
Delft University of Technology

Delft Center for Systems and Control

Technical report 07-003

Efficient implementation of serial

multi-agent model predictive control

by parallelization∗

R.R. Negenborn, B. De Schutter, and J. Hellendoorn

If you want to cite this report, please use the following reference instead:

R.R. Negenborn, B. De Schutter, and J. Hellendoorn, “Efficient implementa-
tion of serial multi-agent model predictive control by parallelization,” Proceed-
ings of the 2007 IEEE International Conference on Networking, Sensing and
Control (ICNSC ’07), London, UK, pp. 175–180, Apr. 2007.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.51.19 (secretary)
fax: +31-15-278.66.79
URL: http://www.dcsc.tudelft.nl

∗This report can also be downloaded via http://pub.deschutter.info/abs/07 003.html

http://www.dcsc.tudelft.nl
http://pub.deschutter.info/abs/07_003.html


Efficient implementation of serial multi-agent model predictive control
by parallelization

R.R. Negenborn, B. De Schutter, J. Hellendoorn

Abstract— We discuss an extension of a scheme recently
proposed for multi-agent control of large-scale networks, like
power networks, road traffic networks, water networks, etc.The
original scheme uses serial sequences of agent interactions that
under some assumptions make agents locally choose actions that
are globally optimal. However, some weaknesses of the approach
appear when applied to large-scale networks. We identify these
weaknesses and propose, for problems with a tree-structured
problem topology, an improvement based on parallelization of
the serial scheme. With an example we illustrate and compare
the schemes.

I. I NTRODUCTION

A. Transportation networks

Our modern society crucially relies on the efficient oper-
ation of several types of large-scale transportation networks,
like power networks, road traffic networks, water networks,
etc. Due to, e.g., high computational requirements, commu-
nication delays, or unwillingness to share information, these
networks cannot be controlled by a single agent that has
access to all actuators and sensors. Instead, a multi-agentor
distributed control approach has to be employed, in which
the overall network is divided into a number of subnetworks
and a control agent is assigned to each subnetwork. Each
control agent has to locally determine actions to the actuators
in its own subnetwork that give the best overall network
performance, using information from sensors in its own
subnetwork and communication with other agents [1], [2],
[3]. We assume that agents are at least semi-cooperative, in
the sense that the agents may have information that they do
not want to share with other agents, but that in order to reach
desired performance the agents realize that they will have to
share some information and be involved in negotiations.

B. Multi-agent model predictive control

Recently, model predictive control (MPC) [4] has been
introduced as a strategy for agents to determine their actions
in a single-layer multi-agent setting [5]. In an MPC strat-
egy, at each control cycle, an agent solves an optimization
problem that finds the best local actions to apply to its
local subnetwork over a certain prediction horizon under a
set of constraints. The agent performs its optimization by
making predictions on the evolution of the subnetwork under
different sequences of actions and given an initial subnetwork
state and constraints on inputs, states, and outputs. The

The authors are with the Delft Center for Systems and Control,
Delft University of Technology, Mekelweg 2, 2628CD Delft, The
Netherlands, {r.r.negenborn,j.hellendoorn}@tudelft.nl,
b@deschutter.info. Bart De Schutter is also with the Marine and
Transport Technology department of Delft University of Technology.

sequence of actions that gives the best performance according
to an objective function is determined. The first action of this
sequence is implemented, after which the subnetwork evolves
to a new state and the next control cycle is started.

For making the predictions within a certain control cycle,
each agent uses a model of its subnetwork. Since the physical
subnetworks together form the overall network, e.g., due to
flows going from one subnetwork to another, the models of
the local subnetworks depend on the models of other sub-
networks.Interconnecting variablesare used for modeling
these interconnections. A main challenge is how to make
individual agents determine values for the interconnecting
variables that result in local actions that are globally optimal.
Without consistency on the values that the agents assume for
the interconnecting variables, the predictions made of the
dynamics of a local subnetwork over the prediction horizon
will not be accurate, reducing the quality of the control.

C. Parallel versus serial schemes

This challenge can be tackled by having agents per-
form iterations of information exchangebetween each other,
without the intervention of a supervisor, on the values of
interconnecting variables [5], [6]. An iteration consistsof
each agent performing onestep, involving local computations
only. After each agent has performed its step in an iteration,
information is exchanged, and the next iteration can be
started. One approach for such a scheme is based on a
decomposition of an augmented Lagrange formulation of the
overall control problem [7]. A typical approach to perform
this decomposition is by using an auxiliary problem principle
[5], [6]. The resulting scheme is aparallel scheme: agents
perform local computations simultaneously. An alternative
approach to decompose the augmented Lagrange formulation
uses a block coordinate descent [7]. This approach has been
used before for the unit commitment problem in power sys-
tems [8], and has recently been introduced in the context of
multi-agent MPC [9]. The block coordinate descent results in
a serial scheme: one agent at a time performs computations.
For small networks, the serial approach has shown preferable
properties compared to the parallel approach in terms of
decision-making speed and accuracy [9]. In the following we
consider extension of this serial approach to larger networks.

D. Parallelized serial schemes

For the scheme that we consider, the local solutions of
agents converge over a number of iterations to the overall
optimal network solution under a convexity assumption on
the overall control problem [7], [9]. Although the local



solutions converge to the global optimum, a disadvantage
of this serial approach is that with an increasing number
of agents, the number of steps required to complete one
single iteration, and thus the total time required for decision
making, increases as well. In this paper we examine a method
for improving the running time of the serial approach for
overall convex problems with a certain tree structure by
parallelizing the serial scheme. Instead of having one group
of agents within which computations are done serially, there
may be multiple groups within which computations are done
serially simultaneously. We propose to increase the serial
decision-making speed by:

• solving fewer local steps by having agents know when
their current solution is within some distance from the
optimal solution, and by not changing it anymore after
this;

• reducing communication between agents by having mul-
tiple instances of the serial scheme work simultaneously
in smaller groups of agents.

In our approach the agents detect on-line, while solving
their subproblems, when the group of agents can be split
into smaller groups in which the serial algorithm is per-
formed. This will in particular be beneficial when, e.g.,
disturbances have only local consequences and not all agents
have to be involved in solving these consequences. In these
cases, iterations only have to be done by a small number
of agents, thus reducing computation and communication
requirements, therewith increasing decision-making speed.
No off-line, a-priori, ordering of agents to determine the
order in which they should perform their computations is
necessary. Furthermore, under the given assumptions, the
approach ensures that the solutions of the individual agents
converge to local actions that are globally optimal up to a
user-defined accuracy.

E. Comparison with distributed constraint optimization

At a first glance, the approach we propose may seem
similar to approaches from the field of distributed constraint
optimization (DCOP), e.g., the recently proposed ADOPT
algorithm [10]. Indeed, as we will see, our approach relies
on forming a tree-shaped communication structure between
agents and passing of desired values for variables from
parents to children, and information about optimality from
children to parents, as also is the case in ADOPT. However,
our approach considers a significantly different problem class
than techniques used in the field of DCOP. In particular:

• DCOP addresses distributed solution of problems in-
volving discrete variables and constraints between these,
whereas our approach addresses problems involving
continuous variables and constraints between these.

• DCOP approaches are typically based on ideas from
the field of integer and discrete programming, e.g.,
branch-and-bound methods. The approach we propose is
based on Lagrange theory, is developed for continuous
programming problems, and includes well-established
results for convergence to optimal solutions.

• DCOP approaches consider constraints between discrete
variables, of which the domain of possible values of a
particular variable is independent of the values of other
variables. In our approach, the values that the variables
controlled by the agents can take on are constrained by
local dynamics of an agent’s subnetwork and indirectly
by the values of variables of neighboring agents.

F. Outline

The remainder of this paper is outlined as follows. In
Section II we introduce a model for structuring large-scale
control problems and decision-making schemes. In Section
III we discuss the original serial approach in terms of this
model and point out some of its drawbacks. In Section IV
we propose the parallelized version, and in Section V we
give an example illustrating and comparing the performance
of the two approaches based on a simulation study.

II. M ODELS FOR DECISION MAKING

For n subproblems we define the set of nodesN =
{1,2, . . . ,n} and the set of edgesE = {(i, j) ∈ N 2|i 6=
j,subproblemsi and j depend on each other}. We consider
problems for which the overall control problem at control
cycle k defined over a prediction horizon ofN cycles can be
written in an MPC fashion as [4]:

min
x̃1, x̃2, . . . , x̃n
ũ1, ũ2, . . . , ũn

n

∑
i=1

J̃i(x̃i , ũi) (1)

subject to ˜gi(x̃i , ũi , w̃in, j1,i , . . . , w̃in, jm,i ,i) = 0 (2)

h̃i(x̃i , ũi) ≤ 0 (3)

w̃in, j,i = w̃out,i, j (4)

w̃out, j,i = C̃j,i [(x̃i)
T (ũi)

T ]T (5)

for j ∈N , i ∈N ,( j, i)∈ E , j1, . . . , jmi are the indices of the
elements of{ j|( j, i) ∈ E }, and where for subnetworki, J̃i is
the local objective function, ˜xi = [(xi,k+1)

T
, . . . ,(xi,k+N)T ]T

are the subnetwork states, ˜ui = [(ui,k)
T
, . . . ,(ui,k+N−1)

T ]T

are local inputs, and ˜gi = [gi,k, . . . ,gi,k+N−1]
T and h̃i =

[hi,k, . . . ,hi,k+N−1]
T are local equality and inequality con-

straints, respectively. In a similar way, we define variables
w̃in, j,i as interconnecting inputs and ˜wout, j,i as interconnecting
outputs. These variables are used to define the interconnect-
ing constraints (4) between subnetworksi and j. Matrix
C̃j,i is an interconnecting output selection matrix that selects
which local variables of subnetworki are interconnecting
outputs with respect to subnetworkj. The equality con-
straints (2) include the predictions of the subnetwork dynam-
ics, e.g., equations of the formxk+1,i = fi(xi,k,ui,k,win,i,k),
where fi is the prediction model for subnetworki, while h̃i

mainly contains domain constraints on the local states and
inputs. Note furthermore that the overall objective function
defined in (1) consists of the combination of the local
objective functions of each agent. So, each agent has only
local goals, like minimizing local flows and inputs.



A. Problem topology

To make the structure of an overall control problem more
clear and see how parallelization can be used, we introduce
the concept of aproblem topology. Given the decomposition
of the overall control problem into subproblems (e.g., based
on geographical areas), a problem topology is the unique
undirected graph representing the dependencies of subprob-
lems on one another. Each node represents a subproblem,
while an edge between two nodes indicates that the two
subproblems represented by the nodes depend on each other.
Since any subproblem depends on itself, self-dependence
edges are not considered. For a given decomposition of the
overall problem, the associated problem topology is simply
found by placing edges between any two nodes representing
subproblems that depend on each other.

There are different types of problem topologies, differing
in additional assumptions made on the set of edgesE .
Throughout the paper, we assume:

Assumption 2.1:The problem topology under considera-
tion is a tree topology, i.e., a connected topologies without
any cycles.
Although this assumption is somewhat restrictive, before
being able to determine how to parallelize general topologies,
we first have to understand how to do this for tree topologies.
Once this is understood, the approach used may be extended
to deal with cycles and therefore general topologies. Also,in
practice it may be possible to construct a tree topology from
a general topology by grouping the subproblems causing the
non-tree structure, i.e., cycles, into one subproblem.

B. Decision-making schemes

As mentioned in Section I, the decision-making schemes
that we consider operate by performing at each control
cycle a number of iterations. The iterations terminate when
a stopping criterion is satisfied, after which actions are
implemented and the next cycle is started. We consider as
overall stopping condition

‖v‖∞ ≤ ε, (6)

where ε is a small positive number,v ∈ R
m
,m =

∑n
i=1mi characterizes the interconnecting constraints of

all subnetworks, i.e.,v = [w̃in, j1,1 − w̃out,1, j1, . . . , w̃in, jmi ,1
−

w̃out,1, jm1
, . . . , w̃in, j1,n−w̃out,n, j1, . . . , w̃in, jmi ,n

−w̃out,i, jmn
]T , and

‖·‖∞ = maxi |vi | denotes the infinity norm, wherevi is theith
element ofv. The stopping criterion is thus an upper bound
condition on the difference between values that different
agents want to assign to interconnecting variables, e.g., on
how much flow should go from one subnetwork into another.
The condition is more accurate withε approaching zero.
By varying ε a trade-off is made between the accuracy of
the solution and the number of iterations required before
termination.

Each iteration can be split into two phases:
• Phase 1is an optimization phase in which the agents

solve their local subproblems.
• Phase 2 is a stopping detection phase in which the

agents determine whether the iterations should stop.

When all agents have determined that they should stop,
the agents implement their actions. The agents use a set
of attributes to store information, and tokens and flags to
determine what to do.

1) Attributes: Agent i solving the subproblem of nodei
has access to the following attributes of nodei:

• The neighborsattributeNi is the set of nodes to which
node i has an edge, i.e.,Ni = { j|(i, j) ∈ E }. This set
is initialized at the beginning of the first control cycle
and stays fixed over further control cycles. A grouping
of the neighbors is made using two attributes:
The parent attribute Pi refers to the nodej ∈ Ni that
had its subproblem solved right before the nodei’s
subproblem was considered. Thechildren attribute Ci

is the set of all nodes except the parent node, i.e.,
Ci = Ni \ {Pi}. The parent and children attribute are
set when an agent performs its first computation in the
first iteration of the first control cycle, after which they
stay constant over all further iterations and cycles.

• The local optimalityattribute LOi indicates whether or
not the agent of nodei has made its decision on the local
variables and interconnecting variables. This attribute is
updated at the end of Phase 2 of each iteration. The local
stopping criterion for agenti is given by max‖v(i)‖∞ ≤
ε, where v(i) is a vector with the evaluations of the
interconnecting constraints in which variables of agent
i are involved.

• The subgroup optimality attribute SGOi indicates
whether or not the agent of nodei has local optimality
and all its children have the subgroup optimality at-
tribute positively set, i.e., SGOi = LOi ∧

(

∧

j∈Ci
SGOj

)

,
with

∧

j∈ /0SGOj = true. This attribute is updated after
the local optimality attribute has been updated.

2) Tokens and flags:To indicate which agents are solving
their subproblems, we introduce the concept of acompu-
tation token. The computation token allows the agent that
has a token to perform computations related to solving its
subproblem, i.e., Phase 1.

To determine whether an agent should stop, i.e., whether
Phase 2 can start, an agent waits until it has received all
relevant information from the agents that it requires infor-
mation from. Thestop-determination flagindicates whether
an agent has all necessary information.

3) Local optimality determination: When the stop-
determination flag is positively set for an agent, the agent
has to determine whether or not its local solution satisfies
the stopping condition. For this to be possible, we have the
following.

Lemma 2.2:The agents can in a distributed way deter-
mine whether the overall stopping condition is satisfied using
local stopping conditions.

Proof: The infinity norm involved in the overall stop-
ping condition (6) can be written as

‖v‖∞ = max
i

|vi | = max(|v1|, . . . , |vm1|, . . . , |vn−mn|, . . . , |vn|)

= max(max(|v1|, . . . , |vm1|), . . . ,max(|vn−mn|, . . . , |vn|))



5

7 8

6

9

4

6

1

10
4

1

2

2

3

35

(a) Serial

5 4

6

3 2 3

4

1

1
2

1

4

2

3

2

3

(b) Parallelized

Fig. 1: Example of the order in which tokens can go. Solid arrows
indicate computation tokens; dotted arrows indicate subgroup opti-
mality information. The edges are labeled with the step within the
iteration at which the information is sent.

= max(‖v(1)‖∞, . . . ,‖v(n)‖∞).

where v(i) are the variables of subnetworki, e.g., v(1) =
[v1, . . . ,vm1]

T . Thus, the overall stopping condition is satisfied
when

max(‖v(1)‖∞, . . . ,‖v(n)‖∞) ≤ ε, (7)

which is true if and only if
(

‖v(1)‖∞ ≤ ε
)

∧ . . . ∧
(

‖v(n)‖∞ ≤ ε
)

. Local optimality LOi for subnetwork i is

concluded when the local stopping criterion‖v(i)‖∞ ≤ ε is
satisfied. If all agents have concluded local optimality, then
‖v(i)‖∞ ≤ ε for each subnetwork and therefore (7) holds, and
thus the overall stopping criterion (6) holds.

4) Global optimality determination:To determine when
all agents have solved their subproblems and the agents can
implement the determined actions, we have the following:

Proposition 2.3:For a tree topology of an overall convex
control problem, if for a nodei ∈ N each of its neighbors
j ∈ Ni has the subgroup optimality flag positively set, i.e.,
SGOj = true, and if its local optimality flag is set, i.e.,
LOi = true, then the solution of the overall problem has been
reached within the specified accuracy.

Proof: Since all neighbors of nodei have the subgroup
optimality flag positively set, the children of these neighbors
and children of children, and so on, also have the subgroup
optimality flag positively set. Since the subgroup optimality
flag of a node can only be positively set if the node has local
optimality, all children and children of children, etc. have
solved their local subproblems. Thus, together with local
optimality of node i, all nodes will have local optimality.
Furthermore, due to the convexity of the overall control
problem, the overall solution has been reached.
The optimization problem defined by (1)–(5) is convex, when
the functionsJi and hi are convex and the functionsgi are
affine. A typical situation like this occurs when quadratic
local objective functions are taken (e.g., obtained as second-
order approximation of a nonlinear objective function) with
linear prediction models for the subnetwork dynamics (e.g.,
obtained as linearization of a nonlinear model of the dynam-
ics), defined over variables that take on their values from
closed convex sets of real numbers.

III. O RIGINAL SERIAL APPROACH

In the original serial approach, i.e., the approach of [9],
one agent at a time performs computations. Thus, per itera-
tion there is exactly one computation token. The following
example illustrates the workings of the scheme.

Example 3.1 Consider the problem topology in Figure 1a.
Agent i has to solve the subproblem of nodei. Agent 1
starts the iterations by receiving the computation token.
To determine subgroup optimality, it solves its subproblem,
sends the determined desired values for the interconnecting
variables to its neighbors, i.e., agents 2 and 4, and gives the
computation token to one of its children from which it has
not received subgroup optimality information in this iteration
yet, e.g., agent 2. Agent 2 receives the token. It solves its
subproblem, sends the information found to its neighbors, 1
and 3, and sends the computation token to 3 from which it
has not received subgroup optimality in this iteration yet.

Agent 3 receives the token, solves its local problem, sends
the information found to its neighbors. Since it has no child
from which it has not received the subgroup optimality
information yet, it has all up-to-date information from its
neighbors, plus its own up-to-date information and therefore
it can evaluate its local stopping criterion. Then, it determines
its subgroup optimality and sends the subgroup optimality
information to its parent, agent 2.

Agent 2 has no other child from which it has not received
subgroup optimality information. The stop-determinationflag
for node 2 is thus true and agent 2 subsequently has to
evaluate the local stopping criterion and determine subgroup
optimality. It passes the subgroup optimality informationto
its parent, agent 1.

Agent 1 has not yet received the subgroup optimality
information from agent 4, so it sends the computation token
to 4. Agent 4 receives the token and takes actions to obtain
the required information from its children. Ultimately, 1
receives from 4 the subgroup optimality information. Agent1
then has received updated subgroup optimality information
from all its children and evaluates its own local stopping
criterion and subgroup optimality.

The iterations continue until all agents have the local
stopping criterion satisfied. Using Proposition 2.3 agent 1
determines whether a next iteration has to be started, or
whether the agents can implement their determined actions.⋄

The serial scheme just illustrated has some drawbacks:

• only one agent is computing at a time, making iterations
take a long time when there are many agents;

• even when an agent has local optimality, it will keep on
performing its local optimization, even though its solu-
tion already satisfies the stopping condition, therewith
increasing running time;

• iterations are always done over the whole group of
agents, even though parts of the group may already have
reached local or even subgroup optimality.

In the next section we propose an extension of the original
scheme that addresses these drawbacks.



IV. PARALLELIZATION OF THE SERIAL SCHEME

We propose an extension of the serial approach based on
parallelization. With parallelization instead of having one
agent at a time solving its subproblem, there are multiple
agents at the same time working on different subproblems.
Instead of having one group of agents over which the serial
scheme iterates, there are several groups in which the serial
scheme iterates in parallel.

Problems can be solved in parallel when they are indepen-
dent of each other. By Assumption 2.1 the problem topology
is connected, which means that indirectly all subproblems
in the problem topology depend on each other. However,
while the agents are performing their iterations to find a
solution to the overall problem, the subproblems do become
independent as information from locally solved problems
becomes available, since within an iteration agents determine
the values of their local variables once, after which they keep
these values fixed throughout the current iteration. Moreover,
after an agent decides on local optimality, it will keep its
variables fixed, also over future iterations of the current
cycle. Thus, the independency holds either only within the
current iteration or also over all future iterations of the
current cycle. We have:

Proposition 4.1:For a tree topology, after an agent has
solved its local subproblem, its children can solve their
subproblems in parallel within the current iteration.

Proof: When agenti has solved its local subproblem,
the values it has determined for its variables, including the
interconnecting variables, are fixed for the current iteration.
Thus given these fixed values the subproblem of each child
j ∈ Ci will be independent of the subproblem of agent
i. Furthermore, due to the tree topology assumption, all
subproblems of the descendants of childj are independent of
the descendants of each other childk ∈ Ci \{ j}. Therefore,
the children of agenti can solve their problems in parallel.
However, the group of agents representing the subproblems
in the branches leaving the current node cannot be separated
completely, since at the next iteration the values of the
current agent may change again.

Proposition 4.2:For a tree topology, if a node has the
local optimality flag set positively, then the branches leaving
from this node can be solved in parallel within the current
iterationand within all future iterations of the current cycle.

Proof: By Lemma 2.2, for a nodei ∈ N that is
locally optimal the values of its variables, including those
of interconnecting variables, satisfy the stopping condition.
Furthermore, although the values of the variables may change
due to arrival of new information, the local stopping criterion
will still be met. Due to the tree topology assumption,
the branches leaving from nodei are not connected to
each other and therefore represent independent subproblems
(given the fixed variables of the nodei). Therefore each of
the subproblems of the children of nodei can be solved
in parallel, in the current iteration and for future iterations
of the current cycle. So, the group of agents solving the
subproblems in the branches of nodei can be grouped, and

within this group the serial scheme can be performed.

Example 3.1 revisited We reconsider Example 3.1, now
using the parallelized serial approach. Figure 1b shows
the schematics of the order in which agents work. Agent
1 starts by receiving the computation token. It solves its
subproblem and sends the results of this to agents 2 and
4. To determine subgroup optimality agent 1 has to receive
subgroup optimality from these agents. By Proposition 4.1 it
sends a computation token to each of its two children. Thus,
2 and 4 each receive a computation token. They solve their
local problems and send the obtained information to their
neighbors, i.e., agent 3, and agents 3 and 5, respectively. To
determine subgroup optimality they have to obtain subgroup
optimality from their children. Agent 2 has no children.
Therefore, agent 2 determines subgroup optimality and re-
turns this information to 1. However, agent 4 has children,
so by Proposition 4.1 it sends computation tokens to these.

In the meantime, agent 1 has received the subgroup opti-
mality information of 2. However, since 1 has not received
this information of 4 yet, its stop-determination flag is still
false. It cannot yet proceed to determine on its own subgroup
optimality and decide whether or not to start a new iteration.

When agent 4 has received the subgroup optimality infor-
mation of 5 and 6, it determines its own subgroup optimality
and sends the result to its parent, 1. Agent 1 has then a
positive stop-determination flag; thus, it decides on whether
or not to start a new iteration. Since no agent has concluded
local optimality, 1 starts a new iteration.

Suppose that after some iterations agent 4 reaches local
optimality. The values of its interconnecting variables will
stay fixed over the following iterations. It notifies this to
all its neighbors, therewith indicating that these neighbors
should also not update their interconnecting variables with
respect to agent 4 anymore. The only task remaining for 4
is to inform its parent of subgroup optimality, such that at
some point the stop-determination flag of its parent will be
true, therewith allowing its parent to also determine subgroup
optimality. By Proposition 4.2 the children of 4 can solve
their problems in parallel over all future iterations. As long
as 4 does not receive positive subgroup optimality flags from
its children, it will not send anything to its parent, 1.

In the meantime, when the parent of agent 4 has received
the subgroup optimality flags of the children that have not
yet indicated local optimality, i.e., 2, the parent assumes
negative subgroup optimality for the children that do have
local optimality, but that do not have not reported positive
subgroup optimality yet.

Each of the agents solving the subproblems of the children
of 4 will get similar roles as agent 1. They know that their
parent, 4, has local optimality, and that it will therefore not
change the values of its interconnecting variables and not
send them further updates. The agents of the children of
4 continue solving the subproblems of their branches and
report to 4 when they have reached subgroup optimality.
When agent 4 receives this information, it sends this to its
parent, ultimately leading to stopping of the iterations.⋄



56

2

3

4

7 8

9

1

10

Fig. 2: Problem topology for 10 subnetwork problem with
disturbances in subnetwork 1 and 9.

agent 1 2 3 4 5 6 7 8 9 10
serial 23 23 23 23 23 23 23 23 23 23
parallelized 21 22 25 25 1 1 20 18 18 10

TABLE I: Number of steps per agent. In total 230 steps are
performed using the serial approach, whereas 161 steps are
performed using the parallelized serial approach.

central 19.00
serial 19.01
parallelized 19.05

TABLE II: Costs of the control (per unit).

V. COMPARISON

We illustrate the performance of the schemes using the
problem topology depicted in Figure 2, representing a load-
frequency control problem from the domain of power net-
work control [11], [12]. Load-frequency control involves
keeping power consumption and generation equal. In this
study, the agents of 10 subnetworks control the adjustment
of generation after a load change in subnetwork 2 and 9.
Since the subnetworks are connected to each other, in order
to predict the evolution of their local subnetwork, the agents
have to agree with each other on the flows of power between
the subnetworks. Agent 5 initiates the first iteration. More
details on the models used can be found in [9]. The overall
problem satisfies the assumptions made in previous sections.

Table I shows the number of steps before the agents finish
their computations for the serial and parallelized schemes
whenε = 0.001 is taken. For the serial scheme 23 steps are
required for each agent, yielding in total 230 computation
steps performed serially. In the parallelized scheme agents 5
and 4 already after one step determine local optimality. Thus,
the subproblems of their neighbors are solved in parallel,
speeding up the total decision making time. Table II shows
the costs of the actions determined by each scheme and the
costs of actions that a centralized agent would determine,
i.e., the ideal case. The performance of the serial scheme is
almost as good as the centralized control. The parallelized
scheme has slightly higher costs than the serial scheme, since
in the parallelized scheme an individual agent stops updating
its variables at the moment that its local stopping criterion
is satisfied, whereas in the serial approach an agent will also
after this keep updating its variables, until all agents stop.

VI. CONCLUSIONS& FUTURE RESEARCH

In this paper we have considered a scheme for multi-agent
control of, e.g., large-scale networks. We have introduced

problem topologies and decision-making schemes, explained
how a recently introduced scheme based on iterations of
serial computations by multiple agents fits into this point of
view, and pointed out some flaws in the serial scheme that
make decision making slow down when applied to large-
scale networks. For tree-structured problem topologies with
convex overall problems as solution to this we have proposed
parallelization of the serial scheme. We have illustrated our
approach with an example, that showed the speed up of the
parallelized approach in a simulation study.

Topics for future research are extending the approach to
deal with general problem topologies and comparing the
resulting approach with parallel approaches based on the
auxiliary problem principle. Moreover, we will consider an
approach in which initially each agent operates solely by
itself and will involve other agents only when it finds this
necessary, contrarily to first involving all agents and then
reducing to smaller groups. Our future research will also
consider a hybrid approach for controlling systems with
both continuous and discrete elements. This approach will
combine the current scheme for dealing with continuous vari-
ables with a scheme from the field of distributed constraint
optimization to deal with discrete variables [10].

ACKNOWLEDGMENTS
Research supported by the project “Multi-agent control of large-scale

hybrid systems” (DWV.6188) of the Dutch Technology Foundation STW,
the European 6th Framework Network of Excellence “HYCON” (FP6-IST-
511368), BSIK project “Next Generation Infrastructures (NGI)”, an NWO
Van Gogh grant (VGP79-99), and the Transport Research Centre Delft.

REFERENCES

[1] G. Weiss, Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. USA: MIT Press, 2000.

[2] K. P. Sycara, “Multiagent systems,”AI Magazine, vol. 2, no. 19, pp.
79–92, 1998.

[3] D. D. Siljak, Decentralized Control of Complex Systems, ser. Mathe-
matics in Science and Engineering. Boston, Massachusetts: Academic
Press, Inc., Jan. 1991, vol. 184.

[4] J. M. Maciejowski, Predictive Control with Constraints. Harlow,
England: Prentice Hall, 2002.

[5] E. Camponogara, D. Jia, B. H. Krogh, and S. Talukdar, “Distributed
model predictive control,”IEEE Control Systems Magazine, vol. 1, pp.
44–52, Feb. 2002.

[6] P. Hines, L. Huaiwei, D. Jia, and S. Talukdar, “Autonomousagents
and cooperation for the control of cascading failures in electric
grids,” in Proceedings of the 2005 IEEE International Conference on
Networking, Sensing and Control, Tucson, Arizona, Mar. 2005, pp.
273–278.

[7] D. P. Bertsekas and J. N. Tsitsiklis,Parallel and Distributed Com-
putation: Numerical Methods. Nashua, New Hampshire: Athena
Scientific, 1997.

[8] C. B. Royo, “Generalized unit commitment by the radar multi-
plier method,” Ph.D. dissertation, Technical University ofCatalonia,
Barcelona, Spain, May 2001.

[9] R. R. Negenborn, B. De Schutter, and J. Hellendoorn, “Multi-agent
model predictive control for transportation networks: Serial versus
parallel schemes,” inProceedings of the 12th IFAC Symposium on In-
formation Control Problems in Manufacturing (INCOM 2006), Saint-
Etienne, France, May 2006, pp. 339–344.

[10] P. J. Modi, W. M. Shen, M. Tambe, and M. Yokoo, “ADOPT:
Asynchronous Distributed Constraint Optimization with quality guar-
antees,”Artificial Intelligence, vol. 161, no. 1-2, pp. 149–180, Jan.
2005.

[11] P. Kundur,Power System Stability and Control. New York: McGraw
Hill, 1994.

[12] P. W. Sauer and M. A. Pai,Power System Dynamics and Stability.
London, UK: Prentice-Hall, 1998.


