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Ship collision avoidance based on deep
deterministic policy gradients and beetle antenna

search algorithm
Shuo Xie, Vittorio Garofano, Xiumin Chu, and Rudy R. Negenborn

Abstract—Continuous-action reinforcement learning methods
(e.g., the deep deterministic policy gradient method (DDPG))
have attracted much attention in the ship collision avoidance
area. To obtain potential flexible collision avoidance policies,
the noise injection is widely used in the exploration of DDPG.
In order to realize an adaptive exploration in DDPG for ship
collision avoidance, an adaptive beetle antenna search-optimized
DDPG (ABAS-DDPG) method is proposed in this study. The main
idea of this method is to adapt the noise scale in the learning
process simultaneously based on a beetle antenna search (BAS)
algorithm, which utilizes the feedback from the critic in DDPG.
The simulation results indicate that the proposed ABAS-DDPG
method successfully adjusts the noise process automatically and
obtains stabler and higher sum rewards than original DDPG in
ship collision avoidance learning.

Index Terms—Reinforcement learning, ship collision avoid-
ance, deep deterministic policy gradients, beetle antenna search,
noise scaling

I. INTRODUCTION

SHIP collision avoidance has become a hot research topic
in navigation safety [1], [2]. With the recent develop-

ment of artificial intelligence, reinforcement learning (RL)
methods [3], [4] have profound great effects on practical
control issues [5], [6], [7], e.g., the ship collision avoid-
ance problem [5]. Among plenty of RL methods, the pol-
icy gradient-based methods (e.g., deep deterministic policy
gradient (DDPG) [8], asynchronous advantage actor-critic
(A3C) [9], proximal policy optimization (PPO) [10], etc.)
solve continuous action problems with a deterministic policy
parameterized by neural networks, which attract more attention
in ship collision avoidance recently. In this section, a brief
survey on traditional ship collision avoidance methods and the
related works on reinforcement learning-based ship collision
avoidance methods are introduced. Besides, the related works
on the main algorithms used in this study, i.e., the beetle
antenna search (BAS) algorithm is also given.
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A. A brief survey on traditional ship collision avoidance
methods

Traditional ship collision avoidance methods can be briefly
divided into two categories: path planning methods and
optimization-based methods.

Path planning methods mainly include local path planning
methods, e.g., artificial potential field (APF) [11] and global
grid network-based methods, e.g., A* [12]. A* considers
both the start position and the destination, which has global
optimality but low efficiency in a large map [13]. Hierarchical
Planning [14] is a commonly used approach to improve
the efficiency of A*. APF uses artificial gravitational and
repulsive field to model the navigation environment with a
small computation [15], which can generate smoother paths
than the gird-based methods (e.g., A*). Therefore, APF has
been also applied for ship path planning [16] in past decades.

With the development of optimization algorithms, the quan-
titative optimization-based methods (e.g., fuzzy mathematics,
neural networks, swarm intelligence and model predictive
control, etc) have attracted more attention in ship collision
avoidance area [17].

Fuzzy mathematics and neural networks adopt fuzzy mem-
bership functions and black-box approximated functions to
model the collision risks, respectively. Classification and
reasoning are the main issues in fuzzy mathematics. For
classification, appropriate membership functions are required.
In [18], the triangular and trapezoidal membership functions
are used to represent different collision avoidance variables.
In [19], the subjective feelings of the crew are also considered
in fuzzy classification, which obtains better results. For fuzzy
reasoning, the fuzzy maximum first (FMF) approach is widely
used [20], and several representative achievements have been
achieved [21]. Besides, the neural network is also an effective
approach to model the uncertain factors in ship collision risk,
which are commonly combined with fuzzy mathematics [22]
and expert system (ES) [23] to realize collision avoidance.

Swarm intelligence optimization methods uses stochastic
operator and swarm behaviors to achieve optimization, which
have been also studied in ship collision avoidance. Ant colony
optimization (ACO) [24] and particle swarm optimization
(PSO) [25] are the most commonly used algorithms in ship
collision avoidance, which can obtain good results with an
appropriate fitness function considering the collision risk.

Recently, a typical model-based control method, i.e., model
predictive control (MPC) [26], [1], [27], [28], [29], has been
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also studied in ship collision avoidance area due to the
ability of comprehensive considering the ship maneuverability
model and the constraints. MPC has advantages of rolling
optimization and state prediction, which can be extended to
distributed MPC method for multi-ship collision avoidance
problems [30], [1], [26], [31].

In summary, path planning and optimization-based methods
have obtained rich achievements in ship collision avoidance.
The similarity of existing traditional methods is to model an
appropriate environment for searching or optimization (e.g.,
the grid map in A*, the objective function considering collision
risks in MPC, etc.), which needs certain prior knowledge. In
spite of this, existing traditional methods have difficulties in
application in unknown environment, e.g., a limited perception
caused by poor visibility, which needs further research.

B. Related works on ship collision avoidance based on rein-
forcement learning methods

At present, several reinforcement learning methods have
been applied in ship collision avoidance, e.g., the Q-learning,
Deep Q-network and DDPG, etc. By reasonable definitions of
the state, action and reward function, the ship collision avoid-
ance process can be regarded as a classical Markov decision
process (MDP), of which the state transition probability is
determined by the ship dynamics.

The conventional Q-learning method adopts a discrete Q-
Table to map the state value and the action, which is capa-
ble of dealing with discrete state-action problems, e.g., the
path planning for collision avoidance. In [32], the Q-learning
algorithm is simply applied for path planning based on the
kinematic model of the marine vehicle without considering
obstacles. In [33], [34], the ship collision avoidance path
planning problem is solved by Q-learning, which obtains more
effective results than the traditional rapid-exploring random
tree (RRT) and A* algorithms. By defining the discrete rudder
actions and mapping the ship states to the grid map, a smoother
path can be generated based on the established ship model and
Q-learning.

Furthermore, for autonomous collision avoidance in dense
regions, continuous states and actions are required to achieve
flexible decision-making. Deep Q-network is firstly applied in
ship collision avoidance with continuous state space by using
function approximation. In [35], the distances measured by a
set of fixed interval detection lines around the ship are defined
as the states, and the discrete ship heading angle changes are
defined as the actions in deep Q-network. This approach is
validated in both numerical simulations [35] and model ship
experiments [36]. In spite of this, high precision decision
making with deep Q-network is still difficult due to the dis-
crete actions. In [37], a so-called constrained deep Q-network
is proposed to reduce the complexity of the action space
by adding constrains based on international regulations for
preventing collisions at sea (COLREGs), which also obtains
good collision avoidance results. Besides, feature extraction in
deep learning, e.g., the convolutional neural network (CNN),
is an effective approach to train the value function in a high-
dimensional state-action space. In [5], CNN is used in deep

reinforcement learning to obtain a more reliable collision
avoidance policy with a chain lumped state matrix including
the perception information, the motion state and the ship’s
actions in a certain horizon.

To realize continuous action decisions and reduce the mem-
ory space for ship collision avoidance, deterministic policy
gradient-based RL methods (e.g., DDPG [8], A3C [9], etc)
adopt a network-approximated action policy that is regarded
deterministic with respect to the current state, which per-
forms better than Deep Q-network in continuous control
problems [8]. In [38], the DDPG algorithm is applied for ship
collision avoidance with the same state and action definitions
as in [5], and the simulation results have indicated the ef-
fectiveness and advantages of DDPG algorithm in continuous
ship behavior decision. In [39] the DDPG algorithm is applied
with a simplified state-action space, of which the states and
actions are defined by the relative parameters between own
ship and target ship and the vertical distances away from the
target course, respectively.

Actually, with the consideration of the ship dynamic model,
the collision avoidance problem becomes very similar to the
control problem, in which the RL methods have also been
adopted recently [40], [41], [42]. Benefiting from no restrict
requirements of the prior knowledge, RL methods can obtain
effective collision avoidance policy for ships in different
environments without large fine-tuning. However, due to the
random exploration process for learning, the time cost of RL
training becomes very high in complex environments. The
exploration efficiency of RL needs to be improved for practical
application.

C. Related works of the BAS algorithm

Stochastic optimization algorithms, such as ant colony op-
timization (ACO) algorithm [43], particle swarm optimiza-
tion (PSO) algorithm [25], grey wolf optimization algorithm
(GWO) [44], etc., are widely used in optimization tasks.
Among them, the PSO algorithm is most commonly used due
to its concise structure and fast convergence.

As a novel optimization algorithm similar to PSO, beetle
antenna search (BAS) algorithm [45], and its swarm vari-
ation [46] are proposed based on the foraging behavior of
beetles recently, which have simpler search strategies than
PSO. The effectiveness of BAS-based algorithms have been
validated in various optimization problems [47], [48], [49],
[50], [2]. For fine-tuning problems, the BAS is capable of
adjusting the hyper-parameters effectively, e.g., PID param-
eters [49], neural network parameters [48], etc. For direct
optimization problems, the BAS has been proven to be an
effective approach. In [51], the BAS algorithm is used to
establish a portfolio model, which is combined with PSO.
In [52], the 3-dimensional path planning problem is solved by
the BAS algorithm and obtains a higher convergence rate than
PSO. Due to the concise search strategy, the BSAS algorithm
is considered to have great potential in solving optimization
problems.
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D. Motivations

Compared to traditional collision avoidance methods, the
deterministic policy gradient-based reinforcement learning
methods, e.g., DDPG, can obtain a continuous policy in
uncertain environments by maximizing future rewards through
interactions, which has the potentials under limited perception.
In spite of this, a well-known drawback in existing reinforce-
ment learning-based methods is the low exploring efficiency
problem, especially the off-policy methods. Noise injection
is a widely used approach, while it is difficult to obtain a
stable policy with an inappropriate noise process. A reasonable
noise adjustment strategy can not only obtain a stable learning
process, but also eliminate the noise removal in parallel testing.
Recent researches [53], [54] have shown that optimizing or
learning an additional policy of the exploration process is
an effective approach to improve the exploring performance.
In [53], a meta-policy gradient is proposed by using another
parametric network updated by the policy gradient for noise
adaptation, which can scale the noise injection automatically.

The goal of this paper is to propose an efficient and adaptive
DDPG based ship collision avoidance method. For adaptive
exploration of DDPG, since the additional policy learning
process requires more computation and brings additional prob-
lems like the gradient vanishing, alternative simper optimiza-
tion techniques, e.g., the BAS algorithm, can be considered
instead of the neural networks.

E. Contributions

In order to generate an adaptive exploration process for
ship collision avoidance, an adaptive BAS optimized DDPG
(ABAS-DDPG) algorithm is proposed by integrating a BAS
optimizer into the actor-critic framework in DDPG. The main
contribution of this paper is that the proposed ABAS-DDPG
algorithm achieves adaptive exploration and better learning
results by scaling the noise injection of the actor in DDPG
algorithm [8], based on a beetle antenna search (BAS) algo-
rithm, which is more suitable for direct application.

F. Outlines

The remainder of this article is organized as follows. In
Section II, preliminaries including the widely used ship hydro-
dynamic model and collision risk model [56] are introduced.
In Section III, the DDPG algorithm is applied to ship collision
avoidance. In Section IV, the adaptive BAS-optimized DDPG
framework is proposed for adaptive exploration. In Section V,
ship collision avoidance simulations are conducted based on
a model ship known as Tito-Neri tug ship [57] and a novel
fully-actuated Delfia 1* ship developed by TU Delft [31]. In
Section VI, conclusions and further research are presented.

II. PRELIMINARIES

In the ship collision avoidance problem, a normalized in-
dicator is needed to measure the risk of collisions between
the encountering ships, i.e., the collision risk index (CRI). To
calculate the CRI, a collision risk model [56] is widely applied
to map the relative motion states, e.g., the distance of the

closed point of approach (DCPA), the time of the closed point
of approach (TCPA), to the CRI value. Then the risk model
can be used to design the collision avoidance algorithm.

In this section, the mathematic models used for collision
avoidance in this study are introduced, which include the ship
hydrodynamic model and the ship collision risk model.

A. Ship hydrodynamic model

Abkowitz model [58] and MMG (math model group)
model [59] have been commonly used for the modeling of
ship motion. Both of them can be simplified to 3 degree-of-
freedom (DOF) for surface ships as shown in Fig. 1(a). In
Fig. 1(a), Oo − xoyo is the inertial coordinate system of the
vessel; O − xy is the co-rotational coordinate system of the
vessel; u, v and r are the velocities in surge (body-fixed x),
sway (body-fixed y) and yaw directions, respectively; δ and ψ
are the rudder and heading angle of the vessel, respectively;
β is the drift angle. Then the ship hydrodynamic model can
be denoted as the following 3-DOF form [59], [60]:

η̇ (t) = R (ψ (t))υ (t),

Mυ̇ (t) = f (u (t) , v (t) , r (t) , δ (t) , n (t)) ,
(1)

where η (t) =
[
x (t) y (t) ψ (t)

]T
and υ (t) =[

u (t) v (t) r (t)
]T

are the position and velocity vectors
of the ship at time t, respectively; x (t) and y (t) are the surge
and sway positions, m; ψ (t) is the heading, rad; δ (t) is the
rudder angle, rad; n (t) is the engine speed, r/min; f is the
nonlinear lumped force and moment matrix of the ship with
respect to υ, δ and n. R (ψ) is the rotation matrix between η̇
and υ. M is the inertia matrix of the ship:

R (ψ (t)) =

 sin (ψ (t)) cos (ψ (t)) 0
− cos (ψ (t)) sin (ψ (t)) 0

0 0 1

 ,
M =

 m−Xu̇ 0 0
0 m− Yv̇ mxG − Yṙ
0 mxG −Nv̇ Iz −N

 ,
(2)

where m is the total mass of the vessel, kg; xG is the
longitudinal coordinate of the gravity center of the vessel in
surge direction, m; IZ is the moment of the inertia, kg·m2;
Xu̇, Yv̇, Yṙ, Nv̇ and Nṙ are the inertia coefficients.

B. Collision risk index model

In typical encounters, the CRI (collision risk index) between
two ships can be evaluated based on the relative motion
parameters, e.g., DCPA and TCPA. In this study, we consider
only one ship as the control object, which is defined as the
own ship. The other ship which causes the encounter situation
with the own ship is defined as the encountering ship.

Assuming that the lumped state matrix of the own ship is
X = [ηT,υT]T, and the state matrix of the encountering ship
is XT = [ηT

T ,υ
T
T ]

T = [xT , yT , ψT , uT , vT , rT ]
T. As shown in
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Fig. 1. Ship motion coordinate system and typical encounter.

Fig. 1(b), the relative motion parameters can be obtained [56]
as in (3):

DCPA = RT sin (ψR − αT − π) ,
TCPA = RT cos (ψR − αT − π) /VR,

RT =

√
(xT − x)2 + (yT − y)2,

θT = αT − ψ ± 2π,

(3)

where RT is the relative distance between two ships; ψR is
the relative course direction of the obstacle ship; αT is the
true relative position direction of the obstacle ship, which can

be obtained by (4); θT is converted from αT in body-fixed
coordinate system of the own ship.

In (4), VT =
√
u2T + v2T and V =

√
u2 + v2 are the speeds

of the obstacle ship and the own ship, respectively; VR is the
relative speed of the obstacle ship; vxR

and vyR
are the relative

speed components of the obstacle ship on the X and Y axis,
respectively. Then, to establish the CRI model, the fuzzy
logic method [22] is adopted by using membership functions,
which are general indicators of the degree of truth. The
membership functions of DCPA, TCPA, RT , θT and velocity
ratio K = VT /V can be calculated [61], [22] as follows:

vxR
= uT sin(ψT ) + vT cos(ψT )− (u · sin(ψ) + v cos(ψ)) ,

vyR
= uT cos(ψT )− vT sin(ψT )− (u cos(ψ)− v sin(ψ)) ,

VR =
√
vxR

2 + vyR
2,

ψR = arctan
vxR

vyR

+

 0
π
2π

vxR
≥ 0 ∪ vyR

≥ 0,
(vxR

< 0 ∪ vyR
< 0)||(vxR

≥ 0 ∪ vyR
< 0),

(vxR
< 0 ∪ vyR

≥ 0),

αT = arctan
(xT − x)
(yT − y)

+

 0
π
2π

(xT − x) ≥ 0 ∪ (yT − y) ≥ 0,
((xT − x) < 0 ∪ (yT − y) < 0)||((xT − x) ≥ 0 ∪ (yT − y) < 0),
((xT − x) < 0 ∪ (yT − y) ≥ 0),

(4)

1. The membership of DCPA:

uDCPA =

 1 |DCPA| ≤ d1,
1
2 −

1
2cDCPA d1 < |DCPA| ≤ d2,

0 |DCPA| > d2,

cDCPA =sin

[
π (|DCPA| − (d1 + d2) /2)

d2 − d1

]
,

(5)

where d2 = 2d1 and d1 is the closest safety distance of the

two ships, which varies with θT as:

d1 =


1.1− θT

180◦ × 0.2 0◦ ≤ θT < 112.5◦,

1.0− 270◦−θT
180◦ × 0.8 112.5◦ ≤ θT < 247.5◦,

1.1− 360◦−θT
180◦ × 0.4 247.5◦ ≤ θT < 360◦.

(6)
2. The membership of RT :

uRT
=


1 RT ≤ r1,
1
2 −

1
2 sin

[
π

r2−r1

(
RT − r1+r2

2

)]
r1 < RT ≤ r2,

0 RT > r2,
(7)
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where, r1 and r2 are the distance values of the last action
(DLA) and Arena of the own ship, respectively. The Arena is
proposed by David [62] to describe the area for which entering
of a ship should trigger a collision avoidance action so as to
avoid violating the actual domain [56]. The DLA indicates
the closest distance of taking action by the own ship to avoid
collision [61].

3. The membership of TCPA:

uTCPA =


1 |TCPA| ≤ t1,(

t2−|TCPA|
t2−t1

)
t1 < |TCPA| ≤ t2,

0 |TCPA| > t2,

(8)

where, t1 and t2 represent the time limits for collision avoid-
ance, which can be determined by r1 and r2:

t1 =

{ 1
VR

√
r12 −DCPA2 DCPA ≤ r1,

1
VR

(r1 −DCPA) DCPA > r1,

t2 =

{ 1
VR

√
r22 −DCPA2 DCPA ≤ r2,

1
VR

(r2 −DCPA) DCPA > r2.

(9)

4. The membership of θT :

uθT =
1

2

[
cos (θT − 19)− 5

17
+

√
440

289
+ cos2 (θT − 19)

]
.

(10)
5. The membership of K :

uK =
1

1 + 2
K

√
K2+1+2K sinC

, (11)

where C ∈ [0, 180] is a constant coefficient.
Therefore, the following CRI model is established:

fCRI = λCRIuCRI ,

λCRI =
[
λDCPA λTCPA λRT

λθT λK
]
,

uCRI =
[
uDCPA uTCPA uRT

uθT uK
]T
,

(12)

where λDCPA , λTCPA ,λRT
, λθT and λK are the set weights

of uDCPA , uTCPA ,uRT
, uθT and uK , respectively. It can be

seen that the CRI model outputs the CRI values with respect to
the relative ship states, which can be used to design the state-
action space and reward function in reinforcement learning.

III. DDPG BASED SHIP COLLISION AVOIDANCE METHOD

Reinforcement learning attracts much attention in ship col-
lision avoidance recently. The DDPG algorithm is capable of
learning good policies in unknown environments, e.g., the
limited perception environment caused by low visibility or
sensor problems.

In this section, the DDPG algorithm is applied to ship col-
lision avoidance problem with limited perception by regarding
the collision avoidance process as a typical Markov decision-
making process (MDP), in which the definitions of the state-
action space and reward function are the key issues.

A. State and action design

Reinforcement learning tasks are usually described by dis-
crete finite Markov decision processes (MDP), in which the
time space is divided in discrete steps. At each discrete time
step t, the own ship observes the states of the encountering
ship st ∈ RNs in the perception range and takes a rudder
action at ∈ R based on a collision avoidance policy π. Then
the own ship receives a new observation st+1 ∈ RNs and a
reward rt ∈ R of the action, where Ns are the dimensions of
the state space. The final goal of the reinforcement learning
method in ship collision avoidance is to learn the optimal
policy π which generate rudder actions with the maximum
future rewards.

1) Definition of the action at
Since the optimal rudder action with repect to different

encountering ships may be different, the multi-ship collision
avoidance process is divided into a set of sub-MDP processes
with each encountering ship to learn a general collision
avoidance policy. At each time step t, the own ship takes
a combined rudder action a = δ to avoid collisions with
all encountering ship, while receives different reward ri with
respect to the ith encountering ship from the artificial reward
function. Therefore, different actions are generated in sub-
MDP processes, the final combined action is obtained by
weighting the generated actions based on the collision risks
to prioritize the most dangerous encountering ship:

at =
f iCRI
n∑

i=1

f iCRI

π
(
sit

)
, (13)

where n is the number of the encountering ships, at is the
final decision rudder result for collision avoidance, f iCRI is the
collision risk between the own ship and the ith encountering
ship, sit is the observed state of the ith encountering ship,
π
(
sit

)
is the collision avoidance policy. After the own ship

takes the action at, the states with different encountering ships
are updated for learning.

2) Definition of the state sit
In typical two-ship encounters, a set of the relative collision

states (i.e., DCPA, TCPA, relative distance RT , relative posi-
tion direction θT , relative heading direction CT , relative speed
ratio K) between the own ship and the encountering ship can
represent multiple sets of different original motion states (X ,
XT ) [2]. Therefore, the relative motion states with respect to
the ith encountering ship are defined as the state sit in the
sub-MDP:

sit =
[
DCPAi

t, TCPA
i
t, R

i
T t, θ

i
T t, f

i
CRIt, C

i
T t,K

i
t

]T
.
(14)

B. Reward design

A reasonable reward function considering safety and econ-
omy is very important in reinforcement learning for ship
collision avoidance. An immediate continuous reward function
is considered to be more suitable than a discrete reward
function because of the large inertia and continuity of ship
motion [38].

1) safety
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The encountering ships and the navigation boundary should
be both considered for navigation safety.

With respect to the encountering ships, the same avoidance
action may lead to different collision risks with different
encountering ships at the same time. Therefore, the collision
risks with all the detected ships are considered for safety
reward for the encountering ships. The safety reward can be
defined as the sum of squares of collision risks, which can
automatically increase the weight of the reward for higher
risks, so as to give priority to the most dangerous encountering
ship:

rest = −
n∑

i=1

f iCRIt

2
, (15)

where rest is the reward for safety with encountering ships;
n is the number of the detected encountering ships. Besides,
without losing generality, the static obstacle can be also
regarded as a special dynamic obstacle from the perspective
of the own ship, of which the speed is zero and the r1 and
r2 in (7) are set based on the scale of the obstacle for risk
calculation.

With respect to the navigation boundary, assuming that the
boundary can be represented by a binary function fnb (xt, yt),
where fnb (xt, yt) = 0 represent that the position [xt, yt] at
time t is inside the boundary and fnb (xt, yt) = 1 represent
that the position [xt, yt] is outside the boundary. Therefore,
the safety reward for the navigation boundary is obtained as:

rnbt = −fnb (xt, yt) , (16)

where [xt, yt] is the position of the own ship. Then, the final
safety reward is rst = rest + rnbt .

2) economy
During the voyage, steering with a large rudder angle

will reduce the ship surge speed and increase the time for
resumption. Generally, the squares of the rudder angle, the
sway and yaw velocities are used to construct the economic
reward with respect to the energy loss caused by large rudder
steering:

rδt = −
(
δ2t + v2t + r2t

)
. (17)

In addition, to make the own ship moves towards the
destination as soon as possible, the distance to the destination
is used to construct part of the economic reward:

rdist = − (xt − xdst)2 + (yt − ydst)2

(xsrt − xdst)2 + (ysrt − ydst)2
, (18)

where [xsrt, ysrt] and [xdst, ydst] are the starting point and
destination, respectively.

Then, the economy reward is obtained as ret = rδt + rdist ,
and the final reward function for collision avoidance rt can
be obtained by weighting the safety reward rst and economy
reward ret :

rt = λsr
s
t + λer

e
t , (19)

where λs and λe are the setting weights for rst and ret ,
respectively.

C. DDPG reinforcement learning

After designing the state-action space and the reward func-
tion, the DDPG algorithm can be applied for learning the
optimal collision avoidance policy π

(
sit

)
. In reinforcement

learning, the expected reward of the rudder action at with state
sit is described as the well known state-action value function
Q
(
sit,at

)
as follows:

Q
(
sit,at

)
= Er,s∼E,a∼π

 T∑
j=t

γj−trj

∣∣∣∣∣∣ (sit,at

) ,
(20)

where γ ∈ [0, 1] is a discount factor, E is the set of all

expected future states under the rudder action at,
T∑
i=t

γi−tri

represents the discounted sum of the future rewards. Then, the
Bellman equation is used to calculate the state-action value
function as:

Q
(
sit,at

)
= Ert,st+1∼E,at∼π

[(
rt
(
sit,at

)
+γEat+1∼π [Q (st+1,at+1)]

)]
.

(21)

Referring to DDPG [8], a deterministic collision avoidance
policy at = π(sit) parametrized by θπ is adopted as an
actor to generate deterministic rudder actions which maximize
the state-action value. Therefore, the inner expectation can be
obtained as:

Q
(
sit,at

)
= Ert,st+1∼E,at∼π

[(
rt
(
sit,at

)
+γQ (st+1, π (st+1)))] .

(22)

With the deterministic collision avoidance policy, a neural
network parametrized by θQ is used as a critic to approximate
the state-action value function as in deep Q-learning [3], which
is updated by the following gradient descent:

L
(
θQ

)
= Esi

t∼B

[(
Q
(
sit, at

∣∣θQ
)
− yt

)2]
,

θQ ← θQ + ηQ∇θQL
(
θQ

)
,

(23)

where B denotes the replay buffer B, yt = rt +
γQ

(
st+1, π (st+1)

∣∣θQ
)

is the actual calculated state-action
value, ηQ is the learning rate of the critic.

Synchronously, the actor π is updated by max
θπ

J (θπ) =

Q
(
sit, π

(
sit

)
|θπ

)
. To solve this maximizing problem, a

policy gradient is applied with the chain rule to update the
parameter θπ as:

∇θπJ (θπ) =∇θπEsi
t∼B

[
∇aQ

(
s,a

∣∣θQ
) ∣∣

s=si
t,a=π(si

t)

∇θππ (s |θπ ) |s=si
t
] ,

θπ ←θπ + ηπ∇θπJ (θπ) ,
(24)

where ηπ is the learning rate of the actor, ∇aQ
(
s,a

∣∣θQ
)

and ∇θππ (s |θπ ) are the gradients of the state-action value
function and the deterministic policy with respects to the
rudder action and the parameter θπ , respectively. Besides, the
experience buffer reply technique in deep Q-learning is also
used to update the actor θπ and critic θQ in DDPG.

Generally speaking, the main idea of the DDPG based
collision avoidance method is to use deep neural networks to
learn the optimal collision avoidance policy (i.e., the actor)
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through interactions with the environment based on policy
gradient, which can generate rudder actions that maximize the
discounted future rewards.

IV. ABAS-DDPG FOR ADAPTIVE EXPLORATION

Although the DDPG algorithm can obtain an optimal colli-
sion avoidance policy, the independent exploration efficiency
of DDPG without noises would be very low in complex
environment due to the exploration-exploitation dilemma. The
baseline in [8] uses a stable OU noise process for exploration
in DDPG and learns good policies in many tasks in OpenAI
environments.

In spite of this, the action noise is also considered to vary
over time since the exploration requirement changes in the
learning process. Reasonable adaptive scaling of the noise
becomes the key challenge in the exploration, of which the
purpose is to prevent premature converge to a local optimum
under the premise of stable learning. In order to realize
adaptive exploration in DDPG, a simple beetle antenna search
algorithm is used to scale the action noise adaptively in this
section.

A. The optimization strategy for DDPG

A common practice in exploration is injecting an uncor-
related action noise (e.g., Gaussian process) or a correlated
action noise (e.g., Ornstein-Uhlenbeck (OU) process) [63]
selected by the deterministic actor policy:

at = π
(
sit

)
+N

(
0, σ2I

)
, (25)

whereN is the injected noise and σ is the scale parameter with
respect to the standard deviation. Since DDPG is an off-policy
learning method, the noise N can be treated independently
without much influences on the learning process. Therefore,
learning an exploration policy additionally is an effective
approach to obtain an adaptive noise process [53]. To reduce
the additional computations, we attempt to realize the adaptive
scaling of the noise by establishing an simpler optimization
strategy instead of the parametric neural networks in [53].

Generally, a noise attenuation technique is adopted as:

σ̂t+1 = ησ̂t,

σt = σ̂t + σmin,
(26)

where σ̂t is the varying term in σ at t step, σmin is the set
minimum σ for exploration, η is the attenuation factor for
convergence.

Note that the noise scale is considered to be enlarged for
comprehensive exploration when the actor at has not yet
learned a good policy; On the contrary, the noise scale can
be attenuated when the actor policy at can already output
actions which can obtain the current maximum reward. Since
the role of the critic in DDPG is to approximate the Q-
function, the performance of the actor’s output actions can
be judged according to the output of the critic. Therefore,

the following optimization-based strategy is proposed to make
real-time noise scaling:

ηt = ηmin + (ηmax − ηmin) sgn (Q (st,a
o
t )−Q (st, π (st))) ,

ao
t = argmaxQ (st,at) ,
subject to, amin ≤ at ≤ amax,

(27)
where amin and amax are the setting minimum and maximum
constraints for the actions, 0 < ηmin < 1 and ηmax > 1 are
two scaling factors which are set for reducing and increasing
the scale of the noise based on the Q-values of the current
action output π (st) and the optimal action ao

t .
By solving the optimization problem in (27), the adaptive

scaling of the noise can be realized by a finite n-step opti-
mization at each learning step, i.e., solving (27) in n iterations
starting from the current action output π (st). If a better action
ao
t can be searched with larger Q-value, the attenuation will

be ηt = ηmax to increase the noise scale, otherwise the policy
of the actor is considered good enough and the attenuation
will be ηt = ηmin to reduce the noise scale.

B. Adaptive BAS-optimized DDPG

In order to solve the optimization problem (27) in real-
time, we integrate a beetle antenna search (BAS) optimization
algorithm [45] for adaptive exploration in this study, i.e.,
the adaptive BAS-optimized DDPG (ABAS-DDPG) algorithm.
The main idea of ABAS-DDPG is to use a beetle represented
by two antennas and a centroid for optimization, and the
centroid of the beetle is updated by moving in the direction
of the antenna which obtains better fitness than the opposite
one.

For (27), the centroid and antennas of the beetle are defined
as the potential actions â, âl and âr. The fitness with respect
to an action â is defined as the opposite of the state-action
value ft (â) = −Q (st, â). Therefore, the updating strategy of
the original BAS is denoted as:

âlk = âk + lk
d

∥d∥
,

ârk = âk − lk
d

∥d∥
,

âk+1 = âk − clksgn (ft (âlk)− ft (ârk))

= âk − clksgn
(
Q
(
sit, ârk

)
−Q

(
sit, âlk

))
,

(28)

where âlk, ârk and âk are actions of the left, right antennas
and the centroid of the beetle at k iteration respectively, lk
is the exploring step of the antennas at k iteration, c is a
setting constant value which represents the ratio between the
step of the beetle and the exploration scale lk, sgn(·) is a sign-
function. At each time step t, the beetle generates two actions
âlk and ârk by the left and right antennas, and updates the
centroid from â0 = at to ân in n iterations. The optimal
action âo

t is updated based on the following greedy strategy:

âo
t = âk, ft (â

o
t ) = ft (âk) if {ft (âk) < ft (â

o
t )} , (29)

and the exploration scale lk is updated by the following
attenuation strategy [64]:

lk+1 = ηBASlk if {ft (âk) ≥ ft (âo
t )} ,

lk+1 = lk otherwise,
(30)
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observe

Input

Output

Fig. 2. The ABAS-DDPG flow chart.

where 0 < ηBAS < 1 is the exploration attenuation factor
of the beetle. After n iterations, the final optimal action is
adopted as âo

t = ao
t in (27). Fig. 2 shows a flow chart of

the proposed ABAS-DDPG scheme with the original BAS
in 2-DOF searching space for example. As can be seen that
the centroid of the beetle becomes closer to the theoretical
optimal action following the better antenna, which shows the
optimization process of BAS for DDPG.

Note that the rudder actions of the ship are bounded by a
continuous cube [amin,amax], thus the initial exploring step
of original BAS l0 is set based on the length of the search
space [64] as l0 = ∥amax − amin∥ for global optimality.
In the initial learning stage, the large exploring step may
lead to the oscillation of the centroid since the historical
trajectories of two antennas are abandoned after exploring in
each iteration. To defect this problem, a historical optimum-
based strategy [65] in (31) is used to exploit the historical
optimums of two antennas instead of the original strategy
in (28):

âlk = âo
lk + lk

d
∥d∥ ,

ârk = âo
rk − lk d

∥d∥ ,

âk+1 = âk + rdcl (â
o
lk − âk) + rdcr (â

o
rk − âk) ,

(31)
where âo

lk and âo
rk are the historical optimums of two antennas

at iteration k, rd ∈ [0, 1] is a random value, cl and cr are two
learning factors which generate movements from the current
centroid âk to the left and right antenna historical optimums,
respectively. Particularly, we consider that the movement to
the antenna with better historical fitness should be larger than
that to the other antenna in probability. Then, we design the
learning factors based on the historical optimums as:

cl =
e
Q(sit,âo

lk)

e
Q(sit,âo

lk)+e
Q(sit,âo

rk)
,

cr = 1− cl.
(32)

Since the fitness function in BAS is defined by the ap-
proximate Q-value function of the critic instead of the actual
rewards, the n-iterations optimization can be carried out in
the current step without repeated interactions with the en-
vironments. After the optimization is finished at each step,
the optimized action ao

t is used instead of the original action
output of the actor π (st) for better exploration.

V. CASE STUDIES

In this section, multi-ship collision avoidance simulations
based on different ship models are conducted to verify the
effectiveness of the ABAS-DDPG algorithm. Throughout all
the experiments, the proposed method and the original DDPG
are running on a computer with a 3.2 GHz 4 core CPU and
8 GB of RAM. The encountering ships are labeled as ES and
the own ship is labeled as OS in the following figures. To
verify the effectiveness of the BAS optimization, we conduct
the comparisons between the proposed ABAS-DDPG and the
original DDPG.

The remainder of this section is organized as follows. In
Section V-A, the scenarios and two ship models are introduced.
In Section V-B and Section V-C, two different ship models are
used for reinforcement learning to verify the proposed ABAS-
DDPG.

A. Simulation scenario

Ship collision avoidance simulations are conducted in the
scenario inbound an experimental pool in Delft Univer-
sity of Technology (52◦00’08.1”N, 4◦22’17.2”E) as shown
in Fig. 3. The origin [0, 0] represents the GPS position
(52◦00’07.6499739”N, 4◦22’16.4941528”E) and the relative
coordination is transferred from GPS position by GAUSS
projection. A navigation boundary is set as x, y ∈ [0, 20] in
this scenario.
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TABLE I
THE PARAMETERS OF DELFIA 1* SHIP AND TITO-NERI TUG SHIP.

Tito Neri Delfia 1*

Tito-Neri

Propeller

Delfia 1*

Propeller Propeller
Scale/(-) 1:30 1:16
Ship length/(m) 0.97 0.38
Moulded width/(m) 0.3 0.185
Moulded depth/(m) 0.18 0.07
Mass of the ship/(kg) 16.9 3.345
Inertia moment/(kg.m2) 0.51 0.031

OS

ES

-10 0 10 20 30

x/(m)

-10

-5

0

5

10

15

20

25

30

y
/(

m
)

Start point Destination The tower

Fig. 3. The simulation scenario.

The goal of the own ship (OS) is to avoid collisions with
the encountering ships (ES) and get close to the destination
under the boundary constraint. In addition, the tower in the
experimental pool is considered as a static obstacle. Since
DDPG is a model-free learning algorithm, we consider two
ships with different dynamics, i.e., a model ship known as
Tito-Neri tug ship [57] and a novel fully-actuated Delfia 1*
ship developed by TU Delft [31], to fully verify the learning
performance of the proposed method. The basic parameters of
Delfia 1* ship and Tito-Neri tug ship are shown in Table. I.
More hydrodynamic parameters are given in [57], [31].

B. Case study 1: Collision avoidance learning of Tito-Neri
ship

1) Set up: The original DDPG baseline in [8] with OU
noise N

(
0, 0.22I

)
is used for comparisons. Referring to [66],

the two scaling factors in ABAS-DDPG are set as:

ηmin = α
1

nE , ηmax =
1

α

1
βnE

, (33)

where 0 < α < 1 and 1
α > 1 are two constants which represent

the expected scaling results of ηmin and ηmax after continuous
nE and βnE steps, respectively. β > 1 is the ratio between
the steps required by ηmin and ηmax to obtain the same scaling
effect. Then, the hyper-parameters of DDPG and BAS, e.g.,
the learning rates and discount factors, are set as Table II.

To ensure collisions if no measures are taken, the initial state
of different encountering ships are set to form the multi-ship
encounter situation as follows:

xiT0 = x0 +Ri sin(ψ0) +Ri sin(ψ0 + θi),
yiT0 = y0 +Ri cos(ψ0) +Ri cos(ψ0 + θi),
ψi
T0 = ψ0 + θi + π,

uiT0 = u0 = Û , viT0 = v0 = 0, riT0 = r0 = 0,

(34)

where Û is the setting average speed of the ship,
[xiT0, y

i
T0, ψ

i
T0, u

i
T0, v

i
T0, r

i
T0] is the initial state of the ith

obstacle ship, Ri is the set distance before the collision
between the own ship and the ith obstacle ship, and θi is the
set collision angle of the ith obstacle ship. By setting different
Ri and θi, the encountering ships will have collisions with
the own ship in sequences if no measures are taken. In this
study, A scenario including 3 encountering ships (ES) and
the static tower with different Ri and θi are set in Table III
for collision avoidance. The initial state of the own ship
(OS) is set as [0, 0, 45, Û , 0, 0], and the destination is set as
[xd, yd] = [20, 20].
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Fig. 4. The learning results of DDPG and ABAS-DDPG of Tito-Neri.

TABLE II
PARAMETERS OF DDPG AND BAS.

Paremeters
DDPG BAS

ηπ ηQ nhidden NB nB γ α β nE c λ ηl

Value 10−3 10−3 64 104 32 0.9 0.1 10 1.5×104 1 1.1 0.9
Significance Learning rates

of the actor
and critic

Nerual
numbers
in hidden
layer

Experience
buffer size

Batch
size

Discount
factor

Scaling parameters Constant
values

Attenuation
factor

Fig. 5. The mean sum rewards of the proposed ABAS-DDPG and original
DDPG of Tito-Neri.

TABLE III
INITIAL Ri AND θi FOR DIFFERENT ENCOUNTERING SHIPS.

ES 1 2 3 The tower

θi/◦ 45 60 340 0
Ri/m 8 10 12 17
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3.5

ES2ES1
ES1 ES2

Fig. 6. The CRIs and distances results of DDPG and ABAS-DDPG of Tito-
Neri.

A maximum perception range of the Tito-Neri ship is set
as Rpmax = 5m, i.e., the own ship cannot observe the states
of the encountering ships with the relative distance RT >
Rpmax = 5m. Besides, the weight of the safety reward λs is
set larger than that of the economic reward λe for navigation
safety. Referring to the basic reward function in [5], we set
λs = 0.85, λe = 0.15 for collision avoidance in this study.
Referring to [31], the safety distance of Tito-Neri is set based
on the ship length, i.e., 0.97m.

2) Results: The final trajectories of Tito-Neri after 1.5×105
learning steps are shown in Fig. 4. The light pink and blue
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Fig. 7. The rudder actions of DDPG and ABAS-DDPG of Tito-Neri.
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Fig. 8. The noise scaling results of the proposed ABAS-DDPG on Tito-Neri.

Fig. 9. The mean sum rewards of the proposed ABAS-DDPG and original
DDPG of Delfia 1*

solid circles around the own ship show the perception ranges

at different time steps. The sum rewards
T∑

j=1

rj of the proposed

ABAS-DDPG and original DDPG of Tito-Neri are shown in
Fig. 5, where T is the maximum steps in an episode and rj
is the obtained reward in j step. The details of the CRIs
and relative distances between different encountering ships
are shown in Fig. 6. The rudder actions of Tito-Neri for
different encountering ships and the final rudders are shown in
Fig. 7. Besides, the indicators including the minimum relative
distances between different ships RTmin

and the corresponding
maximum CRIs fCRImax , the final distance to the destination
Dmin, the duration when the own ship outside the boundary
Tob, the final reward are both calculated in Table IV to analyze
the learning performance.

It can be seen from Fig. 4∼Fig. 6 that the collision risks
between the own ship and the encountering ships are perceived
as zero when t < 15s since all the encountering ships are out
of the perception range at that time. After the own ship has
detected the collision risks, the algorithms are able to generate
avoiding actions. As can be seen from Fig. 7, the initial
trajectories generated by the ABAS-DDPG and the original
DDPG are still stochastic at 1 × 104 step, e.g., running a
circle or outside the boundary. After 6×104 steps, the learned
policies can already generate more stable trajectories, which
indicates the effectiveness of reinforcement learning.

Compared with the original DDPG, the proposed ABAS-
DDPG can obtain higher and stabler rewards in the learning
process, and the trend of policy convergence is more obvious.
From Fig. 5, it can be seen that an inappropriate noise scale
may lead to unstable learning results in the convergence stage.
For example, it can be seen from Fig. 6, Fig. 7 and Table IV
that the original DDPG with a constant noise scale fails to
generate stable rudders with ES1 (at 16.5s) and ES2 (at 20s),
which results in higher collision risks fCRImax and smaller
minimum distances RT with ES1 and ES2 than ABAS-DDPG.
Particularly, the original DDPG fails to avoid ES1, i.e., the
minimum distance RT is smaller than the safety distance.
While the proposed ABAS-DDPG with the adaptive noise
successfully avoids all encountering ships and gets closer to
the destination than the original DDPG in the final stage.

Fig. 8 shows the noise scaling process of the proposed
ABAS-DDPG on Tito-Neri ship. As can be seen in the detailed
views, the integrating BAS is adjusting the noise scale in the
entire learning process with a global soft decreasing trend.
Moreover, the BAS adopts less noise increasing behaviors
adaptively as the learning progresses since the learned policy
becomes better and the probability of ηt = ηmin becomes
larger than that of ηt = ηmax in (27).

C. Case study 2: Collision avoidance learning of Delfia 1*
ship

1) Set up: For the convenience of comparison, the param-
eters of the algorithms and the scenarios are set the same as
in Table II and Table III, respectively. The safety distance of
the Delfia 1* ship is set based on the length of the ship, i.e.,
0.38m.

2) Results: Similarly as the results of Tito-Neri, the mean
sum rewards of the proposed ABAS-DDPG and original
DDPG of Delfia 1* are shown in Fig. 9. The final trajectories
of Delfia 1* are shown in Fig. 10. The details of the CRIs and
relative distances are shown in Fig. 11. The rudder actions of
Delfia 1* are shown in Fig. 12. The indicators are calculated
in Table V. Fig. 13 shows the noise scaling process of the
proposed ABAS-DDPG on Delfia 1*. Results similar to those
in Fig. 8 can be seen that the ABAS is adjusting the noise
scale effectively with Delfia 1*.

Since the Delfia 1* is more flexible than the Tito-Neri, it is
more difficult for Delfia 1* to learn a good collision avoidance
policy within the same number of epochs. Therefore, the
trajectories of Delfia 1* are more stochastic than those of
Tito-Neri during the learning process, which can be seen from
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Fig. 10. The learning results of DDPG and ABAS-DDPG of Delfia 1*.

TABLE IV
THE COLLISION AVOIDANCE INDICATORS OF TITO-NERI OF THE PROPOSED ABAS-DDPG AND ORIGINAL DDPG.

Method
ES1 ES2 ES3 Tower

Dmin Tob RewardRTmin
fCRImax RTmin

fCRImax RTmin
fCRImax RTmin

fCRImax

ABAS-DDPG 1.329 0.965 3.326 0.400 4.859 0.023 3.951 0.221 7.663 0 -37.572
DDPG 0.695 0.970 1.798 0.959 5.047 0.000 4.791 0.038 9.489 0 -50.202

TABLE V
THE COLLISION AVOIDANCE INDICATORS OF DELFIA 1* OF THE PROPOSED ABAS-DDPG AND ORIGINAL DDPG.

Method
ES1 ES2 ES3 Tower

Dmin Tob RewardRTmin
fCRImax RTmin

fCRImax RTmin
fCRImax RTmin

fCRImax

ABAS-DDPG 1.821 0.558 4.675 0.040 2.851 0.380 3.681 0.471 12.158 0 -36.843
DDPG 0.912 0.948 3.579 0.421 1.883 0.544 9.285 0.000 19.908 0 -56.028
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Fig. 11. The CRIs and distances results of DDPG and ABAS-DDPG of Delfia
1*.

Fig. 10 and Fig. 4. The obtained rewards of the proposed
ABAS-DDPG are also obviously higher than those of the
original DDPG, which can be seen in Fig. 9. The influence
of the inappropriate noise scale on the learning of Delfia 1*
are more obvious than that of Tito-neri. E.g., from the detailed
results in Fig. 11 and Table V, it can be seen that the proposed
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Fig. 12. The rudder actions of DDPG and ABAS-DDPG of Delfia 1*.

ABAS-DDPG is already able to generate continuous starboard
steering actions to avoid ES1 and ES2, as well as ES3 and the
tower after 1.2×105 learning steps. While the original DDPG
with a constant noise scale still fails to learn a effective policy
to generate stable trajectories after 1.5 × 105 steps, which
results in much higher collision risks fCRImax

with ES1, ES2
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Fig. 13. TThe noise scaling results of the proposed ABAS-DDPG on Delfia
1*.

and ES3 and larger distance to the destination Dmin than the
proposed method. Moreover, as can be seen from Fig. 9 and
Table V, the final obtained sum reward of the proposed method
is also larger and stabler than that of the original DDPG, which
is similar to the result of Tito-Neri ship.

VI. CONCLUSIONS AND FUTURE RESEARCH

Setting a constant noise scale in DDPG is an easy approach,
while it may be insufficient at the beginning stage or too
large in the convergence stage of learning. In order to realize
adaptive exploration of DDPG reinforcement learning method
for ship collision avoidance, an ABAS-DDPG algorithm is
proposed that integrates an adaptive beetle antenna search
(ABAS) optimizer for adaptive scaling of the noise injection in
DDPG. The main originality of the proposed method is to use
the Q-value estimated by the critic in DDPG as the fitness in
BAS for concise noise scaling, which avoids large computation
and repeated interactions. From the simulation results of a
Tito-Neri tug model ship and a fully-actuated Delfia 1* ship,
it can be concluded that

In summary, benefiting from the adaptive scaling of the
BAS, the proposed ABAS-DDPG could be more suitable than
the original DDPG for direct application without parallel test-
ing by noise removal, at least, the time of policy convergence
can be determined more clearly.

Future works should be carried out on the following aspects:
1) Only the own ship is taken as the agent for the ship

collision avoidance learning. Since the cooperative multi-
vessel systems (CMVSs) becomes the trend in ship collision
avoidance, multi-agent reinforcement learning will be consid-
ered in future research.

2) Practical experiments with real ships or larger scales will
be considered to verify the learned policy in further research.
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