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Abstract 

 

Model Predictive Control (MPC) has been implemented on large-scale water systems 

in the Netherlands with the objective to keep water levels within a certain range. 

However, the application of conventional centralized MPC is not possible for water 

systems that are very large, especially when multiple organizations with their own 

objectives are involved. Distributed Model Predictive Control is introduced in order to 

deal with multiple goals in a computationally tractable way. In this paper, we illustrate 

how dual decomposition could be used for establishing the multi-objective 

management in a distributed manner.  
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1. INTRODUCTION  

Water is one of the most important elements in the world. It is used everyday, for drinking, 

agriculture, navigation, energy production, etc. In the Netherlands, the water systems 

consist of rivers, lakes and estuaries, which are connected by natural rivers and artificial 

canals. Some rivers originate from neighboring countries, whose discharges vary over 

different seasons. Reservoirs, lakes and canals in the western and northern parts of the 

country are controlled by gates and pumps in order to prevent mixture of the fresh water 

with the sea water, especially during periods of severe storms, which may bring the water 

level up to 4 m above the sea level [1]. Water managers continuously manipulate the water 

levels to meet several requirements [2]:  

(a) Safety—in the case of inundation, water levels have to be controlled below the 

maximum level allowed.  

(b) Water demand—to make sure that enough drinking water and other daily consumption 

is available, water levels have to be controlled above the minimum level allowed. 

(c) Navigation—for ships sailing through the rivers, water levels have to be maintained 

around a certain point or reference level. 

Structures like pumps and gates are used to manipulate the flow in the rivers and water 

courses, which always have limited capacities. In general, the management of this kind of 



water system is not simple, as the objectives (a)-(c) may be conflicting with one another. 

For example, protections from inundation during high flow periods and guarantees for 

enough drinking water have higher priority than other situations. Navigation and fresh 

water for agriculture during regular periods also have to be ensured in the management. 

Many methods have been used in the water management over the last decades, such as 

feedforward control [3], feedback control [4], and Model Predictive Control (MPC) [1]. In 

general, feedback controllers show a delay in their actuation and feedforward controllers 

combined with feedback controllers work well until the required control flow exceeds the 

maximum pump capacity [2]. Finally, MPC is the control technique that shows the best 

performance for this kind of problems. MPC is a state-of-the-art approach to control water 

levels to fulfill multiple goals and deal with the delay time that exists in real water systems. 

Besides that, constraints and uncertainties can be considered explicitly into MPC as well. 

As a result, MPC has the potential to perform better than the other two methods and has 

become a popular control scheme due to its versatility [5]. However there are still two 

problems that arise when MPC is implemented on large-scale systems [6]: (a) for 

large-scale water systems, different water boards take charge of different aspects of water 

management separately. For example water quantity and water quality are not always 

managed by the same authority. And sometimes these authorities have limited 

communication with each other which means they only manage the water in a local manner. 

But in centralized MPC, the controller manipulates all aspects overall; (b) even if those 

issues can be solved in an integrated manner, it may take so much computational time for a 

centralized MPC to calculate a large-scale water system problem. For example, solving the 

large water systems in the Netherlands is not tractable, due to computational limitations. 

In order to improve the application of MPC on large-scale systems and relieve the 

computational burden as much as possible, we use Distributed Model Predictive Control 

(DMPC) algorithms. Distributed control uses communication among the local controllers to 

reduce the side effects that their decisions have on neighboring subsystems. In this way, 

local controllers or agents are able to reach an agreement about what control action should 

be applied, minimizing the loss of control performance with respect to an ideal centralized 

MPC controller that would control the overall system [1, 6, 7]. In this case, the heavy 

computational burden in a large scale system can be relieved since each subsystem is 

controlled by a local agent separately, which works only with a reduced model and partial 

information [6, 8, 9]. 

In this paper, we show that DMPC can be used in order to separate a multi-objective 

optimization into several components related with the respective objectives which have to 

be minimized. As a result, it is possible that different parties or entities participate in the 

optimization in order to guarantee their particular objectives.  

The remainder of this paper is organized as follows. In Section 2, a model of a 

low-land water system is introduced and multi-objective control problem is formulated. In 

Section 3, centralized and distributed MPC are introduced and utilized to solve the control 

problem. In Section 3, simulation results are presented and Section 4 concludes the paper 

and contains directions for future work. 



 

2. PROBLEM FORMULATION  

In this paper, we will apply DMPC on a low-land reservoir system, which is shown in 

Figure 1. Firstly, in this water system, water from precipitation will flow into the system 

through upstream rivers and canals as an inflow Qd (m
3
/s). Secondly, water is pumped out 

of the system as an outflow Qc (m
3
/s). Finally, the water level in the system, h (m), is the 

variable that we need to regulate by adjusting Qc. Note that Qd is a stochastic variable due to 

the chaotic nature of weather, Qc has to be chosen taking into account maximum and 

minimum pump capacity constrains and h has to be maintained within a range as depicted 

in Fig. 1. 

 

 

 

Fig. 1 Schematization of an ideal low-land water system  

 

The dynamics of this water system can be described mathematically using the 

following model [2]: 
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where k represents the discrete time step index, ⊿⊿⊿⊿T (s) the time step, As (m
2
) the area of 

the water system we consider, Qc the flow out of the reservoir and Qd the flow into the 

reservoir. 

The change in flow, ⊿⊿⊿⊿Qc (m
3
/s), is the manipulated variable that we use to control 

the water level. It is defined as: 
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3. THE CONTROL PROBLEM 

As has been mentioned, we focus on three management objectives in this paper— 

navigation, safety and water demand. Specifically, we apply the model to the control of the 

low land water system, where the following objective function has to be optimized: 
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where J(k) is the cost function to be optimized at step k; Qnv, Qsf, Qwd, R, Rmax, Rmin are 

technically called penalties on the control goals of navigation, safety, water demand and 

manipulated variables and e, emax, emin
 
are the deviations between the water level h and the 

reference, maximum allowed, minimum allowed levels href, hmax, hmin respectively: 

 

e(k)=h(k)-href, 

emax(k)=max{h(k)-hmax,0}= e(k)-umax(k), 

emin(k)=max{hmin- h(k),0}= e(k)-umin(k).                                                 (4) 

 

Here emax and umax, emin and umin are actually introduced as soft constraints in order to 

avoid non-feasibility issues. The role of emax and emin is to show how much the water level 

exceeds the allowed range when extreme situations happen. In particular, emax is either zero 

or a value corresponding with the exceeding of the maximum allowed level and emin is 

either zero or a value outside the minimum allowed level with reversed sign. Besides that, 

umax and umin are virtual bounded inputs without physical meaning. Hence, emax and emin are 

zero whenever umax and umin are inside their boundaries. Otherwise, the values of these 

variables are different from zero, which is severely penalized in the cost function. As a 

consequence, the controller always tries to keep e(k) within the gap corresponding to the 

bounds of umax and umin. More details about the soft constraints can be found in [10]. 

Notice that the different terms of (3) are related to the different water management 

objectives that were presented in the introduction. A centralized MPC controller would 

minimize the cost function shown in (3) at each time step in order to calculate the 

corresponding control actions that will be taken over the next N time steps. Nevertheless, 

only the first one of these control actions is really implemented; the other actions are 

discarded. And the next time step, the procedure is repeated in a receding horizon fashion.  



Centralized MPC merges all these goals in a single function, as was shown in (3). 

However, those problems are handled by different water boards in a distributed manner in 

reality. This paper illustrates how DMPC can be used to separate this multi-objective 

optimization into several components related with the corresponding objectives that have to 

be minimized by different parties. In this way, the computation can be carried out in parallel 

by the different parties that have a specific interest only in one of the goals. To this end, we 

will use dual decomposition [7], which allows us to overcome the coupling that may be 

present between the different objectives. As an example of such coupling, all the errors 

defined in (4) depend on the water level h(k), which can be manipulated through⊿⊿⊿⊿Qc(k). 

Hence, all the different optimization terms are coupled by this variable. In order to apply 

dual decomposition, we will allow each particular objective to choose its preferred value 

for this coupling variable. This leads to the following optimization problem: 
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Note that the equality constraints impose that all the agents must agree on the value of 

the shared variable⊿⊿⊿⊿Qc(k). The Lagrangian multipliers of (5) transforms these coupling 

constraints into penalties on the difference between the different local versions of the 

manipulated variables, which allows us to distribute the optimization problem between the 

agents. These penalties are adjusted iteratively until all the agents share the same vision 

about the value of the coupling variable⊿⊿⊿⊿Qc(k). Thus, the use of the Lagrangian multipliers 

allows us to remove the equality constraints and to have a separable cost function [7]: 
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For example, the agent responsible for achieving the navigation goal would solve the 



following optimization problem for a given value of the Lagrangian multipliers: 
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After this problem is solved, the value of the Lagrangian multipliers is updated like in 

[7]. The procedure is repeated until convergence is attained, i.e., when the difference 

between the all the versions of⊿⊿⊿⊿Qc(k) is lower than a certain threshold (e.g. 10
-3
 ).  

 

4. SIMULATIONS 

In this section we carry out a simulation study that illustrates the potential of the method 

proposed using the values shown in Table 1. We consider a simple scenario of six days, 

which starts with a storm event from hour 10 to hour 25 and high water demands from hour 

60 to hour 80. The maximum disturbance due to rainfall can peak at 4000 m
3
/s while the 

minimum disturbance due to high demand can reach a minimum of -1000 m
3
/s. Remaining 

days keeps 100 m
3
/s as regular daily input. A DMPC controller is used to regulate the 

outflow in order to maintain the water level as what we expect, where the maximum pump 

capacity is 800 m
3
/s. The results are shown in Figure 2. Before the rain starts, the pump has 

already been turned on to create as much storage space as possible because of the coming 

storm in the next 12 hours. Note that the minimum water level is exceeded because of that. 

When the rain comes and peaks at 4000 m
3
/s, the water only exceeds the maximum allowed 

level slightly, i.e., less than 0.2 m. After that, the water level declines gradually by pumping 

until we predict the high water demand in the coming hours. After hour 44, the pump is 

stopped so that the reservoir can store the expected daily rainfall to be well prepared for the 

water use in the next 20 hours. Actually, the water level only exceeds the minimum allowed 

water level less than 0.12 m and this violation lasts 9 hours only. As we have set the large 

penalty on the water level at the end of the horizon, it rises steadily until it reaches the set 

point.  

 

Table1  

System model and controller parameters  

Parameters Symbol Value 

Storage area As 4e+7 (m
2
) 

Control time step ⊿⊿⊿⊿T 3600 (s)  

Reference/Maximum/Minimum  

Water level  

href/hmax/ hmin 0.4/1.5/-0.4 (m) 

Prediction horizon N 24 (1 day) 

Penalties on  e/ emax/ emin  Qnv/Qsf/Qwd 10/100/10 

Penalties on ⊿⊿⊿⊿Qc/umax/umin R/Rmax/Rmin 1e-4/1e-6/1e-6 

 



 
Fig. 2 Disturbances, water levels and the outflow 

 

5. CONCLUSIONS 

In this paper, we consider a water system management problem that has to meet three 

different objectives regarding navigation, safety and water demand. Distributed Model 

Predictive Control is presented as an approach for addressing this kind of multi-objective 

optimization problems. Future work focuses on applying this kind of approach for 

controlling large-scale water systems, such as the entire water system in the Netherlands.   
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