Technical report

A comparative analysis of distributed MPC techniques applied to
the HD-MPC four-tank benchmark

I. Alvarado, D. Limon, D. Munoz de la Pena, J.M. Maestre, M.A. Ridao, H. Scheu, W.
Marquardt, R.R. Negenborn, B. De Schutter, F. Valencia, J. Espinosa

If you want to cite this report, please use the following reference instead:

I. Alvarado, D. Limon, D. Munoz de la Pena, J.M. Maestre, M.A. Ridao, H. Scheu, W.
Marquardt, R.R. Negenborn, B. De Schutter, F. Valencia, J. Espinosa. A comparative analysis
of distributed MPC techniques applied to the HD-MPC four-tank benchmark. Journal of
Process Control, vol. 21, no. 5, pp. 800-815, June 2011.

Delft University of Technology, Delft, The Netherlands



A comparative analysis of distributed MPC techniques
applied to the HD-MPC four-tank benchmark

I. Alvaradd, D. Limor?, D. Mufioz de la P&, J.M. Maestrg M.A. Ridad,
H. Schedl, W. Marquardt, R.R. Negenborf) B. De Schuttes; F. Valencid,
J. Espinos&

aDept. Ingenieta de Sistemas y Autditica, Universidad de Sevilla. Sevilla, Spain.
bAVT Process Systems Engineering, RWTH Aachen UniversithieA, Germany.
CDelft Center for Systems and Control, Delft University affifeology. Delft, The Netherlands.
dUniversidad Nacional de Colombia. Medell Colombia.

Abstract

Recently, there has been a renewed interest in the develamhéistributed model
predictive control (MPC) techniques capable of inheriting properties of centralized
predictive controllers, such as constraint satisfactigtimal control, closed-loop sta-
bility, etc. The objective of this paper is to design and iempént in a four-tank process
several distributed control algorithms that are understigation in the research groups
of the authors within the European project HD-MPC. The téstmtrollers are central-
ized and decentralized model predictive controllers sawefar tracking and several
distributed MPC schemes based @ncooperative game theortij) sensivity-based
coordination mechanism§iji) bargaining game theory, arfil) serial decomposition
of the centralized problem. In order to analyze the cordrslla control test is pro-
posed and a number of performance indices are defined. Tlegimgntal results of
the benchmark provide an overview of the performance angbitbeerties of several
state-of-the-art distributed predictive controllers.

Keywords: Distributed control, Predictive control, Optimal contrBenchmark
examples, Control applications.

1. Introduction

Distributed model predictive control (DMPC) is an impottaontrol methodol-
ogy in current control engineering for large-scale or nek&d systems, mainly to
overcome computational (and possibly communication)téitions of centralized ap-
proaches. These distributed algorithms are based on a aidge rof techniques. Sys-
tematic studies of these techniques require the analydiermfhmark problems to as-
sess the performance of the different algorithms and tcacherize their properties.

UThis research has been supported by the European 7th fraln@V&EP project “Hierarchical and
distributed model predictive control (HD-MPC)”, contraectmber INFSO-ICT-223854.

Preprint submitted to Elsevier



The use of benchmarks is useful for evaluating the cap@silof different ap-
proaches to control systems for real problems. Benchmdldig ane to test, evaluate,
and compare different control solutions on real or simdatiants. The research and
the industry community benefit from these activities sifeedesign of a good simu-
lation test-bed is often time and resource consuming. Hewewnany simulation test-
beds are often subject to harsh criticism as they eitherrcavlg a narrow part of the
problem or they are purposely designed to get biased rdtarbjective performance
results. Suitable benchmark problems would effectivelgrosme these problems by
(a) allowing an objective evaluation of alternative cohtezhnologies, by (b) reducing
resources and time spent on developing validation model&)lyiving researchers the
possibility to evaluate their proposals on a variety of saaad by (d) opening up a fo-
rum to compare the performance of various solutions andstuds the quality of the
results.

The objective of this paper is to design and implement sédistibuted control
algorithms, to analyze the algorithms, and to compare them common real bench-
mark process, namely a four-tank plant located in the Depart of Ingenieia de Sis-
temas y Autoratica of the University of Seville. This plant is based ondedruple-
tank process [8]. This process has proven to be a very initegesystem for control
education and research despite its simplicity, since thtegyis a highly coupled sys-
tem that can exhibit transmission zero dynamics, the dycsuanie nonlinear and the
states and inputs are subject to hard constraints. Furdrerrthe four-tank plant is
implemented using industrial instrumentation and is safese. The quadruple-tank
process has been used to illustrate various control stestagcluding internal model
control [6], dynamic matrix control [5], multi-variable lpost control [24] and dis-
tributed MPC [12]. In addition, it has also been utilized asducational tool to teach
advanced multi-variable control techniques.

For the proposed benchmark, four-tank plant has been divide two subsystems
coupled through the inputs. The objective of the distridutentrollers is to mini-
mize a quadratic tracking performance index of the wholatplahich adds objective
coupling between the controllers. In order to evaluate th@rollers to be tested, a
collection of indices will be proposed. These mainly measwo aspects: the closed-
loop performance and the communication requirement of eimérallers. Timing and
communication delay issues are negligible in this benckrdae to the implementa-
tion of the controller. The controllers tested are a ceiziedl MPC scheme for track-
ing, a decentralized MPC scheme for tracking [9], a disteduMPC scheme based
on a cooperative game [11], a sensitivity-driven dist@eslMPC scheme [21, 22], a
feasible-cooperation distributed MPC scheme based oraivéing game theory con-
cepts, and a serial DMPC scheme [16, 17]. The distributed BIBQrithms have been
developed by partners of the project HD-MPCwhich aims at the development of
new and efficient methods and algorithms for distributedtd@adarchical model-based
predictive control of large-scale, complex, networkedeys.

This paper is organized as follows. In Section 2, a desorigihd a dynamic model
of the four-tank plant are provided and the benchmark coprablem is presented.

1For more information, see the HD-MPC web-ditet p: / / www. i ct - hd- npc. eu/ .



In Section 3 the controllers applied to the four-tank plamt lariefly introduced and
the experimental results are shown. The results of the eadhare compared and
discussed in Section 4. Finally, Section 5 contains commhss

Notation

Throughout this paperz{, z, - -- , zy) stands for £ ,z},--- , z]", that is, the col-
umn vector resulting from stacking the column vectarz,, etc. As usual, for a vector
z € R", ||Zlm denotes the weighted Euclidean norm, {|g@ly = Vz'Mz | stands for
the unitary matrix which dimension is derived from the comteM () denotes thé-th
column of the matrixvi

2. Description of the benchmark

In this section, the control benchmark with which the desaydistributed predic-
tive controllers will be tested is presented. This benchrismexecuted in the four-tank
plant which is inspired by the educational quadruple-tamcess proposed by Johans-
son in [8]. Johansson’s process has also been used as destéttthed for distributed
controllers [6, 12] and it has been proposed as one of thestadies in the European
project HD-MPC [2]. This is due to the following interestipgoperties:(i) the dy-
namics of the plant exhibit large coupling between the ssiesys and the degree of
coupling can be manually adjustdd) the dynamics of the plant are nonlinegii) the
state can be measurdd) the states and inputs of the plant are subject to hard con-
straints, andv) the plant can be safely operated. A detailed descriptioheoptant, the
Simulink simulation model used in the design of the contrsllas well as the experi-
mental and simulation results of the controllers testednis henchmark are available
at the HD-MPC websife

2.1. The four-tank plant

The four-tank plant is a laboratory plant that has been desigo test process
control techniques using industrial instrumentation andtiol systems. The plant
consists of a hydraulic process of four interconnectedgampired by the educational
quadruple-tank process (see Figure 2(a)) proposed by dstiaimn [8]. A photograph
of the four-tank plant is shown in Figure 1 and a schematitgfithe plant is given in
Figure 2(b). As it can be noticed, the four-tank plant retdlive structure of Johansson’s
process, see Figure 2(a), but has been modified to enabdeatiffconfigurations and
interconnections of the tanks.

The inlet flow of each tank is measured by an electro-magfietiemeter (Siemens
Sitrans FM Flow sensor 711/S and transmitters Intermagginag) and regulated by a
pneumatic valve (Siemens VC 101 with a positioner Sipart P&R This allows the
plant to emulate the three-way valve of Johansson’s quéshtapk process by pro-
viding suitable set-points to the flow controllers. The leseeach tank is measured
by means of a pressure sensor (Siemens Sitrans P 7MF402vdtD32). All the
measurements and commands are 4-20 mA current signalsiitetsfrom/to a PLC
Siemens S7-200. In order to achieve a safe operation of tre phd to prevent the



Figure 1: The four-tank plant.

overflow of tanks, each tank has a high-level switching sensed as an alarm to
switch off the pumps.

As in the quadruple tank process shown in Figure 2(a), thetimks of the real
plant are filled from a storage tank located at the bottom efglant. The tanks at
the top (tanks 3 and 4) discharge into the corresponding aamte bottom (tanks 1
and 2, respectively). The three-way valves are emulateddvg@er calculation of the
set-points of the flow control loops according to the con&deatio of the three-way
valve. Thus, the inlet flows of the three-way valegsandq, in Figure 2(a) can be also
considered to be the manipulated variables of the real.plant

Some of the parameters of the plant, such as the cross settioa outlet holeg;
and the ratioy of each three-way valve, can be manually adjusted by the Hissrce,
the dynamics of the plant can be tuned by the user. Furtherntloe inlet flows as
well as the levels of the tanks are physically constrainedhle’ 1 shows the values of
the adjustable parameters, the physical limits of the seset flows, and the operating
point of the plant chosen for this benchmark.

The sampling of each sensor as well as the command of eaclputeated variable
is carried out by the PLC. This device stores the data antitédes the implementation
of low-level (e.g. PID) controllers, sequential contrafleand plant supervisors. All
the data are continuously available through an OPC sergtalied on a remote PC
connected to the PLC (via RS-232). The controllers to beteste implemented and
executed in Matlab/Simulink connected to the OPC Servargudie OPC protocol.
The total time that the transmission of the signals takesgigible with respect to
the sampling time (in this benchmark chosen as 5 secondgg tNat for this reason,
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Figure 2: The four-tank process diagram.

timing and coordination issues are not relevant in this bevark.

2.2. Simulation and prediction model of the four-tank plant

In order to design the controllers to be tested, a simulatimdel has been de-
veloped. This model is based on the simplified model of thedlguyae-tank process
proposed in [8]. This model is given by the following diffat&l equations:

dh a a

d_tl = —gl 2ghy + §3 v2ghs + %q%

d a

T o 2 g+ 2 g+ g )
dh, = (1-va)

o S V2gh, + S Oa;

whereh;, andg; with i € {1, 2, 3, 4} refer to the water level and the discharge constant
of tanki, respectivelyS is the cross section of the tanks, andy; with j € {a, b}
denote the flow and the ratio of the three-way valve of pumpespectively, andy

is the gravitational acceleration. The discharge consdgahtis been experimentally
estimated and the ratios of three-way valygs@ndy, are defined by the user. These
parameters can be found in Table 1.



] | value [ unit [ description \

himax 1.36 m Maximum level of the tank 1
homax 1.36 | m Maximum level of the tank 2
hamax | 1.30 | m Maximum level of the tank 3
Namax 1.30 m Maximum level of the tank 4
hmin 0.2 m Minimum level in all cases
Oamax | 3.26 | m®h | Maximum flow ofga

Obmax 4 m3/h | Maximum flow ofq,

Qmin 0 m3/h | Minimum flow of g, andg,

a 1.31le-4| m? Discharge constant of tank 1
a 1.51e-4| m? Discharge constant of tank 2
a3 9.27e-5| m? Discharge constant of tank 3

a 8.82e-5| m? Discharge constant of tank 4
S 0.06 | m? Cross-section of the tanks

Va 0.3 Parameter of the 3-way valve
b 0.4 Parameter of the 3-way valve
h? 065 | m Linearization level of tank 1
hej 066 | m Linearization level of tank 2
h5 0.65 | m Linearization level of tank 3
h§ 066 | m Linearization level of tank 4
a9 1.63 | m¥h | Linearization flow ofg,

a 2.00 | m¥h | Linearization flow ofc,

Table 1: Parameters of the plant

Notice that this model exhibits mismatches with the realvédr of the plant, since
this model does not take into account the evolution of theindat flows of each tank
(controlled by the control valves to emulate the three-walyes), the turbulence in the
tanks or the variation of the level of the tank due to the inlater flow. Nevertheless,
these equations provide a satisfactory model of the fomk-fgocess whenever the
levels of the tanks are over@m. When the levels of the tanks are belo® th, eddy
effects in the discharges of the tanks render the model imatz

For the predictive controllers to be tested in this benchmarlinear prediction
model will be derived based on the simulation model. Thisdinmodel is obtained by
linearizing the simulation model at an operating point gy the equilibrium levels
and flows as shown in Table 1. Defining the deviation variables

x = h-h’ ie{l,234), 2)
U = 0Ga-— an 3)
i = Go— 0 (4)
we obtain the following continuous-time linear model:
% = AcX+ Bgu, (5)
y = Cgx



wherex = (X1, X2, X3, X4), U = (Ug, Uz), Y = (X1, X2),
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wheret; = 2\/2%‘0 > 0, withi € {1,2, 3,4}, is the time constant of tank For the

chosen parameters the linear system shows four real stalbkegnd two hon-minimum
phase zeros. Based on this model, the discrete-time model

x(k+1) = AxK) + Buk) (6)
y(K) Cx(K)

has been obtained using the Tustin method [3] with a sam(ilimg of 5 seconds.

The linear model (6) is used to design a centralized predicintroller. In order to
design the different distributed MPC controllers, theatiént subsystems of the plant
to be controlled must be defined first. This is carried out éftilowing section.

2.3. Proposed partition of the plant and subsystems definiti

The main objective of the benchmark is to study and evaluatglulited predictive
controllers in a common framework, allowing a comparisoroagithemselves and
with a centralized as well as a decentralized controlleesth

In this paper, a partition of the plant into two coupled sbsyns as proposed in
[2, 12] is considered. Subsystem 1 consists of tanks 1 andI8 sdbsystem 2 consists
of tanks 2 and 4. Then the state and output of each subsystigfined as follows:

Xsp = (X1, %)
Ys1 = X1
X2 = (Xo,Xa)
Yso. = X2

The continuous-time models of subsystems 1 and 2 are given by

dxs
d_tl = Ac1Xs1 + By, (7)
Ys1 = Cclxsl,



and

dxs
d_t2 = AcXs2 + Beou, (8)
Yso = CcoXs,

respectively. The matrice8.;, Be1, Ce1, Aco, Beo, andCe, are easily derived from
(5). The linear prediction model for the distributed preidie controllers tested in this
benchmark are the discrete-time model of each subsystem $ampling time of 5
seconds derived from (7) and (8) by means of the Tustin methibdse discrete-time
models will be denoted as

Xsi(K+1) = Auxsy(K) + Bru(K), 9)
Ya(k) = Cixal(k),
and
Xso(K+1) = Aoxsa(K) + Bou(K), (10)

Yso(K) = CoXxsa(K).

Notice that the subsystems of this partition are couplealutin the inputs, but not
through the states. This class of coupling is common in tleegss industry and has
been widely studied in the design of distributed predictemtrollers [19, 23, 25].
Furthermore, as proved in [23, Appendix B], every systemizasplit into a collection
of subsystems only coupled through the inputs, and henealahived results of this
benchmark are relevant despite the absence of direct ogugpliough the states.

For the design of decentralized and distributed MPC scheinissinteresting to
analyze the correlation between manipulable variablescanttolled variables. This
allows one to choose the manipulable variable to be usedrtyaievery controlled
variable of the corresponding subsystem. This analysi®&eas done by means of the
relative gain array (RGA) method [4]. The RGA matrix caldathfor the linearized
model (5) results in
-04 138
138 -04

From these matrix it is inferred that the main interactiomgiven for the pairings;-u;

in subsystem 1, and for the pairigig, - u; in subsystem 2. Denoting tw; the coupling
signal of subsyster) namely,vs; = u; andvs, = U, the model of each subsystem can
be rewritten as

RGA= [

dxs
d_tl = AciXs1 + Bc(lz)usl + Bc(ll)Vsl (11)
Ys1 = Cclxsl,
and
dxs
d_t2 = AcXsy + BolPusy + B vy, (12)
Yso = CeoXsps



This model has been discretized by means of the Tustin metitch sampling time
resulting the following model:

X (K + 1) Arxsy(K) + BPugy (k) + B vy (K), (13)
YK = Cixa(K),

and

Xs2(K + 1) Aoxsp(K) + BPusy(K) + BOVs,(K), (14)
yso(K) = Coxea(K).

The decentralized model of the plant is derived from (13) @) making the
coupling signals; andvs, equal to 0, that is,

xa(k+1) = Axs(K) + BDugy(K), (15)
ys2(K) = Cixa(K),
and
Xs2(K+1) = Aoxsp(K) + BPusy(K), (16)
VYoo(K) = CaXsp(K).

2.4. Control problem

To compare centralized, decentralized, and distributediptive controllers under
similar operation conditions a tracking experiment is defiwhere a set of reference
changes in the levels of tanks 1 andh2,andh,, has to be followed by manipulating
the inlet flowsg, andg, based on the measured levels of the four tanks:

¢ Initially, the set-points are set g = s, = 0.65 m. These set-points are aimed to
steer the plant to the operating point and to guaranteeigdmitial conditions
for each controller. Once the plant has reached the opgnatiimt the benchmark
starts maintaining the operating point for 300 seconds.

e In the first step, the set-points are changedite s, = 0.3 m. These values are
kept for 3000 seconds.

e Then, the set-points are changedsto= 0.5 m ands, = 0.75 m. These values
are kept for 3000 seconds.

¢ Finally, the set-points are changedgo= 0.9 m ands, = 0.75 m. Again, these
values are kept for 3000 seconds. To perform this change taiakd 4 have to
be emptied and filled respectively.

The set-point signals are shown in Figure 3(a). The conéstl duration is 3 hours
and 20 minutes. It is important to remark that the set-poiretee been chosen in
such a way that large changes in the different equilibriumntsare involved. This is

illustrated in Figure 3(b), where the region of reachabtepsints is depicted together
with the proposed set-points. Notice that some of the preghaet-points are close to
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Figure 3: Set-points for the real plant.

the physical limits of the plant in terms of inputs or levetloé tanks 3 and 4. This will
allow us to check how the designed controllers behave whesytstem is close to the
constraints.

The objective of the benchmark is to design distributed MB@rollers to optimize
the performance index

Niest—1

I= 3 (0 (- s1:(K)? + (na(K) — s2(K))?

k=0
+0.01(da(K) - 65(K))° + 0.01(ax(K) - a3(K)* ).

whereq; andg; are the steady manipulable variables of the plant for thesitts
s and s, calculated from steady conditions of the proposed modehefpiant (1).
The tested controllers have been designed using a samptiegof 5 seconds. The
performance index measures the response of the plant ohas lieen steered to the
operating point. Thed is calculated over the time interval [27A2000] seconds, that
is, for a total ofNest = 1860 samples.

Notice that the resulting distributed control problem todmdved in this bench-
mark exhibits two classes of couplingé) coupled dynamics, since the subsystems
to be controlled are coupled through the inputs éidcoupled objectives, since the
distributed controllers must optimize a global cost fumiati This fact makes that the
four-tank benchmark is appropriate for comparing the dedsep performance of dis-
tributed MPC controllers. However, other aspects suchasdtwork communication
and timing issues of the controllers are not relevant siheamay the controllers have
been implemented (see section 2.1) makes their effectgjitdgl Nevertheless, these
aspects can be studied by evaluating the data communica&tipirements between
controllers. Therefore, the evaluation and comparisowden the different controllers
will be performed according to the following collection ofdices:

e Controller properties

1. Modeling requirements: the class of models considerezhioh of the con-
trollers, for instance linear/nonlinear, plant model dosgstem model, etc.
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2. Controller objectives: the properties that may be addmedy the tested
controllers, for instance optimality, constraint satisian, stabilizing de-
sign, recursive feasibility, etc.

3. Auxiliary software needed: optimization routines, siation routines, etc.

e Performance evaluation

1. Performance indeX a measure of the performance of the controlled plant.

2. Performance index during the transidnt a measure of the performance
during the transient to remove the effect of steady offset.

3. Settling time: a measure of the speed of the controlledt malculated by
summing the settling times (defined as 95% achievement) edteh step
in the reference signal.

4. Number of floating-point reals transmitted between therotlers per sam-
pling period.

5. Number of data packets transmitted during a samplinggeri

3. Tested predictive controllers

For designing and tuning the DMPC controllers, all the p#ptints have used the
same Simulink model of the nonlinear continuous-time sys(&) which has been
identified using real data at the University of Seville. Eaohtroller has been imple-
mented as a Simulink block and integrated in a Simulink admtrodel similar to the
simulation model used in the design stage. This Simulinkrobmodel communicates
with the PLC of the real plant via the OPC protocol to recelve measured level of
the tanks and to send the calculated manipulated variables.

In the following subsections, the different control tedugs are presented together
with the results of the control test in the real plant.

3.1. Centralized MPC for tracking

A centralized predictive controller based on the lineatipeediction discrete-time
model (6) has been tested on the plant. Since the refererdd®aiged throughout
the benchmark, the MPC scheme for tracking proposed in [9]dezn chosen. This
controller is capable of steering the plant to any admissibt-point ensuring constraint
satisfaction. We present next a description of this MPCradiet.

The system to be controlled is subject to hard constraintgates and inputs,

(xK.uK)eZ = {zeR™™:Az<b,), Vk>0, (17)

where the sef is a suitable compact convex polyhedron containing therorigits
interior, n denotes the number of states of the plant, emid the number of inputs.
This set consists of the limits of the levels and the flows efilant and it can be easily
calculated from the description of the plant in the previsestion.

11



The MPC controller to be designed has to track a piece-wigstaat sequence of
set-points or referencegk) while guaranteeing that the constraints are satisfied at al
times.

The MPC scheme for tracking is based on the addition of thelgtetate and input
(%, ur) as decision variables (defined by the variablethe use of a modified cost
functions and an extended terminal constraint. The praposst function is

N-1
VNOCS U ) = > ly(0) = il + 1uG) — ez + IIX(N) = %113
i=0

0 2
+|Ir + h* - st

whereQ,R, P and T are matrices of appropriate dimensiokk,is a sequence dfl
future control inputs, i.el = {u(0),...,u(N — 1)}, (X, u;) is the steady state and the
input associated with, h® = (h, h9), sis the set-point to be reached, ay(@ is the
predicted state of the system at tiingiven by x(i + 1) = Ax(i) + Bu(i), y(i) = Cx(i),
with x(0) = x. Based on this prediction model, there exists a maltfixsuch that
(%, u) = Mgr. Note that this cost can be posed as a quadratic functioreafehision
variables.

The proposed MPC optimization proble®Pg(x, S) is given by

Va9 = minVy(xsUr)
r

st. x(0) = x,
x(i + 1) = Ax() + Bu(i),
(x(i), u(i)) € Z, i=0,---,N-1,
(%, Ur) = Mgr,
(X(N),r) € Oy,

where the se@, € R™P defining the terminal constraint is a polyhedral set ansl
the number of outputs of the plant. Applying the receding4wor strategy, the control
law is given byKy(x, s) = u*(0;x, 5). Given that the constraints &fy(x, s) do not
depend ons, there exists a (polyhedral) regiofy c R" such that for allx € Xy,
Pn (X, s) is feasible and the controller is well-defined.

If the terminal ingredient, P andQ?, satisfy the assumptions provided in [9], the
proposed controller stabilizes the plant, ensures cdnssatisfaction, and guarantees
that the controlled variablg converges to the set-poistif it is admissible. In case it
is not admissible, the controller steers the plant to theedbadmissible steady state
(according to the offset cost functigin+ h° — s||$). Moreover, given that the evolution
of the system remains Xy, the system can be steered to any admissible set-point even
in the case that the set-point changes along the time. Anottexesting property is
that thanks to the properties of the terminal region, theppsed controller provides a
larger domain of attraction than a standard MPC scheme doiaéon.

This controller ensures zero-offset in the nominal case, iBthere is model mis-
match, a nonzero offset of the controller can result. In otdeemove this offset, the

12
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Figure 4: Evaluation of the control test in the real planttaf tentralized MPC scheme for tracking.

offset cancellation technique proposed in [10] can be u$edhis aim, the following
disturbance estimator has been implemented

d(k + 1) = Ad(K) + (1 — )(x(K) — Ax(k — 1) — Bu(k — 1))

where matrice®\, B are defined in (6) and = 0.99458. Notice that this estimator
converges to the steady value of the actual disturbancen, Taking a modified set-
point

(k) = s(k) + Hd(k)

whereH = C(I — (A + BK))™%, the effect of the disturbances is counteracted in steady
state [10].

The weighting matrices of the controller designed for the{ftank plant are chosen
to minimize the performance indices defined in the previaasien, that isQ = | and
R = 0.01l. The terminal control gaiK is the corresponding LQR gain and the mafix
is derived from the Riccati equation, and the terminal¥&tis calculated as proposed
in [9]. The offset cost weighting matrix has been chosef as 100 and the chosen
prediction horizon isN = 5.

This controller has been successfully tested on the reat plad the results are
shown in Figure 4. The performance index for this tesk is 28.4091.

The MPC scheme for tracking may exhibit a possible optipdtiss due to the
addition of the artificial reference as a decision variablethis benchmark, a stan-
dard MPC controller for regulation has also been appliedh¢éofour-tank plant. This
controller is also based on the optimization probleg{x, s) but adding a constraint to
forceysto be equal tes, hence reducing the degrees of freedom of the controllgurEi
5 shows the results obtained. The performance index fotehtssJ = 254655, hence
better than performance of the MPC scheme for tracking.immrtant to remark that
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Figure 5: Evaluation of the control test in the real plantta tentralized MPC scheme for regulation.

this controller does not guarantee feasibility, stahility constraint satisfaction when
the set-point is changed, although for this particular ctieese have been achieved.

3.2. Decentralized MPC for tracking

The second control technique tested has been a decerdrptiedictive controller
based on the decentralized model of the system (15) and (Lbg proposed cost
function for the subsystenis

N-1
Va0 S, U ) = > Hlysi0) = 1l + lusi (i) — w1
i=0

2 0 2
+IXsj(N) = %jllp, + I + hj = sjlif,

whereU; = {Usj(0), ..., usj(N-1)}, (X, ;) is the steady state and the input associated
with rj for the j-th subsystem according to the models (15) and (16) spislthe set-
point to be reachedMs; is the matrix such thatx{;, urj) = Ms;r;. Then the proposed
MPC optimization problem for each subsystgm Py j(Xs;, ;) is given by
V,*\‘,,j(xsj, Sj) = mirnVN,,-(xsj, s, Uj,rj)
IR
st Xsj(0) = Xsj»

Xsii + 1) = Ajxsi(i) + BOugji),  1# ]

(Xsj() usj(i)) € Z;,  i=0,--- ,N-1,

(Xj» Urj) = Msjrj,

(xs(N).1}) € QFy .
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Figure 6: Evaluation of the control test in the real plantref decentralized MPC scheme.

The setZ; defines the constraints on the the states and the input oystebsj. The
weighting matrices ar€®; = | andR; = 0.01l. The terminal control gain of each
subsystemj, Kj, is the corresponding LQR gain, the matRx is derived from the
Riccati equation and the terminal seng is calculated as proposed in [9]. The offset
cost weighting matrix has been choserTas= 100 and the chosen prediction horizon
is N = 5. The results of the experiments can be seen in Figure 6¢iti@ermance index
isJ = 39.5421.

3.3. Distributed MPC based on a cooperative game

In this section we present the distributed MPC scheme basaatooperative game
approach presented in [11]. This control scheme considelesa of distributed linear
systems composed of subsystems coupled with the neiglgsulrsystem through the
inputs. The four-tank plant belongs to this class of modétsparticular, the linear
models (13), and (14) are used to design the distributedatert

The control objective of this controller is to regulate tlystem to the given set-
points while guaranteeing that a given set of state and iopnstraints are satisfied.
The proposed distributed scheme assumes that for eachssaitpsyhere is a controller
that has access to the model and the state of that subsysteencontrollers do not
have any knowledge of the dynamics of their neighbor, buta@nmunicate freely
among them in order to reach an agreement on the value of plgsiapplied to the
system. The proposed strategy is based on negotiation éetilie controllers on the
basis of a global performance index. At each sampling tigents make proposals
to improve an initial feasible solution on the basis of tHewgal cost function, state,
and model. This initial feasible solution is obtained frame optimal solution of the
previous time step and two stabilizing controllers defingédedback gain&; andKs,.
These proposals are accepted if the global cost improvesotinesponding cost of the
current solution. The trajectories chosen are denotddfoandug.
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The MPC controllers minimize the sum of two local performaindices]; andJ,
that depend on the future evolution of both states and inputs

N

Ji(X1, U1, Up) = _Zl||y51(i) = rallg, + sy (i) = uralig
i=
N

Jo(X%2, Uz, Ug) = _lelySz(i) = r2ll}, + lusa(i) = ur2ll,,
i=

wherer; = s; — hd, andr, = s, — h). The target for the inputs;; anduy, are given
by the steady input corresponding to the set-poirg;(s,) calculated using (1)U, =
(us1(0), - - - ,us1 (N — 1)) andU; = (usy(0), - - - ,usp(N — 1)). The predicted outputs are
calculated using the model (13) and (14) taking into accognt Usy andvs, = Ug;.

For this benchmark , the weighting matrices were chosen tonmmize the bench-
mark objective function, that is); = @, = |, Ry = R, = 0.01. The prediction
horizonN was chosen abl = 5. The local controller gains for each controller were
K; = [0.17,0.21] andK; = [-0.16,-0.14]. These gains were designed with LMI
techniques based on the full model of the system in ordemtulste both subsystems
independently while assuring the stability of the cerzedi system. The role of these
gains is important to guarantee closed-loop stability [$&gfor more details).

Each controller solves a sequence of reduced-dimensiamiaption problems to
determine the future input trajectoriglg andU, based on the model of its subsystem.
We summarize the DMPC algorithm proposed in [11] as follows:

1. Attime stegk, each controllet receives its corresponding partial state measure-
mentXg (K).

2. Both controllers communicate. Controller 1 semdss;(N) and controller 2
sendKyXs>(N), wherexg; (N) andxs,(N) are theN-steps ahead predicted states
obtained from the current states applymg(k -1), Ug(k — 1) shifted one time
step. This information is used to generate the shifteddtajesU k), which is
the initial solution.

3. Each controllet minimizesJ; assuming that the neighbor keeps applying the
shifted optimal trajectory evaluated at the previous titep * (k). The optimal
solution is denoted by (k).

4. Each controllet minimizesJ, optimizing the neighbor input assuming that it
applies the shifted input trajectoly’,. Solving this optimization problem, con-
troller | defines an input trajectory denoted By, (k) for its neighbor that opti-
mizes its local cost functiog.

5. Both controllers communicate. Controller 1 sendigk) and UJ(k) to con-
troller 2 and receivebl;(k) andUY'(K).

6. Each controller evaluates the local cost functipfor each of the nine possible
combinations of input trajectories, i.e.,

Uy € {U3(K), UT'(K), U3 (K)},
Uz € {U3(K), UZ'(K), U3 (K)}.

7. Both controllers communicate and share the informatibthe value of their
local cost function for each possible combination of inpajectories. In this
step, both controllers receive enough information to takeaperative decision.
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u3 Uz vz
us Ji(x1, U3, U3) Ji(xe, U7, U3) Ji(xe, UF, UY)
1 +J2(X2, U;, Uf) +J2(X2, U;, Uf) +J2(X2, U;V, Uf)
U Ji(x1, U3, U3) Ji(xq, U3, U3) Ji(x1, U3, UY)
1 +J2(X2, U;, UI) +J2(X2, U;, UI) +J2(X2, U;V, UI)
uw Jl(Xl, UY, U;) J]_(Xl, UY, U;) J]_(Xl, UY, U;V)
1 +J2(X2, U;, UlW) +J2(X2, U;, UlW) +J2(X2, U;V, UY)

Table 2: Cost function table used for the decision making.

8. Each controller applies the input trajectory that miziesi = J; + J,. Because
both controllers have access to the same information dféesécond communi-
cation cycle, both controllers choose the same optimattisptsuf(k), Ug(k).

9. The first input of each optimal sequence is applied andrtbesglure is repeated
at the next sampling time.

From a game-theoretical point of view, at each time step bottirollers are play-
ing a cooperative game. This game can be synthesized irgittdbrm by a three-by-
three matrix. Each row represents one of the three posséuisidns of controller 1,
and each column represents one of the three possible decisfccontroller 2. The
cells contain the sum of the cost functions of both contrslifer a particular choice of
future inputs. At each time step, the option that yields aeloglobal cost is chosen.
Note that both controllers share this information, so thethlthoose the same option.
The nine possibilities are shown in Table 2.

The proposals made are suboptimal because each contiamdlantincomplete view
of the system and proposes the best solutions from its ownt pbview. The proposed
algorithm has low communication and computational burdems provides a feasi-
ble solution to the centralized problem assuming that alfesasolution is available to
initialize the controller. In addition, an optimizatiorased procedure to design the con-
troller such that practical stability of the closed-loomgisaranteed is provided in [11].
In this benchmark, the controller has not been designed doagtee closed-loop sta-
bility because neither a terminal region nor a terminal ast been considered in the
controller formulation.

Note that this control scheme is designed for systems déedronly by two agents
because the number of options of the cooperative game fog than two controllers
grows in a combinatorial manner.

At this point we have to remark the fact that when the refezdaswitched from
one working point to another it is necessary to reset theevaflds to a feasible so-
lution. This solution is obtained by solving a feasibilityoplem, in particular a linear
programming (LP) problem, based on the full model of theayst

The proposed distributed MPC controller only needs threeroanication steps
in order to obtain a cooperative solution to the centraliaptimization problem, has
low communication and computational burdens, and provadessible solution to the
centralized problem.

The designed controller has been successfully tested ore#thglant; the trajec-
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Figure 7: Evaluation of the control test in the real planttef DMPC scheme based on a cooperative game.

tories are shown in Figure 7. The performance index of thieiges = 29.5787. The
performance index is close to the performance index of therakzed MPC for regu-
lation. Note however that the input trajectories are notatimtbecause the controllers
switch between different modes.

3.4. Sensitivity-driven DMPC

A novel sensitivity-driven DMPC (S-DMPC) scheme [22] is sa@tered in this sub-
section. S-DMPC is based on a new distributed dynamic opétiin method employ-
ing a sensitivity-based coordination mechanism [21]. Rerdistributed controllers the
four-tank system is decomposed first according to (11) a8yl (On each prediction
horizon [to(Kk), t;(K)], the continuous-time optimal control problem can be folated
as

'T}Si,-n Jj (18a)
tr (k)

s.t.Jj = f(ysj —1j)? +0.01(us; — uyj) dt, (18b)
to(K)

%zAc-x-+B('?u»+B”.)v-+a- | # j, Xsi(0) = Xs; o(K) (18c)

dt 17sj cj'S] cj VSi i LA Sj,0\™»
Ysj = CejXsj, (18d)
0 < Dj(Xsj, Usj) + €j, =12 (18e)
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wherer; = s; — h? and the target for the inputg; andu;, are given by the steady
inputu corresponding to the set-poirg (s;) calculated using (1)xsjo(K) denotes the
measured initial conditions at time samfileandd; denotes additive disturbances to
be estimated. If no disturbance estimation is availaﬁqLe,j = 1,2, are assumed to be
zero. The linear state and input constraints are descripedabricesD; and vectors
g, j = 1,2, in equation (18e). In order to solve the continuous-timenoat control
problems, they are transcribed into quadratic parametogramming problems by
means of control vector parametrization [20], i.e., a diszation of the input variables
Usj(t) using parameter vectogg with p = (pz, p2). As a result the quadratic programs

(QPs)

min Ji(p) (199)
Ji(p) = %pTAip+ p'B! +Cl, (19b)
ci(p) =D Tp+E >0, (19¢)

j = 1,2, can be derived, being/, Bi, C!, D!, andE! appropriate matrices. In order to
achieve global optimality, the QP (19) fpe 1, 2 are coordinated based on sensitivities
[21, 22]. In particular, the objective functions are modifaes follows:

2 a3 T

* 1y — 3. bl
MICLOREIOR DI =
[E3]

l K K
+ 5 = P Q(p; - P,
j=12.

_ oc

pld ap;

A (py - P4 (20)
p[K]

The first term of the objective function is a copy of the sulsyss objective func-
tion. To relate the local optimization problems to the ollewhjective, all nonlocal
contributions are accounted for by linear approximatiansesult in the second term
of the objective function. The third term of the objectiveaétion J* is added to im-
prove convergence of the method by means of Wegstein’s m¢#a) 28]. The index
[] indicates variables of the-th iteration, andi; denotes the Lagrange multipliers
associated to the corresponding constraint functigns
The S-DMPC algorithm at control sté&qgromprises the following steps:

1. Transcribe the optimal control problem to compute Bi(k), C/(K), DJ, and
El(K); Al andD’ do not depend on the initial statg(k) = Xo(to(K)) and need to
be computed only once.

2. Select initial parameterg® (k) and an estimate of the initial Lagrange multipli-
ersA%(k) based on the solutiorp{(k — 1), 2*(k — 1)) of the last sampling time
k-1 and sek := 0.

3. Send the control parametgy (k) and the Lagrange multiplierd? (k). j = 1.2,
to the distributed controllers.
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4. Solve the following QP to obtain the minimizpﬂ‘”” and the Lagrange multi-
plier Al+;
min Jj
Pj
s.t.cj(p) > 0,
ji=12

5. Increase := k + 1 and go back to 3.
6. Stop iteration, il satisfies a predefined convergence criterion.

The method is implemented with a prediction horizon of 50fbsés, in order to
achieve a stable closed-loop control. The input variablésve been discretized using
3 parameters for each input. One parameter has been chosdletd the steady-state
values, while the others have been chosen to approximateatigent part within the
first 10 seconds of the horizon by piece-wise constant reptagons, i.e.

3
Us(t) = > prj - ¢5(0), with (21a)
=1

o) = {é teol(sk; <t< to(k)+5’ (21b)

L to(k) +5<t<to(k) + 10

#2(1) = {0, oo : (21¢)
1, (k) +10<t

¢a(t) = {0, o (21d)

We have tested the controller for three different configaret

(a) With a fixed number of 3 iterations, i.e., an implemewtatvithout convergence
leading to suboptimal control,

(b) with a fixed number of 10 iterations for optimal contraida

(c) with a fixed number of 10 iterations and an additional Katnfilter to eliminate
the steady-state offset.

The design of the Kalman filter in configuration (c) aims at ioying control perfor-
mance. The linear Kalman filter

d¥sj 5 , .

T | |A %], [Bei ey [%iO)f _ [%sjo

[%} =lo ol|q, g [Ust K(Xsj = Xsj), di0)| = | dio ]’ (22)
j = 132 B

is added for each of the subsystems for combined state atodliace estimation. The
additive disturbanceﬁ;j € R? are introduced to model plant-model mismatch. They are
assumed to be constant (or slowly time-varying). The Kalg@inK € R*? is calcu-
lated using the algebraic Riccati equation.
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Figure 8: Evaluation of the control test in the real planttef 8-DMPC scheme.

Due to the strong coupling of the subsystems, convergentkeofethod is rather
slow. It is possible to achieve optimality in approximatély iterations. However, al-
ready with only three iterations, good performance can béged. The performance
index in the real plant for the configurations investigatesl a= 45.072 for config-
uration (a),J = 35525 for configuration (b), and = 28616 for configuration (c).
The trajectories for configuration (b) are shown in FigurevBile the trajectories for
configuration (c) are given in Figure 9. The Kalman filter imfiguration (c) is able to
estimate the steady-state disturbardgiesf the plant successfully, such that the steady-
state control errors vanish. A non-smooth behavior of therotled flow ratesy, and
Jp can be observed, which is induced by the Kalman filter anddcbelreduced by a
better tuning of the filter. So far, the controllers have doéen tuned in a simulation
environment and applied to the real plant without furthairig.

3.5. Feasible-cooperation DMPC based on bargaining gamsemyconcepts

In this section, a distributed predictive control schemseldaon bargaining game
theory is presented. A game is defined as the tupJé;}ict, {¢j}jer), WhereT =
{1,..., M} is the set of players; is a finite set of possible actions of playigrand
@i 1 Q1 x...x Qu — Ris the payoff function of thg-th player [1].

Based on the definition of a game, a DMPC problem can be defimedtapleG =
(T, {Qj}jer, (@j}jer), WhereT = {1,..., M} is the set of subsystem®); is the non-
empty set of feasible control actions for subsystgrande; : Q1 x... x Qy — R,
whereg; is the cost function of thg-th subsystem. From this point of view, DMPC is
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Figure 9: Evaluation of the control test in the real planttaf §-DMPC scheme with Kalman filter.

a game in which the players are the subsystems, the actiertseacontrol inputs, and
the payoff of each subsystem is given by the value of its aosttfon.

In the specific case of the four-tank plant, the whole systerdahhas been decom-
posed into two subsystems modeled by (9) and (10). Basedesa titediction models,
the cost functions used to measure the performance of sebsysj = 1,2, is

H0) = TR, T(K) - Trj (K) = [F3(0) =T (RIF + 11T (K) - T (QI% (23)

whereyj(k) = (ysj(KIK), ..., Ysj(k + NIK)), Tj(K) = (usj(KIK), ..., us;j(k + NIK)), Tj(k) =

(rj(k), - - -, rj(K) andtyj(K) = (Usj(K),- - - , Usj(K)). The target;(K) is given byr;(k) =

sj(k)— h? and the target for the inputs; (k) is given by the steady inpuj(k) calculated
using (9) or (10).

Therefore, the DMPC of the four-tank system is a game Witk {1, 2}, in which
the feasible se®; is determined by the constraint, the state, and the inptiej-th

systemZ;. The feasible cost function for a given sequence of preditiputsu(k),

¢;(U(k)), is a quadratic function obtained from (23) by calculgtihe predictiony; (k)

using the following recursion (derived from the models ()l €10)):

Xsj(K+ 1+ 1|k)
Ysj(k +ilk)

with Xs;j(KIK) = Xs;(K).

Following the cooperative game theory introduced in [14,11, the formulation
of the DMPC as a game is completed by introducing the concdeptdisagreement
point. The disagreement poirt;(k), at time stegk, is defined as the benefit that the

AjXsj(k +i[K) + Bjus(k + i[Kk),
Cjxsj(k +ilk),
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j-th player receives when no agreement is achieved amondderp. In the case of
DMPC, the disagreement point can be computed as follows

5j(K) = argég;pg?k§¢ j(U(k))

S.LUj(K) € Q. (24)
U_J(k) € Q_J )
whereU;(k) denotes the solution of theth player at time stef, U_j(K) = (U(K), . .., Uj-1(K), Uj+1(K), . . . , TUm(K))
andQ_j = X ... X Q1 X Qj1 X ... X Q.

Note that the optimization problem (24) defines the worse dassubsystenj. Then,
d;(k) is the best benefit that thieth subsystem can achieve given the worst case.

According to [13, 15], the solution of the cooperative gamssomiated with the
DMPC problem can be computed as the solution of the optimizgtroblem [7, 18]

M
max > w; log (5;(k) — ; (Ti(k)))
= (25)
s.t.6j(k) > ¢;(TK), for j=1,...,M

TR e, forj=1,....M,

wherew; are weights withw; > 0 andZ}\":le = 1. This problem can be solved in a
distributed fashion using the feasible-cooperation apghngresented in [26, 27].

Let ¢;(U(K) = oj(ti(k),u_i(k). Then assumingi(k) fixed, the maximization
problem

M
mg)x; w; log[5;(K) - o (@ (K). Ti(K) |

s.t. 5j(K) > o (@ (K), T4(K), for j=1,...,M
Ui(k) €

(26)

defines the maximum profit that the whole system can achieile thie control actions
of the other subsystems are fixeduaf(k). Thus, the maximization problem (25) can
be solved in a distributed (and cooperative) way by lettiaghesubsystemsolve (26).
It is easy to verify that (26) corresponds to a convex minatian problem, for which
efficient solvers are accessible.

With the purpose of implementing the DMPC controller desedi in this section,
the following steps have been proposed:

1. Given the initial conditionsx(k), all subsystems compute their disagreement
pointsd;(k) according to (24) in a separated way.

2. After computing the disagreement points, each subsystews its disagreement
point to the other subsystems.
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3. Each subsystem solves the optimization problem (26).26) (s feasible, let
U, (k) be an optimal solution (so it satisfies the constraints, bg(k) >
O’r(Ui’iq(k),U_i!q_l(k)), forr = 1,...,M). If (26) is not feasible, subsystende-
cides not to cooperate. In this stepgif 1, thenﬁ}’(k) is considered as initial
condition for subsystem for solving (26). Otherwiséyj; 4-1(K) is considered as
initial condition for subsystem for solving (26).

4. The subsystems that decide to cooperate update theiptactions by a convex
combinationt; (k) = V\/iD‘i’iq(k) + (1 - WU g-1(k). The subsystems that decide
not to cooperate select their control actions equali ftk) = WiUid(k) +(1-
Wi)Ui g-1(K), where O< w; < 1.

5. Each subsystem sends its control actions to the otheystelnss. If|[U; 4(k) —
Ug-1(KIl < & (¢ > 0) for all subsystems, or i§f = Qmax Or if the maxi-
mum allowable time for the computation of the optimal cohtnput T*(k) =
(G;(K), . ...y, (k) has been reached, the first element of the control sequence
Ui 4(K) is applied and each subsystem returns to step 1. Else, ehslistem
returns to step 3.

At time stepk + 1 the initial conditions for subsystenfior solving (24) are determined
by the shifted control sequencey(k + 1) = (ui*’qend(k +1K),..., ui*’qend(k + Ny, k), 0),
Whereui’i;end(k + 1, k) denotes the optimal value of the control inputs for sulsystat
iterationgeng at time stefk + 1 given the conditions at time stép

Figure 10 shows the behavior of the four-tank system, whetPC controller
based on game-theoretical concepts computes the optimabtoputs. The perfor-
mance index calculated for the control testlis= 46.3177. This result was obtained
consideringmax = 1.
Note that the aim of the game-theoretical formulation of ERdPC problem is that
the subsystems cooperate while obtaining some benefit. Figune 10, it is possible
to conclude that this aim has been achieved, because thesmmapvorking jointly in
order to reach the reference values for the lefaiglandh,, which is the global control
objective. Also, the control decisions are taken in a coafpear way. Therefore, when
the changes in the reference values were applied, the puapswith the purpose of
achieving the new operating point in a cooperative fashithout sacrificing the local
performance.

3.6. Serial DMPC scheme

We have implemented the scheme proposed in [16, 17] for thetémk system.
This scheme is derived from a serial decomposition of an amged Lagrangian for-
mulation of the centralized overall MPC problem. This résut a scheme in which
controllers perform at each control step a number of itenatio obtain agreement on
which actions should be taken. The goal of the iterations ddbtain actions that are op-
timal from a system-wide point of view using only local maglahd measurements and
communicating only with neighboring agents on values adricdnnecting variables.

Below we first summarize the assumptions and characterigtithe serial DMPC
scheme. Then we describe how this scheme can be used toltbhefiaur-tank system.
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Figure 10: Evaluation of the control test in the real planthef DMPC scheme based on a bargaining game.

3.6.1. Local dynamics and objectives

In general, consider a system divided inte 2 subsystems. The dynamics of sub-
system;j € {1,...,n} are assumed to be adequately modeled by the deterministarli
discrete-time time-invariant model (13) and (14), wheew(k) variables represent
the influence of other subsystems on subsysjerfor variablesxs;(K), us;(k), ys;(K)
upper and lower bounds are specified.

So-called interconnecting input variables,; (k) represent the variables of sub-
systemj that are influenced by subsysténi.e., a selection ofs;(k). So-called inter-
connecting output variableg,,;(k) are the variables of subsystgnthat influence a
neighboring subsysteini.e., a selection ofs;(K), Usj(k), andys;(k). Define the inter-
connecting inputs and outputs for the control problem oticdler j at control stegk
as

Win j(K) = ¥s(K),  Woutj(K) = E;j(Xs;(K). sj(K). ys;(K)). (27)

whereE; is an interconnecting output selection matrix that corst@gros everywhere,
except for a single 1 per row corresponding to a local vagidivht corresponds to an
interconnecting output variable. The variables j(k), wouj(k) are partitioned such
that

Win j(K) = Wing;1j(K), - - Win; (K)), (28)
Woutj(K) = (Wouti;;j(K), - .- ,Woutlj,mjj(k))’ (29)
whereNj = {li,...,ljm} is the set of indexes of the; neighbors of subsystem The

interconnecting inputs to the control problem of contnoflevith respect to controller
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| must be equal to the interconnecting outputs from the cbptablem of controller

| with respect to controller, since the variables of both control problems model the
same quantity. For controllgr this thus gives rise to the following interconnecting
constraints

Win 1 (K) = Woutji(K),  Woutij(K) = Win j (K). (30)

The controllers are assumed to be striving for the best dveravork performance
in a distributed way. In addition, the common assumptionaslathat the objectives of
the controllers can be represented by convex functieg;, for j € {1,...,n}, which
are typically linear or quadratic.

3.6.2. Scheme outline
The distributed MPC scheme faragents comprises at control stefhe following
steps:

1. Forj = 1,...,n, controller j makes a measurement of the current state of the
subsystenxs; (k).
2. The controllers cooperatively solve their control pesbs in the following serial
iterative way:
(a) The iteration countes is set to 1 and the Lagrange multiplie:tﬁ?”(k),

A8, (k) are initialized arbitrarily.

(b) Forj = 1,...,n, one controllerj after another determineg(f”(k + 1),

Js(js)(k), "NVi(r?u (K, v"vgsjm(k) as solutions of the optimization problem

min Jocat (K (k+ 1), Us;(K), Y5 (0) + > I - (Winj (K), Wour; (K))
|6Nj
(31)

subject to the local dynamics (13)—(14) (including the lbgonstraints)
and (27) of subsysterover the horizon and the current statg(k). The
additional performance criteriodierj in (31) at iteratiorsis defined as

Jer (Finj (9, Wouwij (9)) =

~ T
/}.(,?)| i(K) Wingj (K) |, Ye ||| Winprevji (K) = Wouuj (K) ’
_/l(()satjl (K| [Woutlj (K) 2 {|[Wout,previjl (k) - Win,lj ®1|

whereWin preyji (K) = W, (K) and Wout previi (k) = Wiy, () is the informa-
tion computed at the current iteratisrfor each controllet € Nj that has
solved its problenbeforecontrollerj in thecurrentiterations. In addition,
Wi previ (k) = Wy 7 (K) andou previi (K) = WSy, 1/ (K) is the information com-

puted at theoreviousiterations — 1 for the other controllers. The constant

1The tilde notation is used to represent the predicted vimsatver the prediction horizaX.
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vc is a positive scalar that penalizes the deviation from theraonnecting
variable iterates that were computed by the controllerereetontroller]

in the current iteration and by the other controllers duthmglast iteration.
;I'he resultsﬁli(j?I J.(k) anva\/fjLI j(k) of the optimization are sent to controller

(c) Update the Lagrange multipliers,

ii(jf,jl)(k) = Zlfj?l i)+ (wfj?l () - W, i (k)) ) (32)

Sendi51(K) to controllerl and receive the multipliers from controlleto

be used ad{y (k).

(d) Move on to the next iteratio+ 1 and repeat steps 2b—2c. The iterations
stop Whep'the infinity norm for eaolﬁjl)(k) - /li(:’”(k) is smaller than a
small positive scalay..

3. The controllers implement the actions until the begignarfi the next control

step.

The scheme just presented does not guarantee stabilityeveowas the interaction
between controllers is taken into account via the objediretion only, the local
optimization problems remain feasible over the iteratiolmsaddition, under the as-
sumptions on the objective functions and prediction mottesolution of this scheme
converges to the solution that a centralized MPC contraltauld have obtained for a
sufficiently smally, and given sufficient time for performing iterations.

3.6.3. The four-tank system
For control of the four-tank system two subsystems are defiaecording to the
partition proposed in Section 2.3, but in this casg1 = U1, Wout12 = U1, Win 12 = Up,
Wout21 = Uz. The local control objectives are defined as follows:
N-1
Jocatr = ) ((Ysai + 1) = r1)? + 0.01Usy () - Ura)?)
i=0
N-1
Jocalz = ) (Vi + 1) = 12) + 0.01(usa (i) — Ur2)?) .
i=0
wherer; = s; — h‘l’, andr, = s, — hg. The target for the inputs;; andu,, are given
by the steady inputi corresponding to the set-poirg;(s;) calculated using (1). The
output of each subsystem is predicted using the models ¢iygd3) and (14). The
control test performed is done using as parameggrs 1, y. = 1le?, andN = 5.
Controller 1 starts the iterations.
Figure 11 shows the trajectories resulting from the cortest. The calculated
performance index for this controller Js= 38.18.

4. Evaluation and comparison of the results of the benchmark

4.1. Evaluation of the controllers
In this paper, eight different MPC controllers have beersadered. Table 3 shows
some qualitative properties of these controllers. TheyeWwdel Requirementshows
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Figure 11: Evaluation of the control test on the real plarthefSerial DMPC scheme.

whether the controllers need full or partial knowledge @& f#ystem and whether the
model used is linear or nonlinear. The en®@pntrol Objectivesshows whether the

controller is optimal from a centralized point of view (j.provides the same solution
as the centralized MPC for regulation), guarantees cdnssatisfaction if a feasible

solution is obtained and whether it can be designed to gtesariosed-loop stability

in a regulation problem. Thauxiliary Softwareentry shows which type of additional
software is needed by each controller of the distribute@seh

The two centralized controllers are based on a linear piiedienodel of the full
plant and are included as a reference for the performanceeoflistributed MPC
schemes. Note that if the controllers could communicateaauit limits, they would
be able to obtain the optimal centralized solution for thedr model of the plant. No-
tice that the real optimal centralized controller shouldsider an accurate nonlinear
prediction model of the plant. This has not been implemeirietie benchmark and
could be considered as future work.

On the other hand, the decentralized controller providesference on what can
be achieved with no communication among the controllerdlat?dl the distributed
predictive controllers are based on linear prediction nwded assume that each agent
has access only to its local state and model.

It is worth noting that the centralized MPC scheme for tragkcan designed to
guarantee closed-loop stability not only for regulationlpgems, but also for track-
ing problems with any given reference at the cost of optityialin this benchmark,
all the ingredients needed to provide stability guaranfeeshe nominal case were
taken into account. The decentralized controller considleannot guarantee optimal-
ity, constraint satisfaction, nor stability. Note that irder to guarantee closed-loop
stability, the DMPC scheme based on a cooperative game fidedsdel knowledge

28



in order to design the optimization problem (including taentinal region, the terminal
cost function, and the corresponding local controllers,[84]) of each agent. In this
benchmark, this controller was not designed to guarantsadHoop stability.

The distributed controllers that guarantee optimalityogited sufficient evalua-
tion time) are the serial DMPC scheme and the S-DMPC schenate that these
controllers are also the ones with a larger communicatiahcamputational burden.

Another key issue in distributed schemes is the class of atatipnal capabilities
that each controller must have. In particular, for the sat®oonsidered each controller
must be able to solve either QP problems or general nonlimgtémization problems.
In the experiments, the controllers used MATLAB's optimiaa toolbox, in particular
guadpr og andf i ncon.

The properties of each of the proposed controllers are sigrliand studied in the
previous works which have been included in the referencethis paper, we comment
these theoretical properties in order to compare theseatans. Note however, that in
general, these properties may not hold in the proposed bentthecause the theoret-
ical properties often assume that there are no modelingseoradisturbances and that
a given set of assumptions hold. We have carried out all theréxents with the real
plant, so there are modeling errors and disturbances. liti@idalthough most of the
controllers are defined for regulation, the benchmark ifereace tracking problem.
Issues such as steady-state error and disturbance esetirpédy a relevant role in this
benchmark. These issues may cause the designed conttollews satisfy the design
conditions established in the original work.

4.2. Evaluation of the experimental results

The experimental results demonstrate how centralizedisokiprovide the best
performance while the performance of a fully decentralizedtroller is worse. Dis-
tributed schemes in which the controllers communicate imega@ improve this per-
formance, although the experimental results also dematestinat a distributed MPC
scheme is not necessarily better (according to a certaforpegince index) than a de-
centralized scheme and it depends on the formulation ofdh&aller and its design.

It is also clear how those controllers that incorporateatffsee techniques (the
MPC scheme for tracking, the MPC scheme for regulation aadSHDMPC scheme
with Kalman filter) provide a better performance index. lderto obtain a measure of
the performance without the effect of the steady offsettitdresient performance index
J; has been calculated. This index is evaluated computinguhmulated cost during
the transient. The entrit shows the cumulated settling times of the three reference
changes. This shows that those offset-free controllerg latransient performance
index similar to the total performance index while for thetref the controllers, the
transient index is better. Note that this index only evadaahe performance during
the transient and does not take into account steady-states elt can be seen that the
decentralized scheme shows the shortest settlingttjmed the best transient perfor-
manceJ;, although this controller exhibits the worst overall penfianceJ. This is
due to the fact that the controller rapidly reaches an dayuilin point of the controlled
system that'’s far from the real set-point (see the third stégponse in Figure 6).

All the controllers were implemented using a MATLAB funati@nd were not
designed to optimize the computational time. For this rea® computation time has
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Qualitative properties Model Control Auxiliary
prop Requirements Objectives Software
Linear system Suboptimal
Centralized Tracking MPC Y Constraints QP
Full model -
Stability
Linear system Optimal
Centralized Regulation MPC y Constraints QP
Full model -
Stability
Decentralized MPC Linear system Suboptimal QP
Local model
Linear system Suboptimal
DMPC Cooperative game Local model Constraints QP
(Full mode) (Stability)
Linear system Optimal
S-DMPC Local model Constraints QP
. Linear system Suboptimal
DMPC Bargaining game Local model Constraints NLP
: Linear system Optimal
Serial DMPC Local model Constraints QP

Table 3: Table of qualitative properties of each testedrotiet.

not been taken into account. These computation times werer lthan the sampling
time chosen for each controller and, moreover, they couldraenatically reduced
using an appropriate implementation framework.

Motivated by these issues, the computational burden isrheasured by the num-
ber and size of the optimization problems solved at each kagrtpne. The centralized
schemes solve a single QP problem with @ptimization variables while the decen-
tralized controller solves 2 QP problems withoptimization variables. The difference
in the computational burden between these schemes growsheiprediction horizon
and the number of subsystems. Distributed schemes try tafiratle-off between the
burden of computation and communication, and optimalitye DMPC scheme based
on a cooperative game and the DMPC scheme based on a baggganime solve a
fixed number of low-complexity optimization problems. Th®®IPC scheme and the
serial DMPC scheme provide optimality at the cost of a higloenputational burden.

On the other hand, the communicational burden of each dertie measured by
the average number of floating point numbers that have ta@bertmitted each sampling
time by each agent and the number of communication cyclesvied. It can be seen
that iterative DMPC schemes (S-DMPC and Serial DMPC) in gdmeed to transmit
a larger amount of information, while the two controllerséd on game theory reach
suboptimal cooperative solutions with a lower communarai burden.

The centralized and distributed predictive controllerste¢d can potentially deal
with the satisfaction of hard constraints in the inputs atades of the plant under
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Control performance J Ji ts N # floats | #trans
Centralized Tracking MPC | 28.4 28.12 | 3280 5 N.D N.D.
Centralized Regulation MPC 25.46 | 23.78 | 2735 5 N.D N.D.
Decentralized MPC 3954 | 21.2 1685 5 0 0
DMPC Cooperative game | 30.71 | 28.19 | 2410 5 20 3
S-DMPC (w/o KF) 35.65 | 23.28 | 2505 100 | 33 10
S-DMPC (with KF) 28.61 | 28.26 | 1895 100 | 33 10
DMPC Bargaining game 46.32 | 39.52 | 3715 5 6 2
Serial DMPC 38.18 | 35.96 | 2800 5 [20,70] | [2,7]

t: [a,b] denotes a possible value in this interval.

Table 4: Table of the quantitative benchmark indexes of ezstied controller. # floats stands for the number
of floating-point reals transmitted between the controltirseng a sampling period. # trans denotes the
number of data packets transmitted during a sampling period.

appropriate assumptions. However, state constraintsai@ctive throughout the evo-
lution of the controlled system although there exist statese to the physical limits
of the plant. All the controllers considered have demonsttgood properties in the
closed-loop experiments carried out, exhibiting stabke f@éasible trajectories in spite
of the disturbances and mismatches between the predictiolelrand the plant.

5. Conclusions

In this paper the results of the HD-MPC four-tank benchmanketheen presented.
In this benchmark, eight different MPC controllers werelagapto the four-tank pro-
cess plant. These controllers were based on different madel assumptions and
provide a broad view of the different distributed MPC scherdeveloped within the
HD-MPC project. The results obtained show how distributiedtegies can improve
the results obtained by decentralized strategies usingntbemation shared by the
controllers. Future work will focus on benchmarking of mooenplex systems involv-
ing more than two subsystems and on testing on the four-tamteps a centralized
nonlinear MPC controller with a sufficiently large predagtihorizon in order to mea-
sure the loss of performance due to the linear nature of #adigiion model.
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