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Abstract

Uncertainties including disturbances and non-uniform sampling bring challenges to the accurate modeling of ship mo-

tion models. In order to improve the identification performance of the least squares support vector machine (LSSVM)

with uncertainties, an extended state observer-LSSVM (ESO-LSSVM) is proposed by using the observations of ESO

for continuous system identification. Besides, the ESO-LSSVM is fine-tuned by an adaptive beetle swarm antenna

search optimizer (ABSAS-ESO-LSSVM, ABEL) for optimal identification. Identification experiments based on dif-

ferent model ships are conducted to verify the effectiveness of the proposed ABEL method. The identification results

indicate that the proposed ABEL method outperforms traditional LSSVM with different levels of disturbances and

non-uniform sampling.

Keywords: Parameter identification, ship motion model, support vector machine, extended state observer, beetle

swarm antenna search

1. Introduction

With the increasing demand of ship autonomous operation (Zheng et al., 2017, 2018), ship motion modeling

methods have been widely studied in recent years. Ship motion has large inertia, nonlinearity, hysteresis and coupling

characteristics, which brings challenges to the accurate modeling under uncertain disturbances. Existing ship motion

modeling methods involve mechanism modeling and identification modeling (Bai et al., 2019a). Benefiting from

easy implementation, the identification modeling methods have attracted more attention recently, which include the

parametric modeling and non-parametric modeling methods. The parametric modeling adopts a known structure of

ship motion model and the hydrodynamic coefficients are estimated by identification approaches, which is represented

by the least squares (LS) (Zhu et al., 2013) and the Kalman filtering (KF) (Fossen et al., 1996; Xie et al., 2019a). The

non-parametric modeling is a model structure-agnostic approach that concerns about the response characteristics of

the system. Neural networks (NN) (Zhang and Zou, 2013a; Sonnenburg and Woolsey, 2013), support vector machine

(SVM) with nonlinear kernels (Hou and Zou, 2015; Hou et al., 2018) and locally weighted learning (LWL) (Bai et al.,

2019a, 2018, 2019b) are typical non-parametric modeling methods, which have made great achievements in ship

motion modeling. Among these methods, the SVM has a rigorous theoretical basis and considers both structural and

empirical risks, which is widely used in ship motion modeling.
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In this section, a brief survey of ship motion modeling methods and the related works on SVM based ship model

identification are introduced. In the meantime, the related works on the other techniques used in this study, i.e.,

extended state observer and beetle swarm antenna search, are also introduced.

1.1. A brief survey of ship motion modeling methods

Traditional parametric identification methods, i.e., LS and KF, can identify the ship motion model with a determin-

istic model structure. LS method estimates the parameters of the model by minimizing the sum square errors, which

is widely applied to the identification of the Nomoto model and the Abokwitz model (Zhu et al., 2013). Because of

the concise and simple strategy, the LS has a very small amount of computation. In the meantime, LS has a weak

fitting ability to the non-linear ship motion model (Luo, 2009), and the identification results of LS are sensitive to the

external disturbances. Benefiting from the simultaneous prediction ability of the noise and state, the KF can obtain

more accurate results than LS under certain disturbances (Fossen et al., 1996; Xie et al., 2019a), but also requires an

appropriate initialization of the noise variance (Haseltine and Rawlings, 2005).

Compared with the parametric identification methods, existing non-parametric identification methods used in ship

motion modeling defect the dependency problem on initialization and unmodeled dynamics by function approxima-

tion techniques (Bai et al., 2019a). The NN (Sonnenburg and Woolsey, 2013) uses different activation functions and

weight matrix to construct a black-box function to approximate the original system. The LWL (Bai et al., 2019a,b)

uses piecewise linear models in a neighborhood to approximate the nonlinear functions, of which the size and shape

are determined by the distance metric. The SVM (Hou et al., 2018) uses kernel functions to map the original state into

a hyper-plane and solves the regression problem easily by minimizing an objective function considering both struc-

tural and empirical risks in hyperspace, which has the different representative ability with different kernel functions.

Compared with NN, the SVM defects the dimension-disaster problem by the hyper-dimensional space mapping, and

avoids the over-fitting problem by minimizing the structural risk, which becomes a mature method for ship motion

modeling (Luo, 2009). In addition, the original SVM uses inequality constraints for fitting errors in high-dimensional

space, which makes it difficult to solve the optimization problem. As a modified form of SVM, the least squares

support vector machine (LSSVM) (Suykens and Vandewalle, 1999) simplifies the inequality constraints in SVM to

equality constraints, and the optimization problem is simplified to a solution of linear equations, which reduces the

uncertainty of hyper-parameter adjustment.

1.2. Related works on SVM for ship motion modeling

SVM and LSSVM methods have been extensively applied in ship motion model identification in the aspects of

both parametric and nonparametric identification, which depends on the type of the kernel function used in SVM.

In the aspect of the non-parametric identification, the ship motion is modeled by the regression model of SVM,

which represented by the support vectors, the Lagrange multipliers and the bias. The radial basis function (RBF)

kernel is the most commonly used kernel in SVM for non-parametric identification. In (Hou et al., 2018), a non-

parametric identification of ship roll motion in irregular waves is realized by a support vector machine with an RBF

kernel, which can predict the damping and restoring moments quit well. In (Kawan et al., 2017), the SVM with RBF

kernel is used for 3-DOF motion prediction together with a sensitivity analysis, and the accurate prediction of the raw

trajectory and pitch data of a ship is realized.
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In the aspect of the parametric identification, the ship motion model parameters can be directly obtained by the sum

of the support vectors with a linear kernel function, which are weighted by the corresponding Lagrange multipliers.

In (Zhang and Zou, 2011), the ε-SVM is used for identification modeling of ship motion with a linear kernel function,

and the accuracy of the identified hydrodynamics are verified with the planar motion mechanism (PMM) test results.

Other similar identification methods based on ε-SVM can be found in (Zhang and Zou, 2013b; Wang et al., 2015).

Besides, since the LSSVM has less design parameters than the SVM, the linear kernel-based LSSVM is widely used

in ship motion model identification recently. In (Luo et al., 2016), the parameter drift of ship motion is diminished by

sample reconstruction, and an LSSVM with a linear kernel function is used to identify the parameters in the modified

model, which obtains accurate prediction results. Other similar linear kernel-based LSSVM methods can be found

in (Luo and Li, 2017; Zhu et al., 2017a).

Although LSSVM has advantages in parametric identification, the hyper-parameter of LSSVM, i.e., the regular

factor, still have important impacts on the balance between the structural and empirical risks. To defect this problem,

optimization algorithms, e.g., the swarm intelligence (SI) algorithms, are widely used to fine-tune the regular factor of

LSSVM, including the particle swarm optimization (PSO) (Luo et al., 2016), the artificial bee colony algorithm (Zhu

et al., 2017b), the artificial fish swarm algorithm (Sheng and Na, 2009), the fruit fly optimization algorithm (Li et al.,

2016), etc.

In summary, the SVM/LSSVM methods have been mature approaches to identify the ship motion model. By

simplifying the conditions in SVM, the LSSVM method reduces the complexity of the identification process.

1.3. Related works on the state observer for identification

State (or disturbance) observers are widely used as elegant approaches to estimate unknown states and distur-

bances, including the unknown input observer (UIO), the disturbance observer (DOB) the equivalent input disturbance

observer (EID) and the extended state observer (ESO). Among them, the ESO requires the least amount of plant infor-

mation and has the ability to observe the unknown states and disturbances at the same time. During the past decades,

ESO has been initially applied to various industrial control systems with disturbances, such as servo system (Pablo

et al., 2008; Liu and Li, 2011), robotic system (Su et al., 2004; Cui et al., 2017), ship control system (Liu et al., 2017a;

Xie et al., 2019b), electro-hydraulic system (Guo et al., 2016), etc.

With the deepening of research, the state observer has been also applied in system identification problems in

recent years. An application of the state observer in identification is to observe unknown states that are difficult to

identify. In (Ahmed-Ali et al., 2009) a novel identification method is proposed for time-varying nonlinear systems

by integrating a sliding-neural network observer into a simple static parameter estimation law, which obtains good

results in numerical cases. In (Bonnabel et al., 2009) a symmetry-preserving observer-based parameter identification

algorithm is proposed for quantum systems, which adopts an adaptive observer to observe the atom-laser coupling

constants successfully. In (Zhou et al., 2018) a generalized ESO is combined with a recursive least square (RLS)

identification method to estimate the state of energy, which provides a better estimation accuracy than the existing

methods. In (Xu et al., 2017) ESO is also used to observe the unknown states in a multi-innovation state-delay

system, and the multi-innovation identification method is adopted with the states observed by ESO (Ma and Ding,

2015).

In addition, since the continuous states and disturbances can be observed by the state observer, the dependence of

system identification on uniform sampling can be defected by using the observed states instead of the original discrete
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states for identification. (Ikeda et al., 2003) proposes a continuous-time model identification method by using an

adaptive state observer, and the theoretical stability of the identification is also proofed. In the aspect of ESO, (Zhang

and Han, 2000) uses an state-compensate ESO for the identification of a continuous system, which allows the known

dynamics observed by ESO in the system to compensate the estimation of ESO itself.

At present, the ESO has been widely studied in adjustable systems, e.g., the piezoelectric driving system identifi-

cation (Liu et al., 2017b) and the servo motor control system (Nie et al., 2017). With the combination of traditional

identification methods, e.g., the LS method, the ESO has shown the advantages in identification with uncertainties.

1.4. Related works on BSAS for optimization

Stochastic optimization algorithms are widely used for complex optimization problems like hyper-parameter fine-

tuning. As a novel branch of stochastic optimization algorithm similar to PSO, the beetle antenna search (BAS)

algorithm is proposed in (Jiang and Li, 2018), which has a more concise search strategy. Original BAS algorithm

imitates the foraging behavior of beetles and realizes optimization by only one beetle. To deal with more complex

problems, beetle swarm antenna search (BSAS) (Wang and Chen, 2018) and beetle swarm optimization (BSO) (Wang

et al., 2018) are proposed by combining the advantages of BAS and PSO algorithms. The effectivenesses of BSAS and

BSO have been validated in several optimization problems (Sun et al., 2019; Lin et al., 2018; Lin and Li, 2018). (Sun

et al., 2019) propose a BAS-based fine-tuning method for the back-propagation neural network (BPNN), which is

applied for nonlinear relationship modeling. (Lin et al., 2018) use the BAS algorithm to solve the PID fine-tuning

problem of the double closed-loop DC motor speed regulator, which also obtains good fine-tuning performance. (Wu

et al., 2019) propose a novel fall-back BAS algorithm for collision-free path planning, which obtains better results

compared with original BAS algorithm. In (Xie et al., 2019d), the BSAS algorithm is used to solve the optimization

problem for ship collision avoidance, which also obtains effective results.

Due to the concise search strategy, BAS and BSAS-based algorithms have great potential for difficult hyper-

parameter fine-tuning problems.

1.5. Motivations and contributions

Although various identification methods have been studied, accurate ship motion modeling with uncertain dis-

turbances and non-uniform sampling is still difficult since most of the existing ship modeling methods are discrete

methods. Since the ESO can observe continuous higher-order states and the LSSVM can minimize the structural

risks caused by over-fitting, a novel ESO-LSSVM scheme is proposed based on LSSVM and ESO to defect the above

problems. Besides, the hyper-parameters of ESO-LSSVM are fine-tuned adaptively by a BSAS optimizer to form the

final ABEL method. To the best of our knowledge, the combination of ESO and LSSVM has seldom been studied for

ship motion modeling. The main contributions of this study are briefly summarized as follows:

1) Compared with existing LSSVM identification methods for ship motion model, an ESO is integrated in LSSVM

to deal with uncertain disturbances and non-uniform sampling.

2) To obtain the optimal performance of the proposed ESO-LSSVM scheme, an adaptive BSAS optimizer is used

for fine-tuning of the hyper-parameters of ESO.

1.6. Outlines

The remainder of this article is organized as follows. In Section 2, the traditional LSSVM identification method

is introduced for ship motion model. In Section 3, the ABEL identification method is proposed for identification
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with uncertainties. In Section 4, case studies are conducted based on the widely used KVLCC2 model ship, a novel

fully-actuated Delfia 1* ship and a real Tito-Neri tug ship to verify the identification modeling performance of the

proposed ABEL method. In Section 5, conclusions and further works are presented.

2. Traditional LSSVM method for ship motion model identification

LSSVM is a widely used regression method for ship motion modeling, which linearizes the traditional SVM

method by transforming the inequality constraints into equality conditions. In this section, the traditional LSSVM

method for ship motion model identification is denoted.

2.1. Ship motion model

Generally, the surface ship motion can be simplified to 3 degree-of-freedom (DOF) as shown in Fig. 1. Where

Oo − xoyo is the inertial coordinate system of the ship; O − xy is the co-rotational coordinate system of the ship; u (t),

v (t) and r (t) are the velocities in surge (body-fixed x), sway (body-fixed y) and yaw directions, respectively, m(rad)/s;

δ (t) and ψ (t) are the rudder and heading angle of the vessel, respectively, rad; β (t) is the drift angle, rad.
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Figure 1: Ship motion coordinate system.

Then the ship motion model is established by the kinematic model and hydrodynamic model. The kinematic model

describes the relationship between the ship positions in the inertial coordinate system Oo − xoyo and the velocities

in the co-rotational coordinate system O − xy. The hydrodynamic model describes the relationship between the

hydrodynamic forces (moments) and the 3-DOF ship motions, of which the hydrodynamic parameters need to be

identified.

1) The kinematic model

Based on geometric decompositions, the kinematic model of a surface ship is obtained by a rotation matrix:

η̇ (t) = R (ψ (t)) υ (t), R (ψ (t)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
sin (ψ (t)) cos (ψ (t)) 0

− cos (ψ (t)) sin (ψ (t)) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (1)

where η (t) =
[

x (t) y (t) ψ (t)
]T

and υ (t) =
[

u (t) v (t) r (t)
]T

are the position and velocity vectors of the

ship, respectively; R (ψ (t)) is the rotation matrix.

2) The hydrodynamic model

Abkowitz model (Abkowitz, 1980) and MMG (math model group) model (Yasukawa and Yoshimura, 2015) are

the most widely used hydrodynamic models. The Abokwitz model takes the Taylor expansion coefficients of the
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3-DOF forces (moments) with respect to different motion states as the hydrodynamic parameters. While the MMG

model can be regarded as a simplification of Abokwitz model by separating the forces from aspects of the hull, the

rudder and the propeller. Generally, the dynamic equation of the Abokwitz model is:

Mυ̇ (t) = f (u (t) , v (t) , r (t) , δ (t) , n (t)) , (2)

where δ (t) is the rudder angle and n (t) is the engine speed, r/min; f is the nonlinear lumped force and moment matrix

of the ship with respect to υ (t) , δ (t) and n (t); M is the inertia matrix of the ship:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
m − Xu̇ 0 0

0 m − Yv̇ mxG − Yṙ

0 mxG − Nv̇ Iz − Nṙ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (3)

where m is the total mass of the vessel, kg; xG is the longitudinal coordinate of the gravity center of the vessel in

surge direction, m; IZ is the moment of the inertia, kg·m2; Xu̇,Yv̇,Yṙ,Nv̇ and Nṙ are the inertia coefficients. Using

Δu (t) = u (t) − u0, Δv (t) = v (t) − v0 and Δr (t) = r (t) − r0 represent the perturbations from the constant surge speed

u0, sway speed v0 and yaw speed r0, respectively, the ship motion model can be re-written as:

Δu̇ (t) = Δ fu (t)/ (m − Xu̇) ,

Δv̇ (t) =
[
(IZ − Nṙ)Δ fv (t) − (mxG − Yṙ)Δ fr (t)

]
/ (IZ − Nṙ) (m − Yv̇) − (mxG − Yṙ) (mxG − Nv̇) ,

Δṙ (t) =
[
(m − Yv̇)Δ fr (t) − (mxG − Nv̇)Δ fv (t)

]
/ (IZ − Nṙ) (m − Yv̇) − (mxG − Yṙ) (mxG − Nv̇) ,

(4)

where Δ fu (t), Δ fv (t) and Δ fr (t) are the force and moment components of f at time t in surge, sway and yaw directions,

respectively. After considering the disturbances, the 3-DOF ship motion model can be re-written as the following

parameter-linearized model:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Δu̇ (t)

Δv̇ (t)

Δṙ (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Θu 0 0
0 Θv 0
0 0 Θr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Su (t)

Sv (t)

Sr (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

du (t)

dv (t)

dr (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

where d (t) =
[

du (t) dv (t) dr (t)
]T ∈ R3×1 is the disturbance vector in 3-DOF; Θu,Θv and Θr are the parameter

vectors to be identified in 3-DOF; Su (t), Sv (t), Sr (t) are the state information matrices which are defined by the dimen-

sional state variables with non-dimensional coefficients in Taylor’s expansions of Δ fu, Δ fv and Δ fr respectively (Luo,

2009):

Su (t) = [Δu (t) ,Δu (t) U (t) ,Δu2 (t) ,Δu3 (t) /U (t) ,Δv2 (t) ,Δr2 (t) ,Δδ2 (t) U2 (t) ,

Δδ2 (t)Δu (t) U (t) ,Δv (t)Δr (t) ,Δv (t)Δδ (t) U (t)
]T
11×1

,

Sv (t) = [Δv (t) , U2 (t) ,Δu (t) U (t) ,Δu2 (t) ,Δv (t) U (t) ,Δr (t) U (t) ,Δδ (t) U2 (t) ,

Δv3 (t) /U (t) ,Δδ3 (t) U2 (t) ,Δv2 (t)Δr (t) /U (t) ,Δv2 (t)Δδ (t) ,Δv (k)Δδ2 (t) U (t) ,

Δδ (t)Δu (t) U (t) ,Δv (t)Δu (t) ,Δr (t)Δu (t) ,Δδ (t)Δu2 (t)
]T
16×1

,

Sr (t) = [Δr (t) , U2 (t) ,Δu (t) U (t) ,Δu2 (t) ,Δv (t) U (t) ,Δr (t) U (t) ,Δδ (t) U2 (t) ,

Δv3 (t) /U (t) ,Δδ3 (t) U2 (t) ,Δv2 (t)Δr (t) /U (t) ,Δv2 (t)Δδ (t) ,Δv (k)Δδ2 (t) U (t) ,

Δδ (t)Δu (t) U (t) ,Δv (t)Δu (t) ,Δr (t)Δu (t) ,Δδ (t)Δu2 (t)
]T
16×1

,

(6)

where U (t) =
√

u(t)2 + v(t)2 is the speed of the ship.
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2.2. LSSVM identification

Assuming that the state matrices Su (t), Sv (t), Sr (t) are measurable, the parameter vector in each DOF can be

identified by LSSVM separately. Take the parameter Θr in (5) in the yaw direction as an example. Considering a data

set of which a point represented by {xk, yk}lk=1 where xk ∼ Sr is the kth input data and yk(xk) ∼ Δṙ is the output data

with respect to xk, l is the data size. The LSSVM method uses a regression model represented by a hyper-plane to

modeling the data set:

y = f (x) = w · φ(x) + b, (7)

where φ(·) is the kernel function that maps the input x into a higher dimensional space; w is the weighting vector in the

higher dimensional space; b is the bias. Then w and b are obtained by minimizing the objective function as follows:

min
w,b,ξ

J (w, b, ξ) =
{

1
2
wTw + 1

2
C

l∑
i=1
ξi

2

}
,

s.t. yi − [wTφ(xi) + b]=ξi,

(8)

where ξ is the fitting error and C is the regular factor for punishing the fitting error. Then a Lagrange function is

established for solving Eq. (8) as:

L(w, b, ξ, α) =
1

2
wTw +

1

2
C

l∑
i=1

(
ξi

2
)
−

l∑
i=1

αi

[
ξi − yi + wTφ(xi) + b

]
, (9)

where l is the size of the data set; αi is the Lagrange multiplier with respect to the constraint of the point {xi, yi}. To

minimize the function L(w, b, ξ, α), the following KKT conditions are given by the partial derivations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂w = 0
∂L
∂b = 0
∂L
∂ξi
= 0

∂L
∂αi
= 0

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w =
l∑

i=1
αiφ(xi)

l∑
i=1
αi = 0

C · ξi = αi

wTφ(xi) + b + ξi − yi = 0

. (10)

Therefore, the Lagrange multiplier αi and bias b can be obtained by solving the following linear system of equa-

tions:

⎡⎢⎢⎢⎢⎢⎢⎣ 0 11×l

1l×1 Ωl×l

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣ b

αl×1

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣ 0

yl×1

⎤⎥⎥⎥⎥⎥⎥⎦ ,Ωl×l =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
K (x1, x1) · · · K (x1, xl)

...
. . .

...

K (xl, x1) · · · K (xl, xl)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
l×l

+ 1
C · Il×l,

αl×1 =
[
α1 α2 · · · αl

]T
, yl×1 =

[
y1 y2 · · · yl

]T
,

(11)

where K(xi, x j) = φ(xi) · φ(x j) is the kernel function which satisfies the Mercer’s condition. Then, the regression

model of LSSVM is obtained as:

y =
l∑

i=1

αiφ (xi) · φ (x) + b =
l∑

i=1

αiK (xi, x) + b. (12)

According to different modeling requirements, appropriate kernel function should be selected for regression or

parameter identification, e.g., linear kernel, RBF(radial basis function) kernel and polynomial kernel, etc. Considering

the parameter-linearized model (5), the following linear kernel is used for the identification:

K
(
xi, x j

)
=xi

Tx j. (13)
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Then the LSSVM regression model in yaw direction can be obtained as y =
l∑

i=1
αi (xi) · x + b if the bias b → 0.

The parameter matrix Θr can be identified as:

Θr =

l∑
i=1

αi (xi). (14)

Finally, the other parameter matrices Θu and Θv in (5) can be identified based on LSSVM similarly to establish

the complete hydrodynamic model.

3. The proposed ABEL method

Due to the uncertainties including disturbances and non-uniform sampling, the measurement accuracy of ship

states is seriously affected, resulting in inaccurate higher-order states (i.e., the surge, sway, and yaw accelerations).

To defect this problem, an extended state observer is designed to observe the continuous higher-order states for

combination with LSSVM in this section. Furthermore, an adaptive beetle swarm antenna search (ABSAS) algorithm

is used to fine-tune the hyper-parameters of the designed ESO. Methodologies are illustrated in two subsections: the

ESO-LSSVM identification scheme and the proposed ABEL (ABSAS-optimized ESO-LSSVM) method.

3.1. ESO-LSSVM identification scheme

For standardization, the 3-DOF ship motion model (5) is represented by the following classic parameter-linearized

model with n-dimensions in the following statement:⎧⎪⎪⎨⎪⎪⎩
ẋ = ΘS (x,u) + d,
y = Cx,

(15)

where x ∈ Rn×1 is the state vector, n is the dimension of x; u is the system input; S (x,u) ∈ Rm×1 is the state information

vector consisting of the state x and system input u, m is the dimension of S (x,u); Θ ∈ Rn×m is the parameter vector to

be identified; d ∈ Rn×1 is the disturbance vector; y ∈ R is the output and C ∈ R1×n is the measuring matrix. Then, the

proposed ESO-LSSVM scheme for (15) is shown in Fig. 2, which includes two main parts: the ESO designing and

continuous LSSVM identification.

3.1.1. ESO designing for higher-order state observations

The ESO has been widely used to observe the lumped disturbances and high-order states for adaptive control (Liu

et al., 2017a, 2008). Assuming that the matrix C and the state information vector S (x,u) are known, the target of

the identification for model (15) is to determine the parameter matrix Θ. In order to generate accurate continuous

higher-order states ẋ for LSSVM, an ESO is designed by defining the entire term with respect to the parameter matrix

ΘS (x,u) and the disturbances d as the equivalent disturbances :

dE = ẋ = ΘS (x,u) + d, (16)

where dE is the equivalent disturbance matrix. Then another extended state vector is defined as the derivative of the

equivalent disturbance ḋE , the state vectors of the system (15) are re-defined as β =
[

x dE ḋE

]T
3n×1

and the whole

system is re-written as:⎧⎪⎪⎨⎪⎪⎩
β̇ = Aβ + Eh,
y = Dβ,

(17)

8
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Figure 2: The ESO-LSSVM scheme.

where h = d̈En×1 is the 2nd derivation of dE ; the matrices A, E and D are denoted as:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0n×n 1n×n 0n×n

0n×n 0n×n 1n×n

0n×n 0n×n 0n×n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , E =
[

0n×1 0n×1 1n×1

]T
, D =

[
C1×n 0n×1 0n×1

]T
. (18)

For system (18), the ESO is designed as follows to observer the high-order states:

⎧⎪⎪⎨⎪⎪⎩
˙̂β = Aβ̂ + L (y − ŷ),

ŷ = Dβ̂,
(19)

where β̂ =
[

x̂ d̂E
ˆ̇dE

]T
3n×1

is the observation of β; L3n×1 =
[

l1
n×1 l2

n×1 l3
n×1

]T
is the observer gain matrix

to be designed, where l1
n×1, l2

n×1 and l3
n×1 are the gain vectors with respect to the state x, dE and d̂E , respectively.

In addition, the observer gains can be set based on the bandwidth selection approach in ESO (Shao and Wang, 2015;

Gao, 2006) as:

l1
n×1 =

[
3ω1 3ω2 · · · 3ωn

]T
n×1

,

l2
n×1 =

[
3ω2

1 3ω2
2 · · · 3ω2

n

]T
n×1

,

l3
n×1
=
[
ω3

1
ω3

2
· · · ω3

n

]T
n×1

,

(20)
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where ω1, . . . ωn are the n-dimensional bandwidths. By selecting appropriate bandwidths ω = [ω1, . . . ωn], the ob-

served values of the states in Eq. (24) can be quickly approximated to the higher-order states:

β̂→ β⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x̂→ x,
d̂E → dE = ẋ,
ˆ̇dE → ḋE .

(21)

3.1.2. Continuous LSSVM identification

Due to the difficulties of accurate measurement of higher-order states, traditional identification methods usually

discrete the continuous model by using the state differences to approximate the differential quantities. The forward

difference approximate method is widely applied for identification as:

ẋ (t) =
1

h
(x (t + 1) − x (t)) , (22)

where h is the difference interval. Besides the uncertain disturbances, the nonuniform sampling also has influences

on the identification accuracy if the actual sampling interval is unstable, or becomes quite different from the setting

interval h.

Considering that the established ESO can observe the high-order states continuously, the approximate values d̂E

in ESO are used instead of the forward difference. Assuming that the observe error of the high-order state matrix is

d̃E = d̂E − ẋ, a continuous parameter-linearized system is obtained by combing Eq. (16) and Eq. (21):

d̂E = ẋ + d̃E = ΘS (x,u) + d + d̃E = ΘS (x,u) + b̃E , (23)

where b̃E = d + d̃E is a lumped equivalent bias vector which aggregates the disturbance d and the observation error

d̃E . Therefore, the parameter matrix Θ can be identified based on LSSVM identification method denoted in the

Preliminary section under the following condition:

d + d̃E → 0. (24)

In order to satisfy the upper condition and realize the unbiased identification as much as possible, a n-dimensional

regular vector Cb =
[

Cb1
Cb2

· · · Cbn

]T
n×1

with respect to the equivalent bias b̃E are added in the objective

function of LSSVM as:

min
wk ,b̃Ek ,ξk

J
(
wk, b̃Ek , ξk

)
=

{
1
2
wk

Twk +
1
2
Ck

l∑
i=1
ξki +

1
2
Cbk b̃

2
Ek

}
,

s.t. d̂Ek −
[
wk

Tφ (Sk (xi,ui)) + b̃Ek

]
= ξki ,

(25)

where wk, b̃Ek , ξk, d̂Ek , Ck and Cbk are the kth dimension values of the weighting vector w, the equivalent bias b̃E , the

fitting error ξ, the regular factors C and Cd, respectively. Then the Lagrange function and the final linear equations

need to be modified correspondingly:

Lk(wk, d̂Ek , ξk, αk) = 1
2
wk

Twk +
1
2
Ck

l∑
i=1
ξki

2 + 1
2
Cbk b̃

2
Ek
− l∑

i=1
αki

[
ξki − d̂Eki + wk

Tφ(Sk (xi,ui)) + b̃Ek

]
. (26)

10



Then, the KKT conditions are modified to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Lk
∂wk
= 0

∂Lk

∂b̃Ek
= 0

∂Lk
∂ξki
= 0

∂Lk
∂αki
= 0

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wk =
l∑

i=1
αkiφ(Sk (xi,ui))

l∑
i=1
αki = Cbk b̃Ek

Ck · ξki = αi

wT
k Sk (xi,ui) + b̃Ek + ξki − d̂Eki

= 0

, (27)

and the linear system of the LSSVM equations are given by:

⎡⎢⎢⎢⎢⎢⎢⎣ −Cbk 11×l

1l×1 Ωl×l

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣ b̃Ek

αkl

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣ 0

d̂El

⎤⎥⎥⎥⎥⎥⎥⎦ , (28)

where αkl =
[
αk1

αk2
· · · αkl

]T
l×1

, d̂El =
[

d̂Ek1
d̂Ek2

· · · d̂Ekl

]T
l×1

. Then the parameter matrix in kth di-

mension Θk =
l∑

i=1
αki (Sk (xi,ui)) can be obtained by solving Eq. (28), so as to identify the whole parameter matrix

Θ.

In summary, the main differences between the traditional LSSVM and the proposed ESO-LSSVM are as follows:

1) To deal with nonuniform sampling problems, the higher-order states observed by ESO are used in LSSVM for

continuous identification.

2) To deal with disturbances, a regular factor with respect to the equivalent bias, which is composed of the ESO

observation errors and the disturbances, is introduced in LSSVM to achieve unbiased identification.

3.2. The ABEL method

Although the LSSVM is improved in ESO-LSSVM by adding a regular factor on the equivalent bias, the hyper-

parameters of ESO, i.e., the bandwidths, still have great influences on the observation. If inappropriate bandwidths

ω = [ω1, . . . ωn] are selected, under-fitting or over-fitting problems will occur in the observation. Then the unbiased

identification, i.e., the equivalent bias b̃E → 0, is difficult to be satisfied. In this section, an adaptive beetle swarm

antenna search (ABSAS) algorithm is used to to adaptively fine-tune the bandwidths ω in ESO-LSSVM. The work

flow of the proposed ABEL method is shown in Fig. 3. In each optimization iteration, the updated bandwidths ω are

used for ESO-LSSVM identification, and the identified model is applied for state prediction and fitness calculation.

Then the ABSAS optimizer updates the ω based on the fitness results until the maximum iteration number or a set

fitness threshold is reached.

For ship motion model identification, the dimension n = 3 and the bandwidths ω = [ω1, ω2, ω3] are the hyper-

parameters to be optimized. The fitness function f (ω) can be calculated by the mean squares errors of the ship state

predictions in 3-DOF:

f (ω) = Ru + Rv+Rr,

Ru =
1

lva

lva∑
i=1

(
up

i − uva
i

)2
,Rv =

1
lva

lva∑
i=1

(
vp

i − vva
i

)2
,Rr =

1
lva

lva∑
i=1

(
rp

i − rva
i

)2
,

(29)

where f (ω) is the fitness function; lva is the size of the validation data set; uva
i , vva

i and rva
i are the ith 3-DOF states in

the validation data set; up
i , vp

i and rp
i are the ith surge, sway and yaw velocities predicted by the identified ship model

with respect to ω.

11
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Figure 3: The ABEL work flow.

As a branch of the optimization algorithms, the original BSAS algorithm (Wang and Chen, 2018) sets a certain

number of beetles to search the optimal parameters for optimization. Further researches (Xie et al., 2019d,c) have

proposed an adaptive strategy for BSAS by re-using the historical optimums. Each beetle in the adaptive BSAS

searches the optimal parameters based on the following strategy (Xie et al., 2019d):

ωk
il = ωilo + sk

i
d
‖d‖ ,

ωk
ir = ωiro − sk

i
d
‖d‖ ,⎧⎪⎪⎨⎪⎪⎩

f (ωilo) = f (ωk
il),ωilo = ω

k
il i f

{
f (ωk

il) < f (ωilo)
}
,

f (ωiro) = f (ωk
ir),ωiro = ω

k
ir i f

{
f (ωk

ir) < f (ωiro)
}
,

(30)

where ωk
il and ωk

ir are the left and right antenna of the ith beetle at k iteration, respectively; sk is the exploring step

of the antennas at k iteration; d is a random vector distributed in [−1, 1] with the same dimension of ω; ωilo and ωiro

are the historical optimums of the left and right antennas, respectively; f (ωilo) and f (ωiro) are the corresponding

historical optimal fitness. Then the update strategy of the beetle centroid is denoted as:

ωk
i = ω

k−1
i + rλl

(
ωilo − ωk−1

i

)
+ rλr

(
ωiro − ωk−1

i

)
,

λl = c e f (ωiro)

e f (ωilo)+e f (ωiro) , λr = c − λl,
(31)

where ωk
i is the centroid of the ith beetle at k iteration; r ∈ [0, 1] is a random value; λl and λr are learning factors of

the left and right antenna historical optimum, respectively; c is a constant. By learning from two antennas based on

the historical optimal fitnesses, the centroid of the beetle gradually approaches the antenna that has better historical

performance.

After all beetles finish searching in each iteration, the global and local optimums ωg,ωibest and the corresponding

12



fitnesses fg, fibest of the beetle swarm are updated by the greedy-policy:

⎧⎪⎪⎨⎪⎪⎩
fibest = f (ωk

i ),ωibest = ω
k
i i f

{
f (ωk

i ) < fibest

}
,

fg = fibest,ωg = ωibest i f
{
fibest < fg

}
.

(32)

In addition, to guarantee the global optimality of the algorithm, the left and right historical optimal positions are

initialized with the upper and lower bounds of the search space as:

ωilo ←
k=0
ωmin,ωiro ←

k=0
ωmax, (33)

where [ωmin,ωmax] is the search space with respect to the parameter matrix ω.

4. Case studies

In this section, identification simulations using zigzag data based on the widely used KVLCC2 ship model and a

fully-actuated Delfia 1* ship model in Delft University of Technology (Chen et al., 2019) are carried out to verify the

modeling accuracy of the proposed ABEL method. Furthermore, the navigation data of a real model ship known as

Tito-Neri tug ship (Haseltalab and Negenborn, 2019) is also used for identification experiments with real zigzag and

free-running data. Several design parameters of the KVLCC2 model ship, Delfia 1* ship, and Tito-Neri model ship

are shown in Table. 1 for reference.

Table 1: Several parameters of the KVLCC2 ship, Delfia 1* ship and Tito-Neri tug ship.

KVLCC2 Delfia 1* TITO Neri

7��!����8

9��'�����

����&6���

9��'�����

Scale/(-) 1:45.7 1:16 1:30

Ship length/(m) 7 0.38 0.97

Moulded width/(m) 1.270 0.185 0.3

Moulded depth/(m) 0.656 0.07 0.18

Mass of the ship/(kg) 1908 3.345 16.9

Inertia moment/(kg.m2) 1.027 0.031 0.51

4.1. Case study 1: Identifications based on KVLCC2 model

In this section, the KVLCC2 ship model is used for zigzag tests and identification simulations with different levels

of disturbances and non-uniform sampling.

13



Table 2: Design parameters of the ABSAS, BSAS and LDWPSO.

Common ABSAS LDWPSO

Parameters κ npop N c smin η c1 c2 w

Value κ1 ∼ κ3 = 3 4 20 1.1 10−6 0.9 1.6 1.8 1-0.6*i/N
Significance The normaliza-

tion ratios

Population

size

Maximum

iteration

Constant Minimum

step

Attenuation

coefficient

Learning factors Velocity weight, i is

the current iteration
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Figure 4: 10◦/10◦ zigzag data regression results with no disturbances.

4.1.1. Identifications with different disturbances

Firstly, the 10◦/10◦, 20◦/20◦ and 30◦/30◦ zigzag simulation results of the KVLCC2 ship model without distur-

bances are applied for identification. After that, 30◦/30◦ zigzag data with different levels of disturbances are selected

to verify the effectiveness of ABEL. The traditional LSSVM method and original BSAS-optimized ESO-LSSVM,

i.e., BEL, are both used as comparisons to analyze the influences of fine-tuning on the identification results. Besides,

the normalization method is used to re-define the minimum and maximum values of the hyper-parameters as:

ω [i] = κi
(
μ′ [i] − μ′min

)
+ ω[i]min,

κi =
ω[i]max−ω[i]min

μ′max−μ′min
,

(34)

where μ′min = −1 and μ′max = 1 are the normalized minimum and maximum values; κi is the ratio for the normalization

of the ith dimension of the parameters μ. Then, the design parameters of the ABSAS and BSAS are set in Table 2.

(1) Identifications without disturbances

1) The identification results

The mean square errors (MSEs) of the predictions are used as the indicators of the identification. The prediction

results of 10◦/10◦, 20◦/20◦ and 30◦/30◦ zigzag data based on the models identified by the proposed ABEL, BEL

14
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Figure 5: 20◦/20◦ zigzag data regression results with no disturbances.
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Figure 6: 30◦/30◦ zigzag data regression results with no disturbances.

and traditional LSSVM are shown in Fig. 4∼Fig. 6. The MSE results of the predicted states in 3-DOF are shown in

Table 3. Besides, the detailed identified parameters of Θ based on the 30◦/30◦ zigzag data are shown in Table 4.

The differential states are used for comparisons with the observation results, which are shown in Fig. 7. It can
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Figure 7: ESO observation results of 10◦/10◦, 20◦/20◦ and 30◦/30◦ zigzag data with no disturbances.

Table 3: The prediction errors without disturbances.

Identification 10◦/10◦ 20◦/20◦ 30◦/30◦

MSE ABEL BEL LSSVM ABEL BEL LSSVM ABEL BEL LSSVM

u 1.16E-03 1.93E-03 3.46E-03 1.19E-03 2.02E-03 9.63E-03 1.63E-03 1.78E-03 9.95E-03

v 3.34E-04 2.83E-04 4.81E-04 4.09E-04 5.06E-04 7.15E-04 4.23E-04 4.36E-04 1.39E-03

r 1.77E-05 2.06E-05 3.37E-05 2.40E-05 5.30E-05 3.32E-05 7.89E-06 1.77E-05 1.60E-05

Fitness 1.61E-03 2.36E-03 4.18E-03 1.77E-03 2.90E-03 1.06E-02 2.10E-03 2.34E-03 1.15E-02

be seen that both the ESOs in ABEL and BEL can observe the higher-order states effectively. From the actual

prediction results in Fig. 4∼Fig. 6 and the MSEs in Table 3, it can be seen that the proposed ABEL method can obtain

more accurate predictions than BEL and original LSSVM without disturbances, especially in the surge speed u. The

corresponding fitness results of the ABEL are also smaller than those of the BEL and LSSVM.

In addition, the ship motion has stronger nonlinearity with a larger rudder angle, i.e., 30◦/30◦ zigzag, which brings

difficulties in the identification. From Table 3, it can be seen that the prediction errors of the original LSSVM and

ABEL almost have a gap of magnitude order in 30◦/30◦ zigzag test (e.g., the MSE of v of the ABEL is 4.23 × 10−4

while that of the LSSVM is 1.39 × 10−3). Besides, the differences between the identified parameters of the LSSVM

and ABEL in 30◦/30◦ zigzag test are much larger than those between the BEL and ABEL, which is consistent with

the prediction results.

(2) Identifications with disturbances

The equivalent lumped disturbances can be expressed by the composition of random disturbances and sinusoidal
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Table 4: Identified parameters with 30◦/30◦ zigzag data.

Parameters
Θu Θv Θr

ABEL BEL LSSVM ABEL BEL LSSVM ABEL BEL LSSVM

1 -2.08E-02 -2.17E-02 -1.07E-02 -3.62E-02 -3.17E-02 -2.54E-02 -6.22E-02 -7.76E-02 -8.36E-02

2 -2.45E-02 -2.56E-02 -1.26E-02 -6.15E-03 -6.21E-03 9.77E-15 -1.43E-03 -1.38E-03 -7.44E-15

3 -2.89E-02 -3.14E-02 -1.40E-03 -3.84E-02 -3.79E-02 -1.62E-02 -1.34E-02 -1.30E-02 2.28E-03

4 1.56E-02 1.79E-02 9.29E-03 -5.14E-02 -4.96E-02 -2.70E-02 -2.53E-02 -2.47E-02 -4.50E-04

5 -6.35E-01 -6.54E-01 -3.06E-01 -4.27E-02 -3.74E-02 -2.99E-02 7.63E-03 1.21E-02 3.84E-03

6 -7.69E-02 -7.23E-02 -4.86E-02 4.46E-01 4.33E-01 7.26E-02 -7.34E-02 -9.15E-02 -9.86E-02

7 -1.73E-07 -6.19E-07 4.16E-07 4.11E-04 4.09E-04 6.30E-04 3.94E-04 4.04E-04 3.36E-04

8 8.81E-08 -3.23E-07 -1.17E-06 -1.30E-03 8.99E-03 -1.47E-01 -1.39E-01 -1.12E-01 -8.36E-02

9 -2.56E-01 -2.49E-01 -1.45E-01 -2.68E-08 -3.51E-08 -5.83E-08 -6.74E-08 -8.73E-08 -5.29E-08

10 7.83E-04 9.59E-04 -1.23E-03 6.24E-03 8.74E-03 -3.62E-02 -3.55E-02 -2.97E-02 -2.10E-02

11 2.01E-03 2.30E-03 -8.83E-04 -4.91E-03 -5.76E-03 -6.77E-03 9.02E-04 -4.26E-04 -2.20E-03

12 - - - -9.37E-06 -8.62E-06 3.06E-05 1.80E-06 1.14E-05 2.63E-05

13 - - - 6.50E-04 4.82E-04 5.92E-04 7.25E-04 5.61E-04 8.92E-05

14 - - - 1.59E-01 1.71E-01 5.13E-02 -4.09E-03 -1.83E-03 3.59E-03

15 - - - -3.21E-03 8.14E-04 -2.04E-03 1.43E-02 1.09E-02 9.65E-03

16 - - - -5.32E-05 -2.94E-04 -3.53E-05 8.46E-04 5.98E-04 -1.21E-04

Table 5: The prediction errors with different levels of disturbances.

Identification f = 0.01 f = 0.02 f = 0.03

MSE ABEL BEL LSSVM ABEL BEL LSSVM ABEL BEL LSSVM

u 2.87E-03 3.69E-03 1.77E-02 1.19E-03 2.02E-03 9.63E-03 4.51E-03 1.00E-02 4.85E-02

v 5.55E-04 6.93E-04 1.33E-03 4.09E-04 5.06E-04 7.15E-04 6.15E-04 2.81E-03 1.32E-03

r 1.71E-05 2.46E-05 1.35E-04 2.40E-05 5.30E-05 3.32E-05 7.15E-05 4.54E-04 2.04E-04

Fitness 3.54E-03 4.55E-03 2.00E-02 1.77E-03 2.90E-03 1.06E-02 5.62E-03 1.60E-02 5.13E-02

periodic disturbances:

di = Fi (sin (ωdi + θd) + 2rd − 1) ,

Fi = fd |xi| ,
(35)

where di is the setting disturbance for ith sample; Fi is the amplitude of the disturbance, which is related to the absolute

value of the states xi; fd is the amplitude factor, which represent the relative level of the disturbances; ωd and θi is the

frequency and phase shift, respectively; rd is a random value. In this case study, ωd = 0.3π and θi = 0 are set, and

different amplitude factor fd = 0.01, 0.02 and 0.03 are taken to verify the identification performance. The observation

results and prediction results with the identified models are shown in Fig. 8∼Fig. 10, and the final prediction MSEs

are calculated as shown in Table 5.

It can be seen from the observation results in Fig. 8∼Fig. 10 that the high-order differential states fluctuate ob-

viously, while the states observed by the ESOs in ABEL and BEL are much smoother. The prediction results in

Fig. 8∼Fig. 10 also show that the predictions of the ABEL and BEL are more accurate than those of the traditional

LSSVM in all cases, which indicates the effectiveness of the ESO-LSSVM scheme.

Besides, with the increase of fd, under-fitting (ṙ with fd = 0.02) or over-fitting (v̇ with fd = 0.03) problems occur

in the observations of BEL. On one hand, the BEL has larger observation errors on the over-shots of ṙ as shown in

Fig. 9, thus the prediction error of r of the BEL (5.30×10−5) is larger than those of the proposed ABEL (2.40×10−5),

respectively. On the other hand, the BEL has an over-fitting problem in the observation of v̇ as shown in Fig. 10,
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Figure 8: ESO observation results and prediction results of 30◦/30◦ zigzag data with fd = 0.01.
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Figure 9: ESO observation results and prediction results of 30◦/30◦ zigzag data with fd = 0.02.

which results in unsmooth observations. Therefore, the final prediction error of v (2.81 × 10−3) is still larger than that

of the ABEL (6.15 × 10−4).

In summary, the identification results with different levels of disturbances indicate that both the proposed ABEL
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Figure 10: ESO observation results and prediction results of 30◦/30◦ zigzag data with fd = 0.03.

and original BSAS-optimized ESO-LSSVM (BEL) can obtain better identification results than traditional LSSVM

method. Besides, the proposed ABEL outperforms the BEL, which shows the effectiveness of the fine-tuning for

ESO-LSSVM.

4.1.2. Identifications with non-uniform sampling

In data acquisition, sampling loss is typical reason of non-uniform sampling. In this case, the non-uniform sam-

pling is realized by randomly removing a certain proportion λs of the samples. The identification experiments with

λs = 10%, 20% and 30% are carried out respectively. The observation results and prediction results are shown in

Fig. 11∼Fig. 13. The prediction MSEs are shown in Table 6.

Table 6: The prediction errors with non uniform sampling.

Identification λs = 10% λs = 20% λs = 30%

RMSE ABEL BEL LSSVM ABEL BEL LSSVM ABEL BEL LSSVM

u 4.61E-03 1.61E-02 2.62E-02 1.42E-03 2.00E-03 5.49E-03 2.87E-03 9.75E-03 6.38E-02

v 7.36E-04 2.11E-03 1.86E-03 4.47E-04 3.76E-04 2.03E-03 9.30E-04 2.04E-03 3.12E-02

r 2.86E-05 1.06E-04 2.00E-04 4.15E-05 5.51E-05 1.85E-04 5.37E-05 3.19E-04 3.18E-04

Fitness 5.55E-03 1.89E-02 2.95E-02 2.15E-03 2.76E-03 8.82E-03 4.17E-03 1.40E-02 9.72E-02

From Fig. 11∼Fig. 13, it can be observed that the non-uniform sampling also has influences on the final iden-

tification results. Benefiting from the observations of ESOs, the proposed ABEL and BEL method can obviously

obtain better prediction results than the traditional LSSVM, especially in the prediction of u, which indicates the

ESO-LSSVM scheme can handle with the non-uniform sampling problem as expected. In addition, it can be seen

from Table 6, the proposed ABEL obtains the smallest fitness results and the errors of the predicted states in most of
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Figure 11: ESO observation results and prediction results of 30◦/30◦ zigzag data with λs = 10%.
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Figure 12: ESO observation results and prediction results of 30◦/30◦ zigzag data with λs = 20%.

the cases, expect that the MSE of v with λs = 20% is a bit larger than that of the BEL.

Therefore, it can be concluded that the proposed method also outperforms the BEL and traditional LSSVM meth-

ods with non-uniform sampling disturbances.
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Figure 13: ESO observation results and prediction results of 30◦/30◦ zigzag data with λs = 30%.

4.2. Case study 2: Identifications based on Delfia 1* ship model

Delfia 1* ship has two 360◦ steering propellers, which can make maneuvering applications in crowded environ-

ments by flexible steering with large rudder angles. In this section, 50◦/50◦ zigzag tests are conducted based on the

Delfia 1* ship model to verify the modeling performance of the proposed ABEL with large nonlinearities. The zigzag

data with different levels of uncertain disturbances ( fd = 0.01 and fd = 0.04) and non-uniform sampling (λs = 10%

and λs = 40%) are both considered for identification.

Table 7: The prediction errors of Delfia 1*.

Zigzag MSE
fd = 0.01 fd = 0.04

ABEL BEL LSSVM ABEL BEL LSSVM

Uncertain disturbances

u 8.60E-04 8.67E-04 1.27E-02 9.76E-03 9.86E-03 7.51E-01

v 2.34E-04 3.27E-04 5.96E-04 8.89E-04 7.31E-04 4.38E-02

r 4.42E-04 6.44E-04 4.00E-03 4.54E-03 1.03E-02 3.40E-01

Fitness 1.26E-03 1.44E-03 1.48E-02 1.24E-02 1.25E-02 9.24E-01

Zigzag MSE
λs = 10% λs = 40%

ABEL BEL LSSVM ABEL BEL LSSVM

Non-uniform sampling

u 5.77E-05 1.49E-04 1.72E-02 1.87E-04 3.61E-04 6.22E-02

v 2.82E-05 5.12E-05 1.14E-03 1.47E-04 1.38E-04 1.27E-03

r 5.27E-04 6.08E-04 7.09E-03 1.98E-03 2.15E-03 1.62E-02

Fitness 2.86E-04 4.31E-04 2.10E-02 1.09E-03 1.32E-03 6.96E-02

The observation results and prediction results with uncertain disturbances are shown in Fig. 14 and Fig. 15 and

the results with non-uniform sampling are shown in Fig. 16 and Fig. 17. The prediction MSEs are shown in Table 7.

From the prediction errors in Table 7, it can be observed that the proposed ABEL and BEL methods can obtain
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Figure 14: ESO observation results and prediction results of 50◦/50◦ zigzag data with fd = 0.01.

10 20 30 40 50
time/(s)

-0.1

0

0.1

du
/(

m
/s

2 )

Differential states
Observation of BEL
Observation of ABEL

10 20 30 40 50
time/(s)

0.2

0.4

0.6

u/
(m

/s
)

Real states
Prediction of LSSVM
Prediction of BEL
Prediction of ABEL

10 20 30 40 50
time/(s)

-0.05

0

0.05

dv
/(

m
/s

2 )

10 20 30 40 50
time/(s)

-0.2
0

0.2
0.4

v/
(m

/s
)

10 20 30 40 50
time/(s)

-0.4
-0.2

0
0.2

dr
/(

ra
d/

s2 )

10 20 30 40 50
time/(s)

-0.5

0

0.5

r/
(r

ad
/s

)

Figure 15: ESO observation results and prediction results of 50◦/50◦ zigzag data with fd = 0.04.

smaller prediction errors of both u, v and r (especially u and r) than the traditional LSSVM under different levels of

disturbances and non-uniform sampling. Particularly, as can be seen from Fig. 15, the predicted results of u and v by

the traditional LSSVM deviate greatly from the actual values due to the strong random disturbances with fd = 0.4. In
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Figure 16: ESO observation results and prediction results of 50◦/50◦ zigzag data with λs = 10%.
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Figure 17: ESO observation results and prediction results of 50◦/50◦ zigzag data with λs = 40%.

spite of this, the proposed ABEL and BEL can still predict the u and v accurately, which indicates the effectiveness of

the ESO-LSSVM scheme.

Besides, compared with BEL, the proposed ABEL can obtain more accurate state predictions in most of the cases.
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Moreover, the final fitness results in the proposed ABEL in all cases are better than those in BEL, which verifies the

optimization performance of the proposed ABSAS algorithm.

4.3. Case study 3: Identifications based on real test data of Tito-Neri ship

In addition to the standard zigzag data, the free-sailing data during the voyage are also usually used for identifica-

tion. We collect real test data of the Tito-Neri ship when sailing in the open pool in Delft University of Technology

(52◦00’08.1”N, 4◦22’17.2”E) as shown in Fig. 18.

Figure 18: Sailing data collection of Tito-Neri ship in the open pool in Delft University of Technology.

Figure 19: The trajectories generated by random steering of Tito-Neri ship.

A remote control software is developed by Python to control the ship and collect the real-time data of Tito-Neri

through wireless communication, which can also use a joystick to control the ship in free-sailing mode. The GPS and

IMU sensors are installed on Tito-Neri for acquiring the position and attitude states. The proposed ABEL and original

LSSVM methods are used for identification modeling based on the collected data. The standard 20◦/20◦ zig-zag

test data and the random steering data of Tito-Neri are both collected for identification modeling. The trajectories
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Figure 20: The prediction results of real 20◦/20◦ zigzag data of Tito-Neri ship.
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Figure 21: The prediction results of sample 1.

generated by random steering are shown in Fig. 19. The prediction results of the surge, sway and yaw velocities of all

samples are shown in Fig. 20∼Fig. 23 and the prediction errors are calculated as shown in Table 8.

Due to the disturbances and uncertainties in measurements of the GPS and IMU sensors, the real data of Tito-Neri
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Figure 22: The prediction results of sample 2.
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Figure 23: The prediction results of sample 3.

model ship contains irregularities. In spite of this, it can be seen from the prediction results that the proposed ABEL

method can predict the ship motion states in both the zigzag test and random steering tests, while the original LSSVM

fails to modeling an effective ship model in random steering test 1 as in Fig. 21 and obtains much higher prediction
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Table 8: The prediction errors of real test data

MSE
Zigzag Sample 1

u v r Fitness u v r Fitness

ABEL 1.93E-02 4.33E-03 3.05E-03 2.59E-01 7.76E-02 2.27E-02 1.84E-02 5.62E-01

LSSVM 1.97E-02 8.71E-03 1.81E-02 3.65E-01 1.62E+03 3.33E+12 1.03E+13 4.98E+06

MSE
Sample 2 Sample 3

u v r Fitness u v r Fitness

ABEL 2.13E-02 1.01E-02 2.21E-03 2.93E-01 1.86E-02 1.93E-02 1.05E-02 3.76E-01

LSSVM 7.70E-02 6.20E-03 9.64E-03 4.52E-01 2.32E-02 6.09E-02 2.24E-02 5.46E-01

errors than the proposed method in all tests as shown in Table 8. Moreover, as can be seen from the amplified figures

in Fig. 20, the ESO in the proposed method can generate smoother observations for the identification, which results

in a higher identification accuracy.

In summary, it can be concluded from the above case studies that the proposed ABEL can obtain more accurate

ship motion models than the traditional LSSVM with different levels of disturbances and non-uniform sampling, by

reasonable exploitation of the ESO observations and optimization of the ABSAS algorithm.

5. Conclusions and future research

In this study, in order to obtain an accurate ship model with uncertain disturbances and non-uniform sampling,

a novel ABEL identification method is proposed by combining an ESO, LSSVM and an ABSAS optimizer. The

observations of the higher-order states in ESO are used instead of the actual measurements with disturbances. The

hyper-parameter of ESO are fine-tuned by the ABSAS optimizer. The following conclusions are drawn from several

identification cases studies:

(1) In terms of the identification performance, with different levels of disturbances and non-uniform sampling, the

proposed method can obtain more accurate modeling results than the traditional LSSVM method, which shows

the effectivenesses of the proposed ESO-LSSVM scheme.

(2) In terms of the fine-tuning performance, the identification results show that the integrating ABSAS performs better

than the original BSAS, which results in better identification results. Therefore, appropriate hyper-parameters of

the ESO are important for the optimal identification of the proposed method.

With the diversification of ship types and the requirement of autonomous collision avoidance, the ship maneuver-

ability will change with the speed during the voyage, which requires on-line identification. Hence, the implementation

of the proposed method in on-line identification will be studied in future research.

Acknowledgements

This research is supported by the Fundamental Research Funds for the Central Universities (No.2019-YB-022),

the China Scholarship Council under Grant (201806950097), the High Technology Ship Project of Ministry of

Industry and Information Technology (No.2016050001), the Key Project of Science and Technology of Wuhan

(201701021010132), the ResearchLab Autonomous Shipping (RAS) project in Delft, and the Joint WUT (Wuhan

27



University of Technology) -TUDelft (Delft University of Technology) Cooperation. The authors wish to thank Ir.

Vittorio Garofano for providing the hydrodynamics model of Delfia 1* and the help in practical tests with Tito-Neri

model ship.

References

Abkowitz, M. A., 1980. Measurement of hydrodynamic characteristics from ship maneuvering trials by system identification. Tech. rep.
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