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Least-cost model predictive control of residential
energy resources when applyingµCHP

Michiel Houwing, Rudy R. Negenborn, Petra W. Heijnen, Bart DeSchutter, and Hans Hellendoorn

Abstract—With an increasing use of distributed energy re-
sources and intelligence in the electricity infrastructure, the
possibilities for minimizing costs of household energy con-
sumption increase. Technology is moving toward a situation
in which households manage their own energy generation and
consumption, possibly in cooperation with each other. As a first
step, in this paper a decentralized controller based on model
predictive control is proposed. For an individual household using
a micro combined heat and power (µCHP) plant in combination
with heat and electricity storages the controller determines what
the actions are that minimize the operational costs of fulfilling
residential electricity and heat requirements subject to opera-
tional constraints. Simulation studies illustrate the performance
of the proposed control scheme, which is substantially more cost
effective compared with a control approach that does not include
predictions on the system it controls.

Index Terms—Distributed energy resources, distributed gener-
ation, model predictive control, µCHP

I. I NTRODUCTION

A. Electricity Infrastructure with Distributed Energy Re-
sources

D ISTRIBUTED energy resources (DERs), comprising dis-
tributed power generators, electricity storages, and load

management options, can play a crucial role in supporting
the European Union’s key policy objectives of market liberal-
ization, combating climate change, increasing the amount of
electricity generated from renewable sources, and enhancing
energy saving. Large-scale diffusion of DERs will have a pro-
found impact on electricity infrastructure functioning: it will
bring radical changes to the traditional model of generation
and supply as well as to the business model of the energy
industry [1].

A wide body of literature states that distributed generation
(DG) of electricity, e.g. via photo-voltaics, wind turbines, or
micro combined heat and power plants (µCHP), has a good
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chance of pervading the electricity infrastructure in the future
(e.g. [2], [3]). Also, several electricity storage technologies are
under development (e.g. lithium-ion batteries, plug-in hybrid
electric vehicles [4]). Furthermore, demand side management
options are foreseen for the future power system [5]. Drivers
for DG are the environmental benefits (renewable energy
sources, efficient use of fossil fuels), reduced investmentrisks,
fuel diversification and energy autonomy, and increased energy
efficiency (less line losses, cogeneration options). Drivers for
DERs are the generation and sale of electric energy based on
DERs on several markets (economic drivers) and the provi-
sion of balancing and ancillary services to network operators
(technical drivers).

With an increase in DERs combined with more ICT and
intelligence in the electricity infrastructure, the options for
consumers with respect to energy demand fulfillment increase.
The increased system complexity due to DER application is
described in detail in [1], [6]. This paper specifically focusses
on residential DERs (micro level). Households with DERs
operate more independently of energy suppliers, they can
devise new contractual arrangements with suppliers and/or
network managers, they can buy and sell power among each
other, and to and from their supplier. In that way smarter power
systems arise in which households become so-called power
‘prosumers’.

In this paper we consider the situation in which a household
has the capability of generating its own power with aµCHP
unit. The household can store heat and electricity and can trade
electricity with an external energy supplier. Here we do not
consider demand side management schemes. The household
has full control over its DERs and there is no interaction
with other households regarding electricity trade. This control
strategy can therefore be characterized asdecentralized [7].

B. Model Predictive Control

In [8] several decentralized control strategies are described
and simulation results with these strategies shown. Here we
propose a more sophisticated local household controller in
terms of cost minimization. The controller has the task to
automatically determine which actions should be taken in
order to minimize the operational costs of fulfilling residential
electricity and heat requirements subject to operational con-
straints. The controller uses amodel predictive control (MPC)
strategy such that it can:

• take into account the decision freedom due to heat and
electricity storage possibilities;
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Fig. 1. Model predictive control scheme [9].

• incorporate predictions on residential electricity and heat
demands;

• incorporate models of the dynamics and constraints of
installed generators and storages.

MPC [9] is based on solving at each control step an
optimization problem over a prediction horizon subject to
system dynamics, an objective function, and constraints on
states, actions, and outputs, see Fig. 1. At each control step
the optimization yields a sequence of actions optimizing
expected system behavior over the horizon. Actions (control
inputs) are implemented by the system until the next control
step, after which the procedure is repeated with new system
measurements. MPC is successful mainly due to its explicit
way of handling constraints, its possibility to operate with-
out intervention for long periods, and its built-in robustness
properties. Due to the prediction horizon it can take benefit
of knowledge it may have over the future, e.g. forecasted
energy demand based on historical data of energy consumption
patterns. In this paper the focus is on daily operational costs
pertaining to residential energy usage when adopting MPC in
DER deployment.

This paper is organized as follows. In Section II we describe
the system under study and give salient modeling assumptions.
Section II also shows the developed mathematical system
model. Section III gives the control objective and formalizes
the control problem. Section IV illustrates the performance of
the proposed controller through simulation studies. Section VI
finally gives conclusions and suggestions for further study.

II. SYSTEM DESCRIPTION

The system under study consists of a household interacting
with its energy supplier (environment), as depicted in Fig.2.
Among the household and its energy supplier energy flows are
present as shown.

Households fulfill their electricity and heat consumption
requirements through several alternative energy supply and
consumption means. TheµCHP unit is based on Stirling
technology, see e.g. [3]. The unit consists of a Stirling engine
prime mover, conversion 1, and an auxiliary burner, conversion
2, which can provide additional thermal power. The Stirling
engine converts natural gas (f1) into electricity (g) and heat
(h1). The heat is supplied to the heat storage in the form
of hot water (hs). The auxiliary burner also converts natural
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Fig. 2. Conceptual overview of the system under study.

gas (f2) and provides additional heat (h2). Heat consumption
(hc) is taken from the heat storage. Electricity can be stored
in a battery (es) (e.g. lithium-ion). Electricity can flow to
and from the battery, represented in Fig. 2 by (si) and
(so) respectively. Locally generated electricity can be used
directly by the household (ec), it can be stored or it can be
sold to the supplier (eext). Electricity can also be imported
from the supplier (iext). The supplier thus sells primary fuel
( f = f1+ f2) for fueling theµCHP unit as well as additionally
required import electricity for households. The supplier buys
any electricity that is produced by households in excess of
their own consumption.

A. Modeling Assumptions

This section gives the most important assumptions made in
modeling the system.

• Different configurations of aµCHP unit can be thought of
in relation to its balance of plant equipment (i.e. heat stor-
age, piping, pumps, heat exchangers). We envisage one
large heat storage from which all heat can be extracted
(see [10]). So we consider aggregated space heating and
hot sanitation water needs.

• Produced heat cannot be dumped; all heat should be used.
• In [11] an efficiency value of 105 % for space heating

purposes is mentioned. All efficiency values are based
on fuel Lower Heating Value (LHV). Current heating
efficiencies for sanitation water are 75 % and future values
(2015) are predicted to be 89 %. In [12] an average natural
gas consumption (2004) of 1736 m3 is given (1300 for
heating, 300 for hot water, and the rest for cooking). For
the total efficiency of a (future)µCHP unit we therefore
assume a value of: (13/16)· 105 % + (3/16)· 85 % =



101.25 %.
• The µCHP unit comprises a Stirling engine and an

auxiliary burner. The WhisperGen® and the Microgen®

µCHP systems are taken as a basis for our model [13],
[14]. The modeled system has a full load power output
(g) of 1.1 kWe. Part-load capacity is assumed at 0.55 kWe.
The auxiliary burner capacity is assumed to lie between
0 and 20 kWth. The electric efficiencies of current state-
of-the-art Stirling engines lay around 15 % [11].

• Stirling engines have a warm-up and cool-down time
of around three minutes [15]. Our simulation time step
represents 15 minute periods. We therefore neglect these
warm-up and cool-down periods.

• Stirling engines cannot be subjected to too many start/stop
cycles as this limits the engine’s lifetime. A minimum
up-time of half an hour and a minimum down-time of
15 minutes are therefore assumed for the Stirling engine
[15].

• Water temperature in the heat storage should lie between
60 and 80 °C. With these temperatures the energy content
limits of the heat storage can be calculated.

• There are no thermal losses in the conversion and storage
systems. Combustion in theµCHP unit and in conven-
tional high efficiency boilers is complete.

• The hot water storage has a volume of 100 liters. The
maximum electricity storage capacity is 2 kWh.

• The Stirling engine gets priority over the auxiliary burner
in heating the water.

• Natural gas consists purely of methane.
• Parasitic load from balance of plant equipment (compres-

sors, pumps, etc.) is neglected.
• There are no capacity constraints in the physical electric-

ity network between the supplier and the household.

B. Mathematical System Model Formulation

A substantial part of our mathematical model is based on
[16]. Our model differs from the one in [16], however, in that
we consider theµCHP unit as a combination of a prime mover
and an auxiliary burner. Further, we incorporate electricity
storage and we also consider varying electricity import prices.

Analogous to [16] we first define the following binary
variables.vCHP

k and vaux
k indicate whether theµCHP prime

mover and auxiliary burner are in operation at time interval
k. The binary variablesuCHP

up,k , uCHP
down,k, uaux

up,k, uaux
down,k are start-

up and shut-down indicator for theµCHP prime mover and
auxiliary burner at time intervalk.

An electricity balance relating the power output of conver-
sion unit 1, the input and output of the electricity storage,the
electricity consumption, and electricity bought or sold tothe
aggregator, has to hold. This power balance is given by:

ηe · f1,k + iext,k + so,k − eext,k − si,k − ec,k = 0 , (1)

where gk = ηe · f1,k and ηe is the electric efficiency of the
Stirling engine.

For the Stirling engine, part load and full load operation is
modeled by

f1,k = vCHP
k · f1,part+ x1,k · ( f1,max− f1,part) (2)

x1,k ≤ vCHP
k , (3)

wherex1,k is a binary variable deciding whether the Stirling
engine will operate at full or part load.

The auxiliary burner operation is modeled by

vaux
k · f2,min ≤ f2,k ≤ vaux

k · f2,max . (4)

The electricity and heat stored should be between the
minimum and maximum values:

es,min≤ es,k ≤ es,max (5)

hs,min≤ es,k ≤ hs,max . (6)

The electricity flows to and from the battery are limited by

so,min≤ so,k ≤ so,max (7)

si,min ≤ si,k ≤ si,max . (8)

Lithium-ion batteries can be fully charged and discharged
four times per hour [17]. Thereforeso,max= si,max = es,max=
2kWh (per time step).

The constraint that forces the prime mover to stay in
operation until at least the minimum up-time (2 time steps)
is reached is:

vCHP
k+n ≥ uCHP

up,k for n = 0, . . . , tup−1. (9)

The variablesv and u have to be linked. This is modeled
by:

vCHP
k − vCHP

k−1 = uCHP
up,k −uCHP

down,k (10)

vaux
k − vaux

k−1 = uaux
up,k −uaux

down,k (11)

uCHP
up,k +uCHP

up,k ≤ 1 (12)

uCHP
down,k +uCHP

down,k ≤ 1 . (13)

The heat in the heat storage is modeled by:

hs,k+1 = hs,k +(ηtot−ηe) · f1,k +ηtot · f2,k −hcp,k , (14)

where h1,k = (ηtot − ηe) · f1,k, h2,k = ηtot · f2,k and ηtot is
the total efficiency of theµCHP unit. The electricity in the
electricity storage is modeled by:

es,k+1 = es,k + si,k − so,k . (15)

III. MPC FORMULATION

The objective of the MPC controller is to minimize the
daily operational costs of residential energy use. These costs
depend on the pricepf for gas consumption, the pricepi,ext for
importing electricity and the pricepe,ext at which electricity
can be sold. The cost function for control stepk with a
prediction horizon ofN is therefore defined as

J(·) =
N−1

∑
m=0

(

( f1,k+m + f2,k+m) · pf + iext,k+m · pi,ext,k+m

−eext,k+m · pe,ext
)

.

(16)



The prediction horizon considered by the MPC controller
consists of subintervalsm, m = 0, . . . ,N − 1. The length of
one prediction step is defined as 15 minutes.

The control problem model the controller uses is similar to
the system model as mathematically described in Section III
(i.e. the controller uses aperfect model). The mixed-integer,
linear programming, problem to be solved by the controller
at each time stepk involves minimizing (16) subject to the
equality and inequality constraints (1)–(15) over the prediction
horizonN.

We define an additional constraint for the controller such
that the Stirling engine gets priority over the auxiliary burner in
providing heat to the heat storage. This constraint is modeled
by:

vaux
k+m ≤ vCHP

k+m for m = 0, . . . ,N −1. (17)

At eachk the controller uses initial system measurements in
making its control decision. The problem is classified as linear
because all relations (1)–(17) are linear and as mixed integer
because the problem involves real and binary variables. The
MPC controller determines values for the following control
inputs for each prediction step:x1,k+m, vCHP

k+m, f2,k+m, iext,k+m,
eext,k+m. For eachk the control inputs of the first prediction
step are sent to the system. The minimization process is
repeated fork +1, k +2, . . . until the end of the simulation.

IV. SIMULATION RESULTS

A. Simulation Input

This section describes further input data for the simula-
tions, besides parameters already given in Sections II and III.
Residential electricity and aggregated heat demand profiles
have been created with 2006 data from ‘EnergieNed’, the
Dutch Federation of Energy Companies. Heat profiles have
a resolution of one hour and electricity profiles of 15 minutes.
We have chosen a winter day for the simulations. Fig. 3 shows
the energy demand profiles used.

We also show data for a part of 22 January as the decision
made by the controller at control stepk = 96 should incorpo-
rate data for the prediction horizon relative to that time step.

The variable electricity import price has been constructed
as follows. The Dutch central bureau of statistics states a total
electricity tariff for small consumers for 2006 of 194C/MWh
[18] (household class: single tariff, 3000 kWh). The variable
part of the total tariff (including energy and VAT taxes)
is around 90 % of the total tariff [19], so this becomes
0.1746C/kWh. The variable supply part of the total tariff
accounts for 32 % of the total tariff [19]. For this variable
supply part we have substituted Dutch power exchange values.
We took Amsterdam Power Exchange data for 21 and 22
January. In this way we devised an import price as shown
in Fig. 4.

For the value of the feed-back tariff we have taken average
‘EnergieNed’ data for 2006, which gives 0.0601C/kWh.

In [18] a total gas tariff for small consumers of 552C/1000
m3 is given (for consumer class: 2000 m3). According to [19],
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Fig. 3. Energy demand data for average Dutch household (a = heat, b =
electricity).
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Fig. 4. Electricity import price.

91 % of the gas tariff is variable (including taxes). This leads
to a value of 0.50232C/m3.

Because power exchange prices are known a day in advance,
the electricity import price,pi,ext,k+m, is also known to the
controller on forehand. As a first step we have taken the
predicted residential heat and electricity demand for prediction
horizonN with which the MPC controller works as being equal
to the actual demand in that horizon.



The starting values for the simulation of the system are, for
k = 1:

vCHP
1 = vaux

1 = uCHP
up,1 = uCHP

down,1 = uaux
up,1 = uaux

down,1 = 0,

es,1 = (es,min+ es,max)/2 = 1 kWh

hs,1 = (hs,min+hs,max)/2 = m · c ·∆T =

100·4.18· (70−20) = 20900 kJ= 5.81 kWh.

In calculatinghs,1 we have used the heat storage volume
of 100 liters, an environmental temperature of 20 °C and the
specific heat capacity of water of 4.18 kJ/kg·K.

V. RESULTS

We have implemented the mathematical simulation model
in Maple™. We have simulated the MPC controller and the
resulting system outcomes per time stepk for a full day period,
for various prediction lengths betweenN = 1 andN = 15. For
a specific value ofN, the optimization solver gave different
results for repeated simulation runs (around 6 runs perN),
showing that the solver finds local minima in the solution
space. The results given here are the ones resulting in the
lowest daily costs.

The results forN = 1 are not very interesting to depict. The
resulting daily operational energy costs as defined in (16) are
4.085C for N = 1. The results shown in Fig. 5 are forN = 3.
The daily operational energy costs are then 4.063C.

The distinction between part load and full load operation of
the Stirling engine (f1) can be clearly seen.

For N = 10 the daily costs are 3.96C. In Fig. 6 the results
for N = 15 are shown.

For N = 15 the daily energy costs are 3.89C, which is
a 4.8 % reduction as compared withN = 1. For N = 15
the electricity imports are 0 during the peak import price
period betweenk = 69, . . . ,80. This effect is not observed
for N = 3. What is interesting to see, is that forN = 15 the
MPC controller fills the electricity storage before the peak
import price period so that the household can profit from the
relatively lower price before that peak period leading to lower
daily energy costs. ForN = 3 this behavior is not observed.
This shows that model predictive control, anticipating future
change, can result in better system outcomes.

VI. CONCLUSIONS ANDFURTHER STUDY

We have proposed a model predictive control (MPC) strat-
egy to be employed by households to control residential energy
resources to minimize operational costs of energy use. A micro
combined heat and power (µCHP) unit based on Stirling prime
mover technology provides heat to the households and simul-
taneously generates electricity for use in the household orfor
export to the external grid. Results of the MPC controller have
been discussed, and it has been shown that MPC gives better
outcomes in terms of daily energy costs when a substantial
prediction horizon is adopted by the MPC controller.

Interesting options for further study include the following.
A longer prediction horizon than 15 steps could be re-

searched. Due to computation time limitations, a horizon of15
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Fig. 5. Simulation results for January 21st,N = 3 (a = gas supply toµCHP
prime mover (f1) and auxiliary burner (f2), b = energy level in electricity
storage, c = electricity import and export).

steps was the highest value used for this paper. The prediction
time step could then be of a larger time resolution (e.g. one
hour) than the simulation time step.

In this paper we have not observed significant anticipative
behavior by theµCHP unit (which could then be observed
in the heat storage energy level), as importing electricityis
always cheaper for a household than making it from gas via
the µCHP. Also the feed-back tariff was fixed and too low to
outweigh the costs of self-generated electricity via theµCHP.
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Fig. 6. Simulation results forN = 15 (same sequence asN = 3).

Variable electricity export prices (equal to the variable import
price) are expected to lead to more anticipative behavior ofthe
µCHP unit conversion units. With theµCHP unit anticipating
future electricity export prices, the total system can prepare
itself as such for taking as much advantage of higher export
prices as possible.

The import price could be taken fixed and results researched.
A simulation with a Stirling engine operating only at full

load could be undertaken.
Other µCHP technologies (e.g. fuel cells, internal combus-

tion engines, microturbines) could be modeled as well.
Different seasonal days could be researched besides the

winter day taken in this paper.
Predictions on residential energy demand which differ from

actual values (made with a forecast model) could be experi-
mented with.

The operational cost savings could be placed in more
comprehensive cost benefit analysis ofµCHP systems to see
if variable cost savings outweigh additional investment costs.

Distributed control, in which multiple households can trade
power amongst themselves, is also an interesting further step
in which model predictive control could be used.
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