming
methods treat the values of the optimal values of the
states as unknowns. In that case a system of Bellman
equations for all states forms a system of equations
whose unique solution is the optimal value function
(Sutton and Barto, 1998).

4.2 Value-Function MPC Approach

Using the value function we can formulate a new MPC
algorithm for Markov decision processes as follows:

(1) Apply the rolling horizon principle, updating the
state estimate with a measurement of the state.

(2) Compute the value function given the latest sys-
tem model.

(3) Formulate the optimization problem over a con-
trol horizon of Nc = 1 of finding the action that
brings the state of the system into the state with
the highest value. Solve the problem.

(4) Implement the found action and move on to the
next decision step.

The advantage of this approach is that the control
horizon is only of length one. Moreover, by using the
most up-to-date system model to compute the value
function at each decision step, actions are adequate,
even in the event of (slowly) changing system and
performance desires.

However, computing the optimal value function at
each decision step can computationally be very expen-
sive. Computing the optimal value function off-line
before the agent starts controlling the system (e.g., as
done in (Bemporad et al., 2002) for linear systems)
reduces on-line computations, but does not allow for
the system to vary over time. Although the rolling
horizon provides some robustness, structural changes
in parameters of the system model are not anticipated.

Instead of recomputing the value function at each de-
cision step, we could update the value function on-
line using experience from the interaction between the
agent and the true system. We propose to combine
MPC for Markov decision processes with learning
the value function on-line using reinforcement learn-
ing. This way, system changes are anticipated on-line
while not computing the value function at every deci-
sion step.



5. MPC WITH REINFORCEMENT LEARNING

5.1 Reinforcement Learning

In reinforcement learning (Sutton and Barto, 1998;
Kaelbling et al., 1996; Wiering, 1999) both the model
of the stochastic system and the desired behavior are
unknown a priori. To determine a policy, the agent
incrementally computes the value function based on
performance indications and interaction with the sys-
tem, which implicitly contains the system model. At
each decision step the value function of the last deci-
sion step is updated with the newly gained experience
consisting of a state-action-state transition and reward.
By obtaining sufficiently many experiences the agent
can accurately estimate the value function.

In Temporal-Difference (λ) learning (TD(λ)) (Sutton,
1988) the difference between value estimates of suc-
cessive decision steps is minimized, explicitly using
value estimates of successive states. The parameter
λ ∈ [0, 1] weighs reward and value estimates further
away in the future exponentially less. With probability
1 value estimates can be guaranteed to converge to the
true values for all λ (Sutton, 1988).

TD(λ) learning uses eligibility traces to incrementally
learn the value function, which we assume initially
contains arbitrary (finite) values. The value of a state
depends on the values of successor states. Therefore,
the value update of a state also depends on the value
updates of successive states. In fact, to compute the
update for a state, all future updates need to be known,
which is impossible for the infinite-horizon case. In-
stead, values can be updated incrementally as new up-
dates become available using eligibility traces (Barto
et al., 1983). These traces indicate the amount a state
is eligible to learn from new experience. This depends
on λ, the recency of the state appearance, and the
frequency of the state appearance. The update ∆V l(x)
of the learned value of a state using a reward received
in the future can be shown to be:

∆V l(x) = α(x)eklk(x)

where α(x) is a suitable learning rate, which can guar-
antee convergence; error ek = rk + γV l(xk+1) −
V l(xk) indicates for a state the difference between
the previously learned value V l(xk) and the sampled
value based on the obtained reward rk and the previ-
ously learned value V l(xk+1) for the successor state;
lk(x) represents the accumulating eligibility trace for
x, which is initially zero and can recursively be up-
dated as:

lk+1(x)← λγlk(x) if xk 6= x

lk+1(x)← λγlk(x) + 1 if xk = x.

The uncertainty in the update can be computed using
the error ek. For the case λ = 0 the uncertainty (or
variance) in the update is σ2

k = e2
k. More general

results on error bounds for TD learning are reported
in (Kearns and Singh, 2000).

5.2 TD-MPC Approach

We consider a collaborative approach in which MPC
provides basic robustness and decision making over
the relatively short term, while learning provides
robustness, adaptation, and decision making over
the long term. The agent gradually incorporates the
learned value function in its decision making as ex-
perience increases. Initially uncertainty in the value
estimates is high, so it will just use MPC. Samples
generated by the MPC part are predictions about the
behavior of the system and predictions about what
is optimal to do over the control horizon. Learning
uses the samples as idealized experience, incorporat-
ing them in its value function. Over time the uncer-
tainty in the value estimates decreases. When the un-
certainty is below a threshold, the agent uses the value
estimates, thereby decreasing the control horizon over
which MPC computes paths. Since the agent uses a
learned value only when the uncertainty in it is below a
threshold, values can be initialized to any finite value.
We propose the following algorithm:

(1) Roll the horizon to the current step k.
(2) For each path of Nc (x, a, r, x′) 4-tuples starting

from the current state, consider each state. If the
uncertainty in the value estimate of an encoun-
tered state is below a threshold, use the value plus
reward summed over earlier steps in that path as
indication for the expected accumulated future
reward, and stop considering the path. Else, add
the given reward to the summed reward over ear-
lier steps in the path and move to the next state.

(3) Incorporate the (x, a, r, x′)-samples created by
MPC in the value function as experience using
TD learning and reduce the uncertainty in the
value estimates.

(4) Implement the first action in the sequence deter-
mined and move to the next decision step.

The described algorithm has some attractive features.
Once the value function is computed with high enough
accuracy, the computationally intensive MPC opti-
mizations over the full control horizon using the sys-
tem model and the performance function are reduced
to a one-step optimization using the system model and
the value function. Moreover, using the experience,
the decisions are based on an infinite horizon, since
values of states represent expected accumulated re-
ward over the full future. Constraint violations are thus
anticipated better.

The agent will propose adequate actions, even if the
system and desired performance slowly vary over
time. In particular for systems with a long lifetime this
is an advantage. The system model and performance
function can be updated at each decision step. The
agent will then generate samples using these updated
models, and the learning part will incorporate these
samples and adjust to the new situation.



6. CONCLUSIONS & FUTURE RESEARCH

In this paper we have considered Model Predictive
Control (MPC) for Markov decision processes. We
have first considered a straightforward algorithm for
these kind of models. To deal high computational re-
quirements and sub-optimality issues, we have pro-
posed the use of the performance-to-go or value func-
tion. With optimal value functions the MPC control
horizon becomes length one. Speed is increased, while
decisions are based on infinite-horizon predictions.

In general however, optimal value functions are not
known a priori. In this paper we have considered
using experience to incrementally learn value func-
tions over time. With reinforcement-learning methods
like temporal-difference learning the agent incorpo-
rates experience built up through interaction with the
system. It can over time get a good estimate of the
value function. Once sufficient experience has been
obtained, the agent uses this to its fullest, requiring
less computations than the non-learning approach.

An additional advantage of the proposed approach lies
in that the agent adapts to changing system and per-
formance characteristics. The performance function or
system under control may slowly change over time.
Since the agent incorporates newly gained experience
at each decision step, it will adapt to these changes and
still produce adequate actions.

We note that in this paper we have considered TD(λ)
learning for finite Markov decision processes. To deal
with high dimensional continuous action and state
spaces we can use actor-critic methods (Sutton and
Barto, 1998). Moreover, in this paper we have silently
assumed an explicit tabular value-function representa-
tion. If an explicit representation is not available, we
may use an implicit representation, e.g., a function ap-
proximator (Sutton and Barto, 1998). MPC may then
still be combined fruitfully with learning.

Future research directions consist of considering alter-
native ways to include the uncertainty in the gained
experience in the decision making. Also, accuracy
bounds and comparisons with alternative adaptive and
learning control approaches can be made. Further-
more, experiments need to be implemented to further
investigate and show the potential of the proposed
learning-based MPC for Markov decision processes.
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