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Abstract
Model predictive control (MPC) is becoming an increasingly popular method to select ac-
tions for controlling dynamic systems. Traditionally MPC uses a model of the system to
be controlled and a performance function to characterize the desired behavior of the sys-
tem. The MPC agent finds actions over a finite horizon that lead the system into a desired
direction. A significant problem with conventional MPC is the amount of computations
required and suboptimality of chosen actions.

In this paper we propose the use of MPC to control systems that can be described as
Markov decision processes. We discuss how a straightforward MPC algorithm for Markov
decision processes can be implemented, and how it can be improved in terms of speed and
decision quality by considering value functions. We propose the use of reinforcement
learning techniques to let the agent incorporate experience from the interaction with the
system in its decision making. This experience speeds up the decision making of the agent
significantly. Also, it allows the agent to base its decisions on an infinite instead of finite
horizon.

The proposed approach can be beneficial for any system that can be modeled as
Markov decision process, including systems found in areas like logistics, traffic control,
and vehicle automation.

Keywords
Markov decision process, model predictive control, reinforcement learning
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1 Introduction
Controlling Dynamic Systems In this paper we consider an agent that interacts with
a controllable dynamic system at some discrete, low-level time scale. At each decision
step the agent observes the state of the system, and based on this observation it chooses
an action to perform on the system. The agent decides which action is selected based on
a policy. The policy indicates what action the agent will make in each state.

The goal of the control agent is to find a policy that maps states to actions in such a
way that the system behaves in the best way possible. In order for the agent to evaluate
how well the system is behaving, there typically is some kind of performance function.
This function indicates how well it is to make a certain state-action-state transition. The
agent has to find a policy that chooses actions in states in such a way that the overall
performance is maximized.

Model Predictive Control Over the last decades Model Predictive Control (MPC) has
become an important technology for finding policies for complex, dynamic systems. MPC
is popular mainly due to its easy way of integrating constraints on actions and states in the
control of a system.

MPC has found wide application in the process industry. Recently, MPC has also
started to be used in traffic control. Van den Berg et al. (2004) consider using MPC for
controlling mixed urban and freeway traffic, where the objective is to make traffic in urban
areas and on freeways smoothly interact with each other in such a way that total time spent
in the network is minimized. Bellemans et al. (2002) consider MPC for control of ramp
meter installations. Dunbar & Murray (2002) use MPC in a distributed setting to control
multiple vehicles that have to drive in a specific formation. Hegyi (2004) considers using
MPC to control different traffic measures at the same time: ramp metering and variable
speed limits, route guidance and ramp metering, and ramp metering and main-stream
metering.

As the name suggests, MPC is based on models that describe the behavior of a sys-
tem. These models can be systems of difference or differential equations, hybrid models,
or discrete-event models. In this paper we extend the application of MPC to systems
that can be modeled as Markov decision processes, a subclass of discrete-event models.
We consider how MPC can be used for this kind of systems and propose an experience-
based extension for improving on-line computational costs of the MPC algorithm. This
extension uses reinforcement learning to update the action selection policy on-line. The
approach allows for system models to change gradually over time, results in fewer compu-
tations than conventional MPC, and improves decision quality by making decisions over
an longer horizon.

Outline This paper is organized as follows. We start with an introduction to MPC in
Section 2. We then discuss modeling systems as Markov decision processes in Section 3.
We propose how MPC can be applied to these kind of models in Section 4. To improve
computational and decision making performance we propose an extension to the MPC
method for Markov decision processes that is based on reinforcement learning in Section
5.
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2 Model Predictive Control
MPC (Camacho & Bordons (1995); Garcı́a et al. (1989); Maciejowski (2002)) uses a
model of the system and a model of the desired behavior to determine what actions to
take. The system model is used to make predictions of the behavior of the system under
various actions. The agent tries to find a sequence of actions that both bring the system
in a desired state, and minimize negative effects of the actions. It considers a sequence of
actions that avoids that any constraints on system states or actions are violated. By looking
further ahead, the agent can anticipate possible constraint violations. In order to find
the appropriate sequence of actions, MPC techniques have access to a model of desired
behavior, in the form of a performance function. The performance function evaluates the
preferability of being in a certain state and/or performing a certain action. Using these
ingredients, the agent’s task is to:

Determine a sequence of actions based on predictions using the system model,
that maximize the performance of the system in terms of the desired behavior
model, while preventing violation of system and action constraints.

Thus, let us denote by rk the performance or reward that the agent obtains at step k, by
a0, . . . ,a∞ the actions that the agent has to determine, and by E the expectancy operator
taking the stochastic nature of the system into account. Then, we may write the task of
the agent as solving the optimization problem:

max
a0,...,a∞

E
{ ∞

∑
k=0

rk

}

, (1)

subject to the system model, the performance model, and constraints.
Basing actions on the predictions made by the system model introduces the issues of

robustness and computational costs. MPC uses two principles to deal with these issues:
the rolling horizon, and the finite horizon.

Rolling Horizon The problem of robustness is due to the fact that models are inher-
ently inaccurate. A model is always an approximation of the system under consideration.
Predictions about the behavior of the system become more and more inaccurate when
considered further in the future. MPC techniques use a rolling horizon to increase robust-
ness. The rolling horizon principle consists of synchronizing the state of the model with
the state of the true system at every decision step. At every decision step the MPC agent
observes the state of the true system, updates its model of the system and tries to find the
best sequence of actions given the updated model. Typically the agent only executes the
first action of this sequence. It then observes the system’s state again and finds a new
sequence of actions. Thus, the rolling horizon principle implements (1) as a sequence of
optimization problems for each decision step k0:

max
ak0 ,...,a∞

E
{ ∞

∑
k=k0

rk

}

. (2)

Finite Horizon The increase of robustness comes at the price of increased computa-
tional costs. Due to the rolling horizon, the MPC agent has to find a sequence of actions
at each decision step. This can be an intractable procedure when the horizon over which
the agent has to find actions is infinite. Ideally the agent does consider an infinite hori-
zon, since then the agent knows for sure that no constraints are violated. However, in
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future

k

control horizon prediction horizon

k +1 +k Nc +k Np

computed control inputs u

predicted outputs y

past set point r

Figure 1: Example of Model Predictive Control.

practice considering an infinite horizon problem at each step is intractable for many ap-
plications. Therefore, conventional MPC techniques make the horizon finite by using a
control horizon, a prediction horizon, and a performance-to-go part. The control horizon
is the horizon over which the agent finds actions. The prediction horizon is the horizon
over which the agent predicts the autonomous behavior of the system. The performance-
to-go specifies the performance that the agent will obtain from the state at the end of the
prediction horizon. Typically both horizons are much shorter than infinity, while the pre-
diction horizon is larger than the control horizon. This is the case since in particular when
considering systems that have autonomous behavior, actions are used to steer the system
in a certain direction after which it can autonomously evolve further. By considering a
prediction horizon that is larger than the control horizon, the agent can analyze where the
system ends up after the agent has executed its actions over the control horizon. The finite
horizon principle rewrites (2) as:

max
ak0 ,...,ak0+Nc

[

E
{ k0+Nc

∑
k=k0

rk

}

+E
{

k0+Np

∑
k=k0+Nc+1

rk

}

+V
(

xk0+Np+1
)

]

, (3)

where V is the performance-to-go function that indicates what the expected sum of future
performance will be when in a certain state. In general this function is not known in
advance. It may be assumed zero, approximated with a Lyapunov function (Jadbabaie
et al. (1999)), or be learned from experience. We get back to this in Section 5.

Algorithm MPC is not one algorithm, but a class of algorithms that are based on the
earlier described principles. The details of the implementations differ from each other
depending on the structure of the system and performance models. In general, an agent
employing MPC to determine its actions performs the following steps at each decision
step k:

1. It rolls the horizon forward to the current decision step. That is, it measures the
state of the true system and synchronizes its system model with this measurement.
It formulates the optimization problem of finding the actions that give the best per-
formance over the control horizon considering the evolution of the system model
over the prediction horizon, subject to constraints on system state and actions. In
Figure 1, the desired behavior is indicated by the set points r, the control horizon by
Nc, and the prediction horizon by Np. The optimization problem consists of finding
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the actions from step k to k + Nc, such that at the end of the prediction horizon the
system behavior y is close to the desired behavior r.

2. It solves the formulated optimization problem, often using general solution tech-
niques (e.g., quadratic programming, sequential quadratic programming, ...), while
taking into account constraints on actions and states. In Figure 1, the computed
control inputs u are the actions found over the control horizon. After the control
horizon the actions are assumed to be constant. Under this sequence of actions, the
predicted outputs y approach the desired set points r.

3. It implements the actions found in the optimization procedure until the beginning
of the next decision step. Typically this means that only one action is implemented
before the horizon is rolled forward to step k +1.

Discussion MPC has found wide success in many different applications, mainly in the
process industry. Advantages lie in the fact that the framework handles input and state
constraints explicitly in a systematic way. This is due to the control problem formulation
being based on the system model which includes the constraints. Also, MPC agents can
operate without intervention for long periods. This is due to the rolling horizon principle,
which makes that the agent looks ahead to prevent the system from going in the wrong
direction. Finally, MPC agents adapt easily to new contexts due to the rolling horizon and
require only few parameters to tune.

However, the use of MPC also has some disadvantages. The optimization problem of
finding the sequence of actions can be of large size. In particular, when the control hori-
zon over which actions are computed becomes larger, the number of variables of which
the agent has to find the optimal value increases quickly. Also, the resources needed for
computation and memory may be high, increasing more when the prediction horizon in-
creases. The amount of resources required also grows with increasing system complexity.
Finally, the feasibility of the solution to the overall control problem of the system is not
guaranteed. Solutions to the problems considered over finite horizons do not guarantee
solutions to the problem over the infinite horizon.

Research in the past has addressed these issues, resulting in conditions for feasibility
and stability, using e.g. contracting constraints and classical stabilizing controllers at the
end of the horizon. Most of the research has focused on computations carried out by one
agent. In Negenborn et al. (2004) we survey how a distributed, multi-agent MPC setting
can reduce the computations of a single MPC agent. In this paper we propose the use of
experience to decrease the computational costs and improve decision making. However,
first we propose the use of MPC to the class of systems that can be modeled as Markov
decision processes.
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3 Markov Decision Processes
As mentioned before, the MPC controller or agent has access to a model that describes
the behavior of the system under actions and a model that describes the performance of
the system and actions. Typically these models are systems of difference or differential
equations, hybrid models, or discrete-event models. Discrete-event models are models
in which transitions from one state to another occur with the execution or appearance of
a specific action. Here we look at one type of discrete-event models: Markov decision
processes (Puterman (1994)).

Assumptions Markov decision processes satisfy the Markov property, which states that
the state evolution of the system only depends on the last state and the last action chosen.
In other words, the transitions of the system are conditionally independent from actions
and states encountered before the last decision step. To determine the next action, an agent
uses its policy, which maps states to actions. No autonomous system behavior is assumed.
Thus, the system only reacts in response to the action that the agent performed. After the
action is performed the system stays in the new state until the next action occurs. The
execution of each action indicates an event that transitions the system from one state to
another.

We assume that the system evolves at discrete event steps k = 0,1,2,3, . . . At each
step the system is in one out of a finite set of possible states X (X = {x1

,x2
, . . . ,xN}).

In each state x ∈ X there is a finite set of actions Ax that the agent can perform (Ax =
{a1

,a2
, . . . ,aM}).

Typically Markov decision processes model stochastic systems. We assume that the
system evolves according to a system model Σ : P(x′|x,a), where P(x′|x,a) denotes the
probability of the system transitioning from state x to state x′ after the agent has performed
action a. The performance model is given by a function r, where r(x,a,x′) indicates the
performance obtained by transitioning from state x to state x′ under action a.

PSfrag replacements
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Figure 2: Example of a Markov decision process.
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Graphical Representation Markov decision processes are intuitively represented as di-
rected graphs. Figure 2 shows an example of the graphical representation of a Markov
decision process. The representation consists of nodes and arcs. The nodes represent the
possible states; the arcs represent transitions between states. Each arc corresponds to an
action and is labeled with the probability that under the given action performed in the state
represented by the node at the beginning of the arc, the system transitions to the node rep-
resented by the node at the end of the arc. The arcs are also labeled with the performance,
indicating the performance obtained when the transition is made.

Constraints Constraints on system states and actions can be incorporated in Markov
decision processes by restricting the set of possible states and by restricting the actions
that are possible from individual states. Constraints can also be imposed by adjusting
the performance function with highly negative performance for certain state-action-state
transitions. In that case the agent will try to avoid those transitions as much as possible,
since it is not interested in highly negative performance.

Example Systems Systems that can be modeled as Markov decision processes can be
found in many fields. Markov decision processes have been used in ecology, economics,
communications engineering, and also in the areas of traffic control, logistics, and trans-
portation. The fields where Markov decision processes are applicable are characterized
by uncertain state transitions and a necessity for sequential decision making. Let us look
at examples from logistics and traffic control.

In logistics, Markov decision processes have been used, e.g., in the field of logistics for
airline meal planning (Goto et al. (2004)). At several decision steps up to 3 hours before
an airplane departs, the meal planner observes how many people will be flying and what
they will be eating in the plane. Depending on that he adjusts the quantity of allocated
meal. In the last couple of hours before departure, the adjustments of meal quantities are
much higher and limited by the capacity of the van that has to deliver the meals directly to
the plane. In this example the states of the Markov decision process consist of number of
meals already allocated and the number of booked and stand-by passengers. The actions
in each state consist of choices about how many extra meals to prepare or deliver. The
direct performance for performing an action in a certain state depends on the meal costs,
the return meal penalty, the van delivery charge, and the being late penalty. The transition
probabilities of the system model give the likelihood of changes in the number of people
scheduled to fly with the plane.

In traffic control Markov decision processes can be found, e.g., in the traffic signal
control at a crossroad (Wiering (2000)). The state of the system can be the number of
cars standing in front of the traffic signals. Actions that the agent can perform (in each
state) consist of choosing traffic signal configurations. In local control context, the direct
performance that the agent obtains may depend, e.g., on the average waiting time for each
car. The lower this waiting time is, the better the performance. The transition probabilities
of the system model depend on the number of cars that during a green signal period
manage to leave the crossroad.

Further examples of the use of Markov decision processes deal with queuing networks,
highway pavement repair, inventory control, knapsack problems, network control, and
robotic motion.
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4 MPC for Markov Decision Processes
In this section we propose the use of MPC for controlling models that can be modeled
as Markov decision processes. Thus, we assume that we are given a system model and
a performance model as described in the previous section. We can now implement the
principles of MPC to come up with an MPC strategy for controlling systems described
with such models. Recall that for finding a sequence of actions the MPC approach relies
on control and prediction horizons that are rolling. Let us look at these elements.

4.1 Basic Approach
Rolling Horizon Similar to alternative approaches, the rolling horizon principle is eas-
ily included in the MPC for Markov decision processes by observing at each decision step
the state of the true system and synchronizing the estimate that the agent has of the state
of the system with this.

Finite Horizon Typically it is assumed that at the steps between the end of the control
horizon and the prediction horizon the action stays the same. However, in our case the
set of possible actions might change per state and this is thus not a reasonable approach.
Also, since we do not consider systems that have autonomous behavior an action has to be
chosen in each state of the system, otherwise there is no system evolution. Therefore we
conclude that the control horizon should equal the prediction horizon in MPC for Markov
decision processes.

Algorithm We now need to define the way in which the agent can find an optimal action
sequences. The agent somehow has to use the system and performance model to find a
sequence of Nc actions that gives the best performance over the control horizon. From the
graphical viewpoint of Markov decision processes this comes down to finding the path
of Nc steps that has the highest expected accumulated performance. A straightforward
approach that achieves this simply considers all possible paths consisting of Nc actions.
It sums all the accumulated performance and gives as result the sequence with highest
accumulated performance. The performance-to-go V is for now assumed to be zero, as
commonly done in MPC. These considerations lead us to the following straightforward
algorithm for MPC for Markov decision processes:

1. Roll the horizon to the current decision step by observing the state of the system
and define the optimization problem of finding the actions over the control horizon
that maximize the performance starting from the observed state.

2. Find all paths of length Nc and accumulate the expected performance. Determine
the sequence of actions that leads to the path with the highest accumulated expected
performance.

3. Implement the first action of this sequence and move on to the next decision step.

Discussion The proposed MPC algorithm might suffer from the disadvantages discussed
earlier for general MPC techniques. The amount of computational resources required to
consider all paths over a length of the control horizon depends on Nc and the number of ac-
tions possible from each encountered state. In particular when there is a very large number
of actions from each state, it may be impossible to consider all paths. Also whether or not
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the system model or the performance model are deterministic or stochastic has influence
on the speed at which the paths can be evaluated. Furthermore, because of the limited
horizon over which actions are considered, the resulting policy may be suboptimal.

As a solution the control horizon might be chosen small, but this comes at the expense
of larger sub-optimality. Alternatively we can make use of the performance-to-go func-
tion, which we will from now on refer to as value function, that for each state gives the
accumulated future expected performance. Using the information from this function the
computations required at each decision step may decrease significantly.

4.2 Value-Function Approach
Value Functions Value functions give the expected accumulated future performance
for each state x. Obviously the future performance depends on the actions taken in the
future, and since the actions taken in the future are chosen by a policy, value functions
depend on policies. The optimal value function gives for each state the highest possible
future performance from that state. This highest possible future performance is obtained
by following the actions that an optimal policy prescribes. The optimal value function is
obtained by solving:

V ∗
(

xk0

)

= maxE
{ ∞

∑
k=k0

rk

}

, (4)

where rk is the performance received for the transition at decision step k. The optimal
value function V ∗ has the most accurate estimates of the future performance to be expected
when in a certain state.

Assume that the optimal value function is known. From the graphical viewpoint of
Markov decision processes, this means that we can label each node with the future ex-
pected performance. In that case, when the system is in state x, all the agent has to do
is consider the actions a ∈ Ax possible in state x and find the action that gives the best
combination of directly obtainable performance plus expected accumulated performance
from the state where the system will end up in after execution of action a. This quantity is
called the Q value for the (x,a) pair. The agent uses the performance model to determine
the direct performance gain for choosing an action and the system model to determine the
successor state. The agent has to find the action that gives the highest Q value, i.e.,

ak = arg max
a∈Axk

[

∑
x′

P(x′|xk,a)
(

r(xk,a,x′)+V ∗(x′)
)

]

. (5)

Thus, when the optimal value function is known, instead of considering Nc steps, the
procedure that the agent has to perform at each decision step reduces to a single one-
step optimization procedure, i.e. the control horizon becomes Nc = 1. Moreover, since
we assumed an optimal value function, the chosen actions are optimal over the infinite
horizon.

The problem is that in general neither optimal policies nor optimal value functions for
the control of dynamic systems are known in advance. Thus, the question is how the value
function can be computed. Since we are considering the infinite-horizon case, the agent
cannot simply compute the value function, since it cannot explicitly sum the performance
over an infinite horizon. So instead it has to approximate the value function in some
way. One way of approximating the value function is by use of a discount factor. This
discount factor makes that the infinite sum of performances converges. We can employ
dynamic-programming methods to find the value function in this case.



Experience-based model predictive control using reinforcement learning 9

Dynamic Programming Dynamic-programming (Bellman (1957)) methods approxi-
mate the value function when discount factors are used. Given a policy, dynamic-programming
methods compute the value function as:

V (xk0) = E
{ ∞

∑
k=k0

γk−k0rk

}

, (6)

where γ ∈ (0,1) is the discount factor. The closer γ is chosen to 1, the more long-term
performance expectations are taken into account. The discount factor makes that perfor-
mance received earlier is more important than performance obtained further in the future.
We can rewrite the value function as:

V (xk0) = E
{ ∞

∑
k=k0

γk−k0rk

}

= E{rk0 + γrk0+1 + γ2rk0+2 + . . .}

= E{rk0 + γV (xk0+1)}

= ∑
a∈Axk0

PΠ(xk0 ,a)

[

r(xk0 ,a,x′)+ γ ∑
x′

P(x′|xk0,a)V (x′)

]

, (7)

where PΠ(x,a) is the probability that the policy assigns to choosing action a in state x.
Equation (7) is called the Bellman equation form of the value function. Bellman equations
relate value functions recursively to themselves.

Methods that find the optimal value function treat the values of the optimal values of
the states as unknowns. In that case a system of Bellman equations for all states forms a
system of equations whose unique solution is the optimal value function (Sutton & Barto
(1998)).

Algorithm With the value function we can define an MPC algorithm for Markov deci-
sion processes as follows:

1. Apply the rolling horizon principle by updating the state estimate with a measure-
ment of the state.

2. Compute the value function given the latest system model.

3. Formulate the optimization problem over a control horizon of Nc = 1 of finding the
action that brings the state of the system into the state with highest value. Solve the
optimization problem.

4. Implement the found action and move on to the next decision step.

Discussion Computing the optimal value function at each decision step is too computa-
tionally expensive. Computing the optimal value function offline before the agent starts
controlling the system (e.g., as in Bemporad et al. (2002)) reduces on-line computations,
but has as disadvantage that the system cannot vary over time. The system should be
time invariant. As mentioned before, models are inherently inaccurate. In MPC, typically
deterministic models are assumed. In that case, modeled transition probabilities and true
transition probabilities will not completely match. Also, these probabilities might change
over time; some transitions might not even have been modeled at all. Although the rolling
horizon provides some robustness, structural changes in parameters of the system model,
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e.g., transition probabilities, or changes in the performance model are not anticipated.
Instead, we may update the value function on-line using experience from the interaction
between the agent and the true system. In the following section we propose the use of
reinforcement learning to update the value function on-line.
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5 MPC with Reinforcement Learning

5.1 Reinforcement Learning
Since there is uncertainty in the system and performance model, we do not want to com-
pute the value function once at the beginning. On the other hand, we also do not want to
compute it at every decision step because this takes too many computations. We propose
to combine the MPC for Markov decision processes introduced earlier with learning the
value function on-line using reinforcement learning (Sutton & Barto (1998); Kaelbling
et al. (1996); Wiering (1999)). In reinforcement learning we have a stochastic system of
which we do not know the transition probabilities and the performance of taking actions in
individual states. Since an agent wants to find a policy that gives the maximal cumulative
expected future performance, it has to interact with the system, which implicitly contains
the system model of which the agent requires information to determine the optimal value
function.

In reinforcement learning experience is built up over time, instead of assumed avail-
able in a priori knowledge. The experience is based on the performance indications that
give information about how well a certain action was in a certain state of the system. The
experience is also based on the state transitions of the system under actions taken. In
reinforcement learning the value function is approximated by keeping track of the perfor-
mance obtained at each decision step considering the system state, performed action, and
resulting system state. At each decision step the value function of the last decision step
is updated with the experience built up over that last decision step. This experience, that
is, the obtained performance indication and state observation, are samples of the value
function that the agent wants to acquire. Each performance obtained by executing a cer-
tain action in a certain state leading to another state gives some information about the true
value function. By obtaining sufficiently many of these samples the agent may accurately
estimate the true value function.

Temporal-Difference Learning One of the methods that computes the value function
without knowledge about the system or reward model using samples of interaction is
Temporal-Difference (TD) learning (Sutton (1988)). TD learning uses current value esti-
mates of successive states to update the value of the current state. Implicitly the assump-
tion of time continuity is made: states visited in the same interval predict about the same
outcome.

TD methods try to minimize the difference between value estimates of successive
decision steps, explicitly using value estimates of successive states. For this, the TD
method TD(0) uses only the current performance indication and the estimate of the value
of the next state. TD(0) updates the value of a state as:

V (xk) = V (xk)+αxk(rk + γV (xk+1)−V (xk)), (8)

where αxk is a learning rate, and the term ek = rk + γV (xk+1)−V (xk) is defined as the
TD(0)-error, which gives the error in the current value estimate of state xk. The learning
rate is used to be able to make the estimated value function converge by letting it decay
over time when more experience has been built up.

The variance in the TD-errors gives an indication of the uncertainty in the value es-
timates. We may use this to determine when experience is sufficiently trustworthy. The
variance σ of the value estimate assigned with state xk is computed as:

σ(xk) = (rk + γV (xk+1)−V (xk))
2
. (9)
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TD(λ ) with Eligibility Traces TD(λ ) learning generalizes TD(0) learning in that the λ
parameter allows performance and value estimates further away in the future to be taken
into account as well. The λ factor is a real number in the interval [0,1], which weighs
performance and value estimates further in the future exponentially less. With probability
1 value estimates converge to the true values for all λ , when each state is visited by
infinitely many times and the learning rate diminishes to zero. To compute the TD(λ )-
errors we need to know the TD(0)-errors of all future steps. For an infinite horizon it is
impossible to know these. Instead, we incrementally update the value estimates as new
TD(0)-errors become available using eligibility traces (Barto et al. (1983)). Eligibility
traces indicate how much a state is eligible to learn from a new TD(0)-error. How much
this is depends on λ , the recency of the state appearance, and the frequency of the state
appearance. It can be shown that the update of the value of a state using a performance
indication received a number of steps in the future is

∆V (x) = α(x)eklk(x), (10)

where lk(x) represents the accumulating eligibility trace for x, which can recursively be
implemented as:

lk+1(x)← λγlk(x) if xk 6= x (11)
lk+1(x)← λγlk(x)+1 if xk = x. (12)

Instead of using accumulating eligibility traces, we may also use replacing traces, in
which case the eligibility for a state is simply reset to 1 when it is encountered, instead of
incremented by 1.

5.2 MPC with TD(λ ) Algorithm
We now combine the MPC for Markov decision processes with learning the value func-
tion. In the beginning the agent has no experience to rely on, so it should not rely on
its value function. Instead the agent should fully rely on its MPC decisions. Later on it
gains more experience and the decisions that it can make based on the value function it
learned will become more trustworthy. In the extreme case, the agent has gained so much
experience with the system that it should fully rely on the experience.

Competitive Approach As a first approach to combine MPC with learning we could
consider a competitive situation between the MPC and the learning part of the agent.
These two parts could compete over which of them gets to make the decision about which
action the agent takes. In the beginning, the learning part will have a difficult time compet-
ing with the MPC part, since it has no experience at all with controlling the system. Over
time though the learning part does get more experienced and at some point the learning
part might propose actions to take that are better than those suggested by the MPC part. At
that point the agent can either switch to completely using the experience-based decisions
and not using the MPC part anymore, or it can at each decision step decide on which of
the two to rely on. It may decide on which of the two it should rely by keeping track of
the quality of earlier actions proposed by the two.

Collaborative Approach Alternatively, instead of seeing the decision making as a com-
petition between the two parts we can see it as a collaboration between the parts. The MPC
part provides basic robustness and decision making over the relatively short term, while
the learning part provides experience and decision making over the long term.
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The agent may gradually incorporate the experience built up in the value function in
its decision making. In the beginning it should still not rely too much on the learned
value function since it has not gathered much experience with the system yet. The uncer-
tainty in the value estimates, that is, in the estimates of the expected accumulated future
performance is high. Over time the agents builds up more experience, resulting in value
estimates with higher accuracy. In that case the agent should use its experience in its deci-
sion making. In the algorithm we propose next the agent uses accurate value estimates to
decrease the control horizon over which MPC computes paths, thus speeding up decision
making, while increasing decision quality.

In our first algorithm for Markov decision processes (on page 7) the agent computed
the accumulated performance for each path over the control horizon of length Nc. We then
ignored the value (or, performance-to-go) of the resulting final path state. Now however
we can incorporate the value function that is being learned in this process. When the
agent is considering a certain path of length Nc it can at each step in that path consider the
value of the state associated with the step in that path. If the uncertainty in the value of
that state is low, then the agent can stop considering the rest of the path and instead take
the given value as estimate of the obtainable future accumulated performance. We can do
this since the value of that state indicates the expected accumulated future performance
starting from that state.

The outline of the algorithm we propose is as follows:

1. The agent rolls the horizon of the last step forward to the current step k, measuring
the current state of the system.

2. The MPC part of the agent considers each path of length Nc starting from the mea-
sured state. It finds the path of state-action-reward-states (x,a,r,x′) that gives the
maximal accumulated performance over the control horizon. While considering the
paths, the agent may encounter a state that has a value estimate associated with it
with uncertainty below some threshold. This estimate indicates the expected accu-
mulated future performance from that state onwards, and thus the MPC part can use
that value as indication for the expected accumulated future performance. It need
not consider any further steps on that path.

3. The learning part of the agent incorporates the (x,a,r,x′) samples generated by the
MPC part of the agent. The samples generated by the MPC part are predictions
about the behavior of the system and predictions about what is optimal to do con-
sidering the control horizon. The learning part uses these samples as idealized ex-
perience. It incorporates all generated performance indications in its value function,
thereby decreasing the uncertainty in the values. The learning part will incorporate
the predicted samples from the starting state to the state of which the value is used
of the path that has maximal total performance. Note that since the agent uses a
value estimate only when the uncertainty in it is below some threshold, it does not
matter how the values are initialized.

4. The agent implements the first action in the sequence determined and moves on to
the next decision step.

5.3 Discussion
The described algorithm has some attractive features. First of all, once the value function
is computed with high enough accuracy, the computationally intensive MPC optimizations
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over the full control horizon using the system and performance model can be reduced to
an optimization over one step using the system model and value function. Besides that,
in the second phase of operation, the decisions the agent makes are based on an infinite
horizon, since the values of the states represent the expected accumulated performance
over the full future. This makes the actions chosen closer to optimal.

Also, the approach allows for the system and desired performance to change over time.
In particular when we consider systems that have a long lifetime this is an advantage. The
performance model can be updated at each decision step with some identification method.
The MPC agent will then generate samples using these new rewards, and the learning part
will incorporate these samples and slowly adjust to the new performance. The system
model may also change over time and be updated at each decision step. The transition
probabilities can change over time, e.g., due to aging. By monitoring the actual transition
from a state to another under a certain action, a system model can be learned. This model
will adapt to changing system behavior. The MPC part can use this model learned to
compute its paths. The problem is that the value function is implicitly based on the system
model. However since TD methods do not need a system model they will adjust to the
new situation.

Finally, the proposed approach still acknowledges the constraints in the original model.
Moreover, if constraints are violated, the reinforcement learning part might obtain a highly
negative feedback. This will learn the agent that in the future it should avoid the same sit-
uation.
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6 Conclusion
In this paper we have considered model predictive control for Markov decision processes.
We have proposed a straightforward algorithm for these kind of models. However, this
algorithm might suffer from too high computational requirements and suboptimality. As
a first solution to this we have considered the use of value functions. Once value functions
are known well, the computational requirements reduce to an MPC problem with a control
horizon of only length one. At the same time, the decisions are based on infinite-horizon
information. The problem is that in general the value function is not known well enough
a priori. In this paper we have considered the use of experience to incrementally learn
the value function over time. Using the reinforcement learning method called TD(λ )
learning the agent can incorporate experience built up through interaction with the system
it has to control. In this way it will over time get a sufficiently good estimate of the
values of states. Once it has built up enough experience the agent can fully rely on it,
thus reducing the computations required to do the MPC for Markov decision processes
without learning. Additional advantages of the proposed approach lie in the fact that the
agent will adapt to changing system characteristics or performance characteristics. The
parameters of the performance function or system under control may slowly change over
time. Since the agent can continuously incorporate newly gained experience, it will adapt
to these changes.

We close with some remarks and future research directions. In this paper we have
considered TD(λ ) learning for finite Markov decision processes. To deal with high di-
mensional continuous action and state spaces we can use a subclass of reinforcement
learning methods called actor-critic methods (Sutton & Barto (1998)). We also remark
that in this paper we have silently assumed that we can store the value function in a table.
In this way we have an explicit representation of the value function. Sometimes we may
not be able to make an explicit representation and may have to use function approxima-
tors to make an implicit representation of the value function. Note that MPC may still
be combined fruitfully with reinforcement learning using function approximators (Sutton
& Barto (1998)). Future research directions consist of considering alternative ways to
decide when the agent has gained enough experience to switch from relying on the MPC
decisions to the decisions learned. Furthermore, experiments need to be implemented
to further investigate and show the potential of the proposed experience-based MPC for
Markov decision processes.
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