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Efficient implementation of serial multi-agent model predidive control
by parallelization

R.R. Negenborn, B. De Schutter, J. Hellendoorn

Abstract—We discuss an extension of a scheme recently sequence of actions that gives the best performance angordi
proposed for multi-agent control of large-scale networks, like to an objective function is determined. The first action dg th

power networks, road traffic networks, water networks, etc.The  gaqyence is implemented, after which the subnetwork esolve
original scheme uses serial sequences of agent interactions thatt tat d th ' ¢ trol le is started
under some assumptions make agents locally choose actions that'© @ NeW State an € next control cycie IS started.

are globally optimal. However, some weaknesses of the approach ~ FOr making the predictions within a certain control cycle,
appear when applied to large-scale networks. We identify these each agent uses a model of its subnetwork. Since the physical
weaknesses and propose, for problems with a tree-structured supnetworks together form the overall network, e.g., due to
problem topology, an improvement based on parallelization of 4,5 going from one subnetwork to another, the models of
the serial scheme. With an example we illustrate and compare
the schemes. the local subnetworks depend on the models of other sub-
networks. Interconnecting variablesre used for modeling

[. INTRODUCTION these interconnections. A main challenge is how to make

A. Transportation networks individual agents determine values for the interconnectin

Our modern society crucially relies on the efficient Operyarlables that result in local actions that are globallyiropt.

ation of several types of large-scale transportation nektsyo Without consistency on the values that the agents assume for

. . the interconnecting variables, the predictions made of the
like power networks, road traffic networks, water networks ) - .
) : ! dynamics of a local subnetwork over the prediction horizon
etc. Due to, e.g., high computational requirements, commu-, . :
" . . . will not be accurate, reducing the quality of the control.
nication delays, or unwillingness to share informatioresta
netWOka cannot be Controlled by a Single agent that h@ Parallel versus serial schemes
access to all actuators and sensors. Instead, a multi-agent

distributed control approach has to be employed, in whicp Th|_s ch'allenge_ can bg tackled by having agents per-
R . orm iterations of information exchandeetween each other,
the overall network is divided into a number of subnetworks

and a control agent is assigned to each subnetwork. Eavcvﬁthout the intervention of a supervisor, on the values of

. . interconnecting variables [5], [6]. An iteration consigif
control agent has to locally determine actions to the acotaat each agent performing omsten involving local computations
in its own subnetwork that give the best overall network gentp 9 n 9 P

T 7 o only. After each agent has performed its step in an iteration
performance, using information from sensors in its own

o . information is exchanged, and the next iteration can be
subnetwork and communication with other agents [1], [2] )
. .~“started. One approach for such a scheme is based on a
[3]. We assume that agents are at least semi-cooperative, Jn . i
. . ecomposition of an augmented Lagrange formulation of the
the sense that the agents may have information that they

0
not want to share with other agents, but that in order to rea}

(ﬁ/erall control problem [7]. A typical approach to perform
desired performance the agents realize that they will have is decomposition is by using an auxiliary problem prieip
share some information and be involved in negotiations.

5], [6]. The resulting scheme is parallel scheme: agents
perform local computations simultaneously. An alterretiv
B. Multi-agent model predictive control approach to decompose the augmented Lagrange formulation
Recently, model predictive control (MPC) [4] has beer{'ses a block coordinat_e desce_nt [7]. This appr.oach has been
introduced as a strategy for agents to determine theirrestio!S€d before for the unit commitment problem in power sys-
in a single-layer multi-agent setting [5]. In an MPC strat-tems_ [8], and has recently been |ntro.duced in the context 'of
egy, at each control cyclean agent solves an optimization multl_-agent MPC [9]. The block C(_)ordlnate descent resuIFS|
problem that finds the best local actions to apply to it& serial scheme: one agent at a time performs computations.
local subnetwork over a certain prediction horizon under gor smgll networks, the serial approach has shown preferabl
set of constraints. The agent performs its optimization bjfoPerties compared to the parallel approach in terms of

making predictions on the evolution of the subnetwork undéf€cision-making speed and accuracy [9]. In the following we
different sequences of actions and given an initial Subogtw consider extension of this serial approach to larger né¢svor

state and constraints on inputs, states, and outputs. TRE paralielized serial schemes

The authors are with the Delft Center for Systems and Control, For the scheme that we consider, the local solutions of
Delft University of Technology, Mekelweg 2, 2628CD Delft,h& agents converge over a number of iterations to the overall
Netherlands, {r.r.negenborn,j.hellendoorn}@udel ft.nl, imal k soluti d . .
b@leschutter.info. Bart De Schutter is also with the Marine and optimal network solution under a convexity assumption on

Transport Technology department of Delft University of Teclogy. the overall control problem [7], [9]. Although the local



solutions converge to the global optimum, a disadvantage. DCOP approaches consider constraints between discrete
of this serial approach is that with an increasing number variables, of which the domain of possible values of a
of agents, the number of steps required to complete one particular variable is independent of the values of other
single iteration, and thus the total time required for decis variables. In our approach, the values that the variables
making, increases as well. In this paper we examine a method controlled by the agents can take on are constrained by
for improving the running time of the serial approach for  local dynamics of an agent's subnetwork and indirectly
overall convex problems with a certain tree structure by by the values of variables of neighboring agents.
parallelizing the serial scheme. Instead of having one group

of agents within which computations are done serially,gherF. Outline

may be multiple groups within which computations are done
serially simultaneously. We propose to increase the serig
decision-making speed by:

IThe remainder of this paper is outlined as follows. In
ection Il we introduce a model for structuring large-scale
. i control problems and decision-making schemes. In Section
« solving fewer local steps by having agents know whef, \ve discuss the original serial approach in terms of this
their current solution is within some distance from th&,,oqel and point out some of its drawbacks. In Section IV
optimal solution, and by not changing it anymore afte{ye propose the parallelized version, and in Section V we

this; ) o ) ive an example illustrating and comparing the performance
« reducing communication between agents by having mufs the two approaches based on a simulation study.
tiple instances of the serial scheme work simultaneously

in smaller groups of agents. I

In our approach the agents detect on-line, while solving

their subproblems, when the group of agents can be split For n subproblems we define the set of nodes =
into smaller groups in which the serial algorithm is per{1,2,...,n} and the set of edges’ = {(i,j) € 42| #
formed. This will in particular be beneficial when, e.g.,i-subproblems and j depend on each otherWe consider
disturbances have only local consequences and not allsagepfoblems for which the overall control problem at control
have to be involved in solving these consequences. In the@¥cle k defined over a prediction horizon 8F cycles can be
cases, iterations only have to be done by a small numbgfitten in an MPC fashion as [4]:

of agents, thus reducing computation and communication

. MODELS FOR DECISION MAKING

n

requirements, therewith increasing decision-making dpee __min _ Zi()”q,ﬁi) Q)
No off-line, a-priori, ordering of agents to determine the X1 X2, 5 Xn S
order in which they should perform their computations is U, U2, ., Un
necessary. Furthermore, under the given assumptions, the subject togi(Xi, Gi, Win,j; i, - - s Win jmi i) =0 (2)
approach ensures that the solutions of the individual agent hi (%,G) <0 3)
converge to local actions that are globally optimal up to a Vo = W (4)
user-defined accuracy. i Ht)

VT/our.,j,i :Cj,i[()'zi)—r (Gi)T]T ®)

E. Comparison with distributed constraint optimization . ) . ) . o
. forje A ie AV, (j,i)€&, j1,...,]m are the indices ojthe
At a first glance, the approach we propose may SeeBlements of{j|(j,i) € &}, and where for subnetworik J is
similar to approaches from the field of distributed consirai the |ocal objective functionx = [(Xk11)T,- .., Xixin)T]T
optimization (DCOP), e.g., the recently proposed ADOPFRye the subnetwork states; = [(ui‘k)T’___7(ui.k+'N_l)T]T
algorithm [10]. Indeed, as we will see, our approach reliegre |ocal inputs, andy = [gix....,Gin_1T and h =

on forming a tree-shaped communication structure between ,  h, .\ 4|7 are local equality and inequality con-

agents and passing of desired values for variables frogjraints, respectively. In a similar way, we define variable
parents to children, and information about optimality from,y,m._i as interconnecting inputs ame,; i as interconnecting
children to parents, as also is the case in ADOPT. Howevesytputs. These variables are used to define the intercennect
our approach considers a significantly different probleassl ing constraints (4) between subnetworkand j. Matrix
than techniques used in the field of DCOP. In particular: ¢, ; is an interconnecting output selection matrix that selects
« DCOP addresses distributed solution of problems inwhich local variables of subnetwork are interconnecting
volving discrete variables and constraints between thesaytputs with respect to subnetwork The equality con-
whereas our approach addresses problems involvisfraints (2) include the predictions of the subnetwork dyna
continuous variables and constraints between these. ics, e.g., equations of the formu.1i = fi(Xi k, Ui,k,Win,i,k),
« DCOP approaches are typically based on ideas fromhere f; is the prediction model for subnetworkwhile h;
the field of integer and discrete programming, e.ginainly contains domain constraints on the local states and
branch-and-bound methods. The approach we proposdrputs. Note furthermore that the overall objective fuouti
based on Lagrange theory, is developed for continuowsefined in (1) consists of the combination of the local
programming problems, and includes well-establishedbjective functions of each agent. So, each agent has only
results for convergence to optimal solutions. local goals, like minimizing local flows and inputs.



A. Problem topology When all agents have determined that they should stop,

To make the structure of an overall control problem morée agents implement their actions. The agents use a set
clear and see how parallelization can be used, we introdugé attributes to store information, and tokens and flags to
the concept of @roblem topologyGiven the decomposition determine what to do.
of the overall control problem into subproblems (e.g., base 1) Attributes: Agenti solving the subproblem of node
on geographical areas), a problem topology is the uniqu®s access to the following attributes of nade
undirected graph representing the dependencies of subprobe The neighborsattribute.# is the set of nodes to which
lems on one another. Each node represents a subproblem, nodei has an edge, i.e.# = {j|(i,]j) € &}. This set
while an edge between two nodes indicates that the two is initialized at the beginning of the first control cycle
subproblems represented by the nodes depend on each other. and stays fixed over further control cycles. A grouping
Since any subproblem depends on itself, self-dependence of the neighbors is made using two attributes:
edges are not considered. For a given decomposition of the The parent attribute R refers to the nodg € .4{ that
overall problem, the associated problem topology is simply  had its subproblem solved right before the ndde
found by placing edges between any two nodes representing subproblem was considered. Thhildren attribute %;

subproblems that depend on each other. is the set of all nodes except the parent node, i.e.,
There are different types of problem topologies, differing 4 = 4\ {R}. The parent and children attribute are
in additional assumptions made on the set of eddges set when an agent performs its first computation in the
Throughout the paper, we assume: first iteration of the first control cycle, after which they

Assumption 2.1The problem topology under considera- stay constant over all further iterations and cycles.
tion is atree topology i.e., a connected topologies without .« The local optimality attribute LQ indicates whether or

any cycles. not the agent of nodehas made its decision on the local
Although this assumption is somewhat restrictive, before variables and interconnecting variables. This attribste i
being able to determine how to parallelize general tope®gi updated at the end of Phase 2 of each iteration. The local

we first have to understand how to do this for tree topologies.  stopping criterion for ageritis given by maxv(’|. <
Once this is understood, the approach used may be extended g, where vl) is a vector with the evaluations of the
to deal with cycles and therefore general topologies. Atso, interconnecting constraints in which variables of agent
practice it may be possible to construct a tree topology from i are involved.

a general topology by grouping the subproblems causing thes The subgroup optimality attribute SG@ indicates
non-tree structure, i.e., cycles, into one subproblem. whether or not the agent of nodénas local optimality
and all its children have the subgroup optimality at-

) ) ) . ) tribute positively set, i.e., SGG- LOj A (Ajeqy; SGO)),
As mentioned in Section |, the decision-making schemes with A\j-oSGO| = true. This attribute is updated after

that we consider operate by performing at each control the local optimality attribute has been updated.

cycle a number of iterations. The iterations terminate when o ) )
a stopping criterion is satisfied, after which actions are 2) Tokens and flagsTo indicate which agents are solving

implemented and the next cycle is started. We consider J2€ir subproblems, we introduce the concept oéaanpu-
overall stopping condition tation token The computation token allows the agent that

has a token to perform computations related to solving its

B. Decision-making schemes

V][ < &, (6)  subproblem, i.e., Phase 1.
where ¢ is a small positive numbery € RMm = To determine whether an agent should stop, i.e., whether
s, m characterizes the interconnecting constraints dfhase 2 can start, an agent waits until it has received all
all subnetworks, i.e.v = [Win,j, 1 — Woutdjy-- - Win,jp 1 — relevant information from the agents that it requires infor

~ ~ ~ ® ~ T mation from. Thestop-determination flagndicates whether
Wout,l,jmly---7V\/in,j1,n—WouLn,j1a---7Win,jn1,n—WouLi7jnh] , and P n

|| |l = max |vi| denotes the infinity norm, whesgis theith a1 agent has all necessary infgrmgtiqn.

element ofv. The stopping criterion is thus an upper bound 3) Local optimality determination: When  the stop-
condition on the difference between values that differerffetermination flag is positively set for an agent, the agent
agents want to assign to interconnecting variables, ery. gas to determine whether or not its local solution satisfies
how much flow should go from one subnetwork into anothef€ Stopping condition. For this to be possible, we have the
The condition is more accurate with approaching zero. following. _ o

By varying ¢ a trade-off is made between the accuracy of Lemma 2.2:The agents can in a distributed way deter-

the solution and the number of iterations required befor@in€ whether the overall stopping condition is satisfieigsi
termination. local stopping conditions.

Each iteration can be Sp“t into two phases: Proof: The |nf|n|ty norm involved in the overall StOp-

. Phase lis an optimization phase in which the agentd’ind condition (6) can be written as
solve their local subproblems.

« Phase 2is a stopping detection phase in which the
agents determine whether the iterations should stop. = max(max(|vi|,..., [V |),--.,max|Va—m,|, .-, |Vn|))

V]| = miax|vi| =max(|Va|,...,|Vm |, [Va=mn |, - -+ |Vn|)



1. ORIGINAL SERIAL APPROACH

In the original serial approach, i.e., the approach of [9],
one agent at a time performs computations. Thus, per itera-
tion there is exactly one computation token. The following
example illustrates the workings of the scheme.

Example 3.1 Consider the problem topology in Figure 1la.
(a) Serial (b) Parallelized Agent i has to solve the subproblem of nodeAgent 1

Fig. 1: Example of the order in which tokens can go. Solid arroWstarts the iterations by receiving the computation token.

indicate computation tokens; dotted arrows indicate subgroup opt-o determine subgroup optimality, it solves its subproblem

mality information. The edges are labeled with the step within th§€Nds the determined desired values for the interconigectin
iteration at which the information is sent. variables to its neighbors, i.e., agents 2 and 4, and giwes th

computation token to one of its children from which it has
not received subgroup optimality information in this itéoa
- ma)(llv(l)Hoo,...,Hv(”>||m). yet, e.g., agent 2. Ager_lt 2 rece_ives the tok_en. It_solves its
subproblem, sends the information found to its neighbors, 1
where V() are the variables of subnetwoik e.g., V(¥ = and 3, and s.ends the computa.tion.tolfen t.o 3 from which it
Vi,...,Vm]T. Thus, the overall stopping condition is satisfied'@s not received subgroup optimality in this iteration yet.
when Agent 3 receives the token, solves its local problem, sends
(1) My < . the information found to its neighbors. Since it has no child
M|V les -, [V ) < £, Q) from which it has not received the subgroup optimality
information yet, it has all up-to-date information from its
which is true if and only if <HV<1)||:>o < 5) A ... A neighbors, plus its own up-to-date information and theefo
it can evaluate its local stopping criterion. Then, it detieres
its subgroup optimality and sends the subgroup optimality
information to its parent, agent 2.
Agent 2 has no other child from which it has not received

(||v(”)Hoo < e). Local optimality LQ for subnetworki is

concluded when the local stopping criteriga)|| < € is
satisfied. If all agents have concluded local optimalitgrth

MVl < € for each su_bnetvyork_ and therefore (7) holds, angubgroup optimality information. The stop-determinatilag
thus the overall_stop_pmg cr|ter_|on_(6) holds. ) for node 2 is thus true and agent 2 subsequently has to

4) Global optimality determinationTo determine when ey4|yate the local stopping criterion and determine suljgro
all agents have solved their subproblems and the agents GBtimality. It passes the subgroup optimality informatton
implement the determined actions, we have the following: ji5 parent, agent 1.

Proposition 2.3: For a tree topology of an overall convex Agent 1 has not yet received the subgroup optimality
control problem, if for a node € .4 each of its neighbors jnformation from agent 4, so it sends the computation token
j € /A has the subgroup optimality flag positively set, i.e.to 4. Agent 4 receives the token and takes actions to obtain
SGQ = true, and if its local optimality flag is set, i.e., the required information from its children. Ultimately, 1
LO; =true, then the solution of the overall problem has beefsceives from 4 the subgroup optimality information. Agént
reached within the specified accuracy. then has received updated subgroup optimality information

Proof: Since all neighbors of nodehave the subgroup from all its children and evaluates its own local stopping
optimality flag positively set, the children of these neigh criterion and subgroup optimality.
and children of children, and so on, also have the subgroupThe iterations continue until all agents have the local
optimality flag positively set. Since the subgroup optittyali stopping criterion satisfied. Using Proposition 2.3 agent 1
flag of a node can only be positively set if the node has locgletermines whether a next iteration has to be started, or
optimality, all children and children of children, etc. leav whether the agents can implement their determined actions.
solved their local subproblems. Thus, together with local ) .
optimality of nodei, all nodes will have local optimality. The serial scheme just illustrated has some drawbacks:

Furthermore, due to the convexity of the overall control e Only one agentis computing at a time, making iterations

problem, the overall solution has been reached. [ ] take a long time when there are many agents;

The optimization problem defined by (1)—(5) is convex, when ¢ €ven when an agent has local optimality, it will keep on
the functionsJ' andh' are convex and the functiorg are performing its local optimization, even though its solu-
affine. A typical situation like this occurs when quadratic ~ tion already satisfies the stopping condition, therewith
local objective functions are taken (e.g., obtained asrs®co Increasing running time,

order approximation of a nonlinear objective function)lwit ¢ iterations are always done over the whole group of

linear prediction models for the subnetwork dynamics (e.g.  @gents, even though parts of the group may already have
obtained as linearization of a nonlinear model of the dynam-  reached local or even subgroup optimality.

ics), defined over variables that take on their values frorn the next section we propose an extension of the original
closed convex sets of real numbers. scheme that addresses these drawbacks.



V. PARALLELIZATION OF THE SERIAL SCHEME within this group the serial scheme can be performeds

We propose an extension of the serial approach based @0, mpje 3.1 revisited We reconsider Example 3.1, now
parallelization. With parallelization instead of havingeo using the parallelized serial approach. Figure 1b shows
agent at a time solving its subproblem, there are multiplg,e schematics of the order in which agents work. Agent
agents at the same time working on different subproblems. gia1ts by receiving the computation token. It solves its
Instead of having one group of agents over which the serig|;pnroplem and sends the results of this to agents 2 and
scheme ?terates,.there are several groups in which thd senia 1o getermine subgroup optimality agent 1 has to receive
scheme iterates in parallel. _ subgroup optimality from these agents. By Proposition #.1 i

Problems can be solved in parallel when they are indepegands a computation token to each of its two children. Thus,
dent of each other. By Assumption 2.1 the problem topolog¥ and 4 each receive a computation token. They solve their
is connected, which means that indirectly all subproblemgca| problems and send the obtained information to their
in the problem topology depend on each other. Howevegeighbors, i.e., agent 3, and agents 3 and 5, respectiely. T
while the agents are performing their iterations to find Qetermine subgroup optimality they have to obtain subgroup
solution to the overall problem, the subproblems do beCO”lf-‘ptimaIity from their children. Agent 2 has no children.
independent as information from locally solved pmblemﬁ'herefore, agent 2 determines subgroup optimality and re-
becomes available, since within an iteration agents déterm ,rns this information to 1. However, agent 4 has children,
the values of their local variables once, after which thegike ¢4 by Proposition 4.1 it sends computation tokens to these.
these values fixed throughout the current iteration. MOV | the meantime, agent 1 has received the subgroup opti-
after an agent decides on local optimality, it will keep itsyajity information of 2. However, since 1 has not received
variables fixed, also over future iterations of the currengs information of 4 yet, its stop-determination flag islsti
cycle. Thus, the independency holds either only within thgyse it cannot yet proceed to determine on its own subgroup
current iteration or also over all future iterations of theoptimality and decide whether or not to start a new iteration
current cycle. We have: When agent 4 has received the subgroup optimality infor-

Proposition 4.1:For a tree topology, after an agent hasnation of 5 and 6, it determines its own subgroup optimality
solved its local subproblem, its children can solve theignd sends the result to its parent, 1. Agent 1 has then a
subproblems in parallel within the current iteration. positive stop-determination flag; thus, it decides on waeth

Proof: When ageni has solved its local subproblem, or not to start a new iteration. Since no agent has concluded
the values it has determined for its variables, including thiocal optimality, 1 starts a new iteration.
interconnecting variables, are fixed for the current iterat Suppose that after some iterations agent 4 reaches local
Thus given these fixed values the subproblem of each chilshtimality. The values of its interconnecting variabled| wi
j € % will be independent of the subproblem of agenktay fixed over the following iterations. It notifies this to
i. Furthermore, due to the tree topology assumption, @Il its neighbors, therewith indicating that these neigsbo
subproblems of the descendants of chilare independent of should also not update their interconnecting variabled wit
the descendants of each other child i\ {j}. Therefore, respect to agent 4 anymore. The only task remaining for 4
the children of agent can solve their problems in parallel. js to inform its parent of subgroup optimality, such that at
However, the group of agents representing the subproblerséme point the stop-determination flag of its parent will be
in the branches leaving the current node cannot be separatggk, therewith allowing its parent to also determine sabgr
completely, since at the next iteration the values of thgptimality. By Proposition 4.2 the children of 4 can solve
current agent may change again. B their problems in parallel over all future iterations. Asidp

Proposition 4.2:For a tree topology, if a node has theas 4 does not receive positive subgroup optimality flags from
local optimality flag set positively, then the branches legv its children, it will not send anything to its parent, 1.
from this node can be solved in parallel within the current In the meantime, when the parent of agent 4 has received
iterationand within all future iterations of the current cycle. the subgroup optimality flags of the children that have not

Proof: By Lemma 2.2, for a node € .4 that is yet indicated local optimality, i.e., 2, the parent assumes
locally optimal the values of its variables, including teos negative subgroup optimality for the children that do have
of interconnecting variables, satisfy the stopping coadit local optimality, but that do not have not reported positive
Furthermore, although the values of the variables may ahangubgroup optimality yet.
due to arrival of new information, the local stopping criber Each of the agents solving the subproblems of the children
will still be met. Due to the tree topology assumptionof 4 will get similar roles as agent 1. They know that their
the branches leaving from nodeare not connected to parent, 4, has local optimality, and that it will thereforet n
each other and therefore represent independent subpreblecthange the values of its interconnecting variables and not
(given the fixed variables of the node Therefore each of send them further updates. The agents of the children of
the subproblems of the children of nodecan be solved 4 continue solving the subproblems of their branches and
in parallel, in the current iteration and for future itecaits report to 4 when they have reached subgroup optimality.
of the current cycle. So, the group of agents solving th&/hen agent 4 receives this information, it sends this to its
subproblems in the branches of nadean be grouped, and parent, ultimately leading to stopping of the iterations.c



problem topologies and decision-making schemes, exaine
how a recently introduced scheme based on iterations of
serial computations by multiple agents fits into this poiht o
0 ° Q e view, and pointed out some flaws in the serial scheme that
make decision making slow down when applied to large-
@ e e scale networks. For tree-structured problem topologigh wi
convex overall problems as solution to this we have proposed
Fig. 2: Problem topology for 10 subnetwork problem withparallelization of the serial scheme. We have illustrated o
disturbances in subnetwork 1 and 9. approach with an example, that showed the speed up of the
parallelized approach in a simulation study.

age_”lt 213 223 233 243 253 ;53 ;3 23 33 1203 Topics for future research are extending the approach to
seria . . .
parallelized 21 22 25 25 1 1 20 18 18 1o deal with general problem topologies and comparing the

resulting approach with parallel approaches based on the
TABLE I: Number of steps per agent. In total 230 steps argyxiliary problem principle. Moreover, we will consider an

performed using the serial approach, whereas 161 steps @ffroach in which initially each agent operates solely by
performed using the parallelized serial approach. itself and will involve other agents only when it finds this
necessary, contrarily to first involving all agents and then

ggﬂgﬁ" 18'82 reducing to smaller groups. Our future research will also
parallelized  19.05 consider a hybrid approach for controlling systems with

both continuous and discrete elements. This approach will
combine the current scheme for dealing with continuous vari

ables with a scheme from the field of distributed constraint
optimization to deal with discrete variables [10].
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