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Abstract

Recently, there has been a renewed interest in the development of distributed model
predictive control (MPC) techniques capable of inheritingthe properties of centralized
predictive controllers, such as constraint satisfaction,optimal control, closed-loop sta-
bility, etc. The objective of this paper is to design and implement in a four-tank process
several distributed control algorithms that are under investigation in the research groups
of the authors within the European project HD-MPC. The tested controllers are central-
ized and decentralized model predictive controllers schemes for tracking and several
distributed MPC schemes based on(i) cooperative game theory,(ii) sensivity-based
coordination mechanisms,(iii) bargaining game theory, and(iv) serial decomposition
of the centralized problem. In order to analyze the controllers, a control test is pro-
posed and a number of performance indices are defined. The experimental results of
the benchmark provide an overview of the performance and theproperties of several
state-of-the-art distributed predictive controllers.

Keywords: Distributed control, Predictive control, Optimal control, Benchmark
examples, Control applications.

1. Introduction

Distributed model predictive control (DMPC) is an important control methodol-
ogy in current control engineering for large-scale or networked systems, mainly to
overcome computational (and possibly communication) limitations of centralized ap-
proaches. These distributed algorithms are based on a wide range of techniques. Sys-
tematic studies of these techniques require the analysis ofbenchmark problems to as-
sess the performance of the different algorithms and to characterize their properties.

✩This research has been supported by the European 7th framework STREP project “Hierarchical and
distributed model predictive control (HD-MPC)”, contract number INFSO-ICT-223854.

Preprint submitted to Elsevier



The use of benchmarks is useful for evaluating the capabilities of different ap-
proaches to control systems for real problems. Benchmarks allow one to test, evaluate,
and compare different control solutions on real or simulated plants. The research and
the industry community benefit from these activities since the design of a good simu-
lation test-bed is often time and resource consuming. However, many simulation test-
beds are often subject to harsh criticism as they either cover only a narrow part of the
problem or they are purposely designed to get biased rather than objective performance
results. Suitable benchmark problems would effectively overcome these problems by
(a) allowing an objective evaluation of alternative control technologies, by (b) reducing
resources and time spent on developing validation models, by (c) giving researchers the
possibility to evaluate their proposals on a variety of cases, and by (d) opening up a fo-
rum to compare the performance of various solutions and to discuss the quality of the
results.

The objective of this paper is to design and implement several distributed control
algorithms, to analyze the algorithms, and to compare them on a common real bench-
mark process, namely a four-tank plant located in the Department of Ingenieŕıa de Sis-
temas y Autoḿatica of the University of Seville. This plant is based on thequadruple-
tank process [8]. This process has proven to be a very interesting system for control
education and research despite its simplicity, since the system is a highly coupled sys-
tem that can exhibit transmission zero dynamics, the dynamics are nonlinear and the
states and inputs are subject to hard constraints. Furthermore, the four-tank plant is
implemented using industrial instrumentation and is safe to use. The quadruple-tank
process has been used to illustrate various control strategies including internal model
control [6], dynamic matrix control [5], multi-variable robust control [24] and dis-
tributed MPC [12]. In addition, it has also been utilized as an educational tool to teach
advanced multi-variable control techniques.

For the proposed benchmark, four-tank plant has been divided into two subsystems
coupled through the inputs. The objective of the distributed controllers is to mini-
mize a quadratic tracking performance index of the whole plant, which adds objective
coupling between the controllers. In order to evaluate the controllers to be tested, a
collection of indices will be proposed. These mainly measure two aspects: the closed-
loop performance and the communication requirement of the controllers. Timing and
communication delay issues are negligible in this benchmark due to the implementa-
tion of the controller. The controllers tested are a centralized MPC scheme for track-
ing, a decentralized MPC scheme for tracking [9], a distributed MPC scheme based
on a cooperative game [11], a sensitivity-driven distributed MPC scheme [21, 22], a
feasible-cooperation distributed MPC scheme based on bargaining game theory con-
cepts, and a serial DMPC scheme [16, 17]. The distributed MPCalgorithms have been
developed by partners of the project HD-MPC1, which aims at the development of
new and efficient methods and algorithms for distributed andhierarchical model-based
predictive control of large-scale, complex, networked systems.

This paper is organized as follows. In Section 2, a description and a dynamic model
of the four-tank plant are provided and the benchmark control problem is presented.

1For more information, see the HD-MPC web-sitehttp://www.ict-hd-mpc.eu/.
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In Section 3 the controllers applied to the four-tank plant are briefly introduced and
the experimental results are shown. The results of the benchmark are compared and
discussed in Section 4. Finally, Section 5 contains conclusions.

Notation

Throughout this paper, (z1, z2, · · · , zN) stands for [zT
1 , z

T
2 , · · · , z

T
N]T , that is, the col-

umn vector resulting from stacking the column vectorsz1, z2, etc. As usual, for a vector
z ∈ R

n, ‖z‖M denotes the weighted Euclidean norm, i.e.‖z‖M =
√

zT Mz. I stands for
the unitary matrix which dimension is derived from the context. M(i) denotes thei-th
column of the matrixM

2. Description of the benchmark

In this section, the control benchmark with which the designed distributed predic-
tive controllers will be tested is presented. This benchmark is executed in the four-tank
plant which is inspired by the educational quadruple-tank process proposed by Johans-
son in [8]. Johansson’s process has also been used as a suitable test-bed for distributed
controllers [6, 12] and it has been proposed as one of the casestudies in the European
project HD-MPC [2]. This is due to the following interestingproperties:(i) the dy-
namics of the plant exhibit large coupling between the subsystems and the degree of
coupling can be manually adjusted,(ii) the dynamics of the plant are nonlinear,(iii) the
state can be measured,(iv) the states and inputs of the plant are subject to hard con-
straints, and(v) the plant can be safely operated. A detailed description of the plant, the
Simulink simulation model used in the design of the controllers as well as the experi-
mental and simulation results of the controllers tested in this benchmark are available
at the HD-MPC website1.

2.1. The four-tank plant

The four-tank plant is a laboratory plant that has been designed to test process
control techniques using industrial instrumentation and control systems. The plant
consists of a hydraulic process of four interconnected tanks inspired by the educational
quadruple-tank process (see Figure 2(a)) proposed by Johansson in [8]. A photograph
of the four-tank plant is shown in Figure 1 and a schematic plot of the plant is given in
Figure 2(b). As it can be noticed, the four-tank plant retains the structure of Johansson’s
process, see Figure 2(a), but has been modified to enable different configurations and
interconnections of the tanks.

The inlet flow of each tank is measured by an electro-magneticflow-meter (Siemens
Sitrans FM Flow sensor 711/S and transmitters Intermag/transmag) and regulated by a
pneumatic valve (Siemens VC 101 with a positioner Sipart PS2PA). This allows the
plant to emulate the three-way valve of Johansson’s quadruple-tank process by pro-
viding suitable set-points to the flow controllers. The level of each tank is measured
by means of a pressure sensor (Siemens Sitrans P 7MF4020 and 7MF4032). All the
measurements and commands are 4-20 mA current signals transmitted from/to a PLC
Siemens S7-200. In order to achieve a safe operation of the plant and to prevent the
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Figure 1: The four-tank plant.

overflow of tanks, each tank has a high-level switching sensor used as an alarm to
switch off the pumps.

As in the quadruple tank process shown in Figure 2(a), the four tanks of the real
plant are filled from a storage tank located at the bottom of the plant. The tanks at
the top (tanks 3 and 4) discharge into the corresponding tankat the bottom (tanks 1
and 2, respectively). The three-way valves are emulated by aproper calculation of the
set-points of the flow control loops according to the considered ratio of the three-way
valve. Thus, the inlet flows of the three-way valvesqa andqb in Figure 2(a) can be also
considered to be the manipulated variables of the real plant.

Some of the parameters of the plant, such as the cross sectionof the outlet holeai

and the ratioγ of each three-way valve, can be manually adjusted by the user. Hence,
the dynamics of the plant can be tuned by the user. Furthermore, the inlet flows as
well as the levels of the tanks are physically constrained. Table 1 shows the values of
the adjustable parameters, the physical limits of the levels and flows, and the operating
point of the plant chosen for this benchmark.

The sampling of each sensor as well as the command of each manipulated variable
is carried out by the PLC. This device stores the data and facilitates the implementation
of low-level (e.g. PID) controllers, sequential controllers, and plant supervisors. All
the data are continuously available through an OPC server installed on a remote PC
connected to the PLC (via RS-232). The controllers to be tested are implemented and
executed in Matlab/Simulink connected to the OPC Server using the OPC protocol.
The total time that the transmission of the signals takes is negligible with respect to
the sampling time (in this benchmark chosen as 5 seconds). Note that for this reason,
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(a) Johansson’s quadruple-tank pro-
cess diagram.

(b) The real plant diagram.

Figure 2: The four-tank process diagram.

timing and coordination issues are not relevant in this benchmark.

2.2. Simulation and prediction model of the four-tank plant

In order to design the controllers to be tested, a simulationmodel has been de-
veloped. This model is based on the simplified model of the quadruple-tank process
proposed in [8]. This model is given by the following differential equations:

dh1

dt
= −a1

S

√
2gh1 +

a3

S

√
2gh3 +

γa

S
qa,

dh2

dt
= −a2

S

√
2gh2 +

a4

S

√
2gh4 +

γb

S
qb, (1)

dh3

dt
= −a3

S

√
2gh3 +

(1− γb)
S

qb,

dh4

dt
= −a4

S

√
2gh4 +

(1− γa)
S

qa,

wherehi , andai with i ∈ {1,2,3,4} refer to the water level and the discharge constant
of tank i, respectively,S is the cross section of the tanks,q j andγ j with j ∈ {a,b}
denote the flow and the ratio of the three-way valve of pumpj, respectively, andg
is the gravitational acceleration. The discharge constantai has been experimentally
estimated and the ratios of three-way valvesγa andγb are defined by the user. These
parameters can be found in Table 1.
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value unit description

h1max 1.36 m Maximum level of the tank 1
h2max 1.36 m Maximum level of the tank 2
h3max 1.30 m Maximum level of the tank 3
h4max 1.30 m Maximum level of the tank 4
hmin 0.2 m Minimum level in all cases
qamax 3.26 m3/h Maximum flow ofqa

qbmax 4 m3/h Maximum flow ofqb

qmin 0 m3/h Minimum flow of qa andqb

a1 1.31e-4 m2 Discharge constant of tank 1
a2 1.51e-4 m2 Discharge constant of tank 2
a3 9.27e-5 m2 Discharge constant of tank 3
a4 8.82e-5 m2 Discharge constant of tank 4
S 0.06 m2 Cross-section of the tanks
γa 0.3 Parameter of the 3-way valve
γb 0.4 Parameter of the 3-way valve
h0

1 0.65 m Linearization level of tank 1
h0

2 0.66 m Linearization level of tank 2
h0

3 0.65 m Linearization level of tank 3
h0

4 0.66 m Linearization level of tank 4
q0

a 1.63 m3/h Linearization flow ofqa

q0
b 2.00 m3/h Linearization flow ofqb

Table 1: Parameters of the plant

Notice that this model exhibits mismatches with the real behavior of the plant, since
this model does not take into account the evolution of the real inlet flows of each tank
(controlled by the control valves to emulate the three-way valves), the turbulence in the
tanks or the variation of the level of the tank due to the inletwater flow. Nevertheless,
these equations provide a satisfactory model of the four-tank process whenever the
levels of the tanks are over 0.2 m. When the levels of the tanks are below 0.2 m, eddy
effects in the discharges of the tanks render the model inaccurate.

For the predictive controllers to be tested in this benchmark, a linear prediction
model will be derived based on the simulation model. This linear model is obtained by
linearizing the simulation model at an operating point given by the equilibrium levels
and flows as shown in Table 1. Defining the deviation variables

xi = hi − h0
i , i ∈ {1,2,3,4}, (2)

u1 = qa − q0
a, (3)

u2 = qb − q0
b, (4)

we obtain the following continuous-time linear model:

dx
dt

= Acx+ Bcu, (5)

y = Ccx,
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wherex = (x1, x2, x3, x4), u = (u1,u2), y = (x1, x2),

Ac =



−1
τ1

0 1
τ3

0
0 −1

τ2
0 1

τ4

0 0 −1
τ3

0
0 0 0 −1

τ4


,

Bc =



γa

S 0
0 γb

S

0 (1−γb)
S

(1−γa)
S 0


,

Cc =

[
1 0 0 0
0 1 0 0

]
,

whereτi = S
ai

√
2h0

i

g ≥ 0, with i ∈ {1,2,3,4}, is the time constant of tanki. For the
chosen parameters the linear system shows four real stable poles and two non-minimum
phase zeros. Based on this model, the discrete-time model

x(k+ 1) = Ax(k) + Bu(k) (6)

y(k) = Cx(k)

has been obtained using the Tustin method [3] with a samplingtime of 5 seconds.
The linear model (6) is used to design a centralized predictive controller. In order to

design the different distributed MPC controllers, the different subsystems of the plant
to be controlled must be defined first. This is carried out in the following section.

2.3. Proposed partition of the plant and subsystems definition

The main objective of the benchmark is to study and evaluate distributed predictive
controllers in a common framework, allowing a comparison among themselves and
with a centralized as well as a decentralized controller scheme.

In this paper, a partition of the plant into two coupled subsystems as proposed in
[2, 12] is considered. Subsystem 1 consists of tanks 1 and 3 while subsystem 2 consists
of tanks 2 and 4. Then the state and output of each subsystem isdefined as follows:

xs1 = (x1, x3)

ys1 = x1

xs2 = (x2, x4)

ys2 = x2

The continuous-time models of subsystems 1 and 2 are given by

dxs1

dt
= Ac1xs1 + Bc1u, (7)

ys1 = Cc1xs1,
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and

dxs2

dt
= Ac2xs2 + Bc2u, (8)

ys2 = Cc2xs1,

respectively. The matricesAc1, Bc1, Cc1, Ac2, Bc2, andCc2 are easily derived from
(5). The linear prediction model for the distributed predictive controllers tested in this
benchmark are the discrete-time model of each subsystem fora sampling time of 5
seconds derived from (7) and (8) by means of the Tustin method. These discrete-time
models will be denoted as

xs1(k+ 1) = A1xs1(k) + B1u(k), (9)

ys1(k) = C1xs1(k),

and

xs2(k+ 1) = A2xs2(k) + B2u(k), (10)

ys2(k) = C2xs2(k).

Notice that the subsystems of this partition are coupled through the inputs, but not
through the states. This class of coupling is common in the process industry and has
been widely studied in the design of distributed predictivecontrollers [19, 23, 25].
Furthermore, as proved in [23, Appendix B], every system canbe split into a collection
of subsystems only coupled through the inputs, and hence, the derived results of this
benchmark are relevant despite the absence of direct coupling through the states.

For the design of decentralized and distributed MPC schemes, it is interesting to
analyze the correlation between manipulable variables andcontrolled variables. This
allows one to choose the manipulable variable to be used to control every controlled
variable of the corresponding subsystem. This analysis hasbeen done by means of the
relative gain array (RGA) method [4]. The RGA matrix calculated for the linearized
model (5) results in

RGA=

[
−0.4 1.38
1.38 −0.4

]
.

From these matrix it is inferred that the main interaction are given for the pairingys1-u2

in subsystem 1, and for the pairingys2 - u1 in subsystem 2. Denoting byvsi the coupling
signal of subsystemi, namely,vs1 = u1 andvs2 = u2, the model of each subsystem can
be rewritten as

dxs1

dt
= Ac1xs1 + Bc

(2)
1 us1 + Bc

(1)
1 vs1 (11)

ys1 = Cc1xs1,

and

dxs2

dt
= Ac2xs2 + Bc

(1)
2 us2 + Bc

(2)
2 vs2, (12)

ys2 = Cc2xs1,
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This model has been discretized by means of the Tustin methodwith a sampling time
resulting the following model:

xs1(k+ 1) = A1xs1(k) + B(2)
1 us1(k) + B(1)

1 vs1(k), (13)

ys1(k) = C1xs1(k),

and

xs2(k+ 1) = A2xs2(k) + B(1)
2 us2(k) + B(2)

2 vs2(k), (14)

ys2(k) = C2xs2(k).

The decentralized model of the plant is derived from (13) and(14) making the
coupling signalsvs1 andvs2 equal to 0, that is,

xs1(k+ 1) = A1xs1(k) + B(2)
1 us1(k), (15)

ys1(k) = C1xs1(k),

and

xs2(k+ 1) = A2xs2(k) + B(1)
2 us2(k), (16)

ys2(k) = C2xs2(k).

2.4. Control problem

To compare centralized, decentralized, and distributed predictive controllers under
similar operation conditions a tracking experiment is defined where a set of reference
changes in the levels of tanks 1 and 2,h1 andh2, has to be followed by manipulating
the inlet flowsqa andqb based on the measured levels of the four tanks:

• Initially, the set-points are set tos1 = s2 = 0.65 m. These set-points are aimed to
steer the plant to the operating point and to guarantee identical initial conditions
for each controller. Once the plant has reached the operating point the benchmark
starts maintaining the operating point for 300 seconds.

• In the first step, the set-points are changed tos1 = s2 = 0.3 m. These values are
kept for 3000 seconds.

• Then, the set-points are changed tos1 = 0.5 m ands2 = 0.75 m. These values
are kept for 3000 seconds.

• Finally, the set-points are changed tos1 = 0.9 m ands2 = 0.75 m. Again, these
values are kept for 3000 seconds. To perform this change tanks 3 and 4 have to
be emptied and filled respectively.

The set-point signals are shown in Figure 3(a). The control test duration is 3 hours
and 20 minutes. It is important to remark that the set-pointshave been chosen in
such a way that large changes in the different equilibrium points are involved. This is
illustrated in Figure 3(b), where the region of reachable set-points is depicted together
with the proposed set-points. Notice that some of the proposed set-points are close to
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(a) Set-point signals for the benchmark.
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(b) Set of admissible set-points.

Figure 3: Set-points for the real plant.

the physical limits of the plant in terms of inputs or level ofthe tanks 3 and 4. This will
allow us to check how the designed controllers behave when the system is close to the
constraints.

The objective of the benchmark is to design distributed MPC controllers to optimize
the performance index

J =
Ntest−1∑

k=0

(
(h1(k) − s1(k))2

+ (h2(k) − s2(k))2

+0.01(qa(k) − qs
a(k))2

+ 0.01(qb(k) − qs
b(k))2

)
,

whereqs
a andqs

b are the steady manipulable variables of the plant for the set-points
s1 and s2 calculated from steady conditions of the proposed model of the plant (1).
The tested controllers have been designed using a sampling time of 5 seconds. The
performance index measures the response of the plant once ithas been steered to the
operating point. ThenJ is calculated over the time interval [2700,12000] seconds, that
is, for a total ofNtest= 1860 samples.

Notice that the resulting distributed control problem to besolved in this bench-
mark exhibits two classes of couplings:(i) coupled dynamics, since the subsystems
to be controlled are coupled through the inputs and(ii) coupled objectives, since the
distributed controllers must optimize a global cost function. This fact makes that the
four-tank benchmark is appropriate for comparing the closed-loop performance of dis-
tributed MPC controllers. However, other aspects such as the network communication
and timing issues of the controllers are not relevant since the way the controllers have
been implemented (see section 2.1) makes their effects negligible. Nevertheless, these
aspects can be studied by evaluating the data communicationrequirements between
controllers. Therefore, the evaluation and comparison between the different controllers
will be performed according to the following collection of indices:

• Controller properties

1. Modeling requirements: the class of models considered byeach of the con-
trollers, for instance linear/nonlinear, plant model or subsystem model, etc.
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2. Controller objectives: the properties that may be addressed by the tested
controllers, for instance optimality, constraint satisfaction, stabilizing de-
sign, recursive feasibility, etc.

3. Auxiliary software needed: optimization routines, simulation routines, etc.

• Performance evaluation

1. Performance indexJ: a measure of the performance of the controlled plant.
2. Performance index during the transientJt: a measure of the performance

during the transient to remove the effect of steady offset.
3. Settling time: a measure of the speed of the controlled plant calculated by

summing the settling times (defined as 95% achievement) after each step
in the reference signal.

4. Number of floating-point reals transmitted between the controllers per sam-
pling period.

5. Number of data packets transmitted during a sampling period.

3. Tested predictive controllers

For designing and tuning the DMPC controllers, all the participants have used the
same Simulink model of the nonlinear continuous-time system (1) which has been
identified using real data at the University of Seville. Eachcontroller has been imple-
mented as a Simulink block and integrated in a Simulink control model similar to the
simulation model used in the design stage. This Simulink control model communicates
with the PLC of the real plant via the OPC protocol to receive the measured level of
the tanks and to send the calculated manipulated variables.

In the following subsections, the different control techniques are presented together
with the results of the control test in the real plant.

3.1. Centralized MPC for tracking

A centralized predictive controller based on the linearized prediction discrete-time
model (6) has been tested on the plant. Since the reference ischanged throughout
the benchmark, the MPC scheme for tracking proposed in [9] has been chosen. This
controller is capable of steering the plant to any admissible set-point ensuring constraint
satisfaction. We present next a description of this MPC controller.

The system to be controlled is subject to hard constraints onstates and inputs,

(x(k),u(k)) ∈ Z = {z ∈ R
n+m : Azz≤ bz}, ∀k ≥ 0, (17)

where the setZ is a suitable compact convex polyhedron containing the origin in its
interior, n denotes the number of states of the plant, andm is the number of inputs.
This set consists of the limits of the levels and the flows of the plant and it can be easily
calculated from the description of the plant in the previoussection.
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The MPC controller to be designed has to track a piece-wise constant sequence of
set-points or referencess(k) while guaranteeing that the constraints are satisfied at all
times.

The MPC scheme for tracking is based on the addition of the steady state and input
(xr ,ur ) as decision variables (defined by the variabler), the use of a modified cost
functions and an extended terminal constraint.The proposed cost function is

VN(x, s,U, r) =

N−1∑

i=0

‖y(i) − r‖2Q + ‖u(i) − ur‖2R + ‖x(N) − xr‖2P

+‖r + h0 − s‖2T

whereQ,R,P and T are matrices of appropriate dimensions,U is a sequence ofN
future control inputs, i.e.U = {u(0), . . . ,u(N − 1)}, (xr ,ur ) is the steady state and the
input associated withr, h0

= (h0
1,h

0
2), s is the set-point to be reached, andy(i) is the

predicted state of the system at timei given byx(i + 1) = Ax(i) + Bu(i), y(i) = Cx(i),
with x(0) = x. Based on this prediction model, there exists a matrixMs such that
(xr ,ur ) = Msr. Note that this cost can be posed as a quadratic function of the decision
variables.

The proposed MPC optimization problemPN(x, s) is given by

V∗N(x, s) = min
U,r

VN(x, s,U, r)

s.t. x(0) = x,

x(i + 1) = Ax(i) + Bu(i),

(x(i),u(i)) ∈ Z, i = 0, · · · ,N − 1 ,

(xr ,ur ) = Msr,

(x(N), r) ∈ Ωa
t,K ,

where the setΩa
t,K ⊆ R

n+p defining the terminal constraint is a polyhedral set andp is
the number of outputs of the plant. Applying the receding horizon strategy, the control
law is given byKN(x, s) = u∗(0; x, s). Given that the constraints ofPN(x, s) do not
depend ons, there exists a (polyhedral) regionXN ⊂ R

n such that for allx ∈ XN,
PN(x, s) is feasible and the controller is well-defined.

If the terminal ingredientsK, P andΩa
t,K satisfy the assumptions provided in [9], the

proposed controller stabilizes the plant, ensures constraint satisfaction, and guarantees
that the controlled variabley converges to the set-points if it is admissible. In case it
is not admissible, the controller steers the plant to the closest admissible steady state
(according to the offset cost function‖r + h0− s‖2T). Moreover, given that the evolution
of the system remains inXN, the system can be steered to any admissible set-point even
in the case that the set-point changes along the time. Another interesting property is
that thanks to the properties of the terminal region, the proposed controller provides a
larger domain of attraction than a standard MPC scheme for regulation.

This controller ensures zero-offset in the nominal case. But, if there is model mis-
match, a nonzero offset of the controller can result. In order to remove this offset, the
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Figure 4: Evaluation of the control test in the real plant of the centralized MPC scheme for tracking.

offset cancellation technique proposed in [10] can be used.To this aim, the following
disturbance estimator has been implemented

d(k+ 1) = λd(k) + (1− λ)(x(k) − Ax(k− 1)− Bu(k− 1))

where matricesA, B are defined in (6) andλ = 0.99458. Notice that this estimator
converges to the steady value of the actual disturbance. Then, taking a modified set-
point

ŝ(k) = s(k) + Hd(k)

whereH = C(I − (A+ BK))−1, the effect of the disturbances is counteracted in steady
state [10].

The weighting matrices of the controller designed for the four-tank plant are chosen
to minimize the performance indices defined in the previous section, that is,Q = I and
R= 0.01I . The terminal control gainK is the corresponding LQR gain and the matrixP
is derived from the Riccati equation, and the terminal setΩ

a
t,K is calculated as proposed

in [9]. The offset cost weighting matrix has been chosen asT = 100I and the chosen
prediction horizon isN = 5.

This controller has been successfully tested on the real plant and the results are
shown in Figure 4. The performance index for this test isJ = 28.4091.

The MPC scheme for tracking may exhibit a possible optimality loss due to the
addition of the artificial reference as a decision variable.In this benchmark, a stan-
dard MPC controller for regulation has also been applied to the four-tank plant. This
controller is also based on the optimization problemPN(x, s) but adding a constraint to
forceys to be equal tos, hence reducing the degrees of freedom of the controller. Figure
5 shows the results obtained. The performance index for thistest isJ = 25.4655, hence
better than performance of the MPC scheme for tracking. It isimportant to remark that

13
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Figure 5: Evaluation of the control test in the real plant of the centralized MPC scheme for regulation.

this controller does not guarantee feasibility, stability, or constraint satisfaction when
the set-point is changed, although for this particular case, these have been achieved.

3.2. Decentralized MPC for tracking

The second control technique tested has been a decentralized predictive controller
based on the decentralized model of the system (15) and (16).The proposed cost
function for the subsystemj is

VN, j(xs j , sj ,U j , r j) =

N−1∑

i=0

‖ys j(i) − r j‖2Q j
+ ‖us j(i) − ur j ‖2Rj

+ ‖xs j(N) − xr j ‖2P j
+ ‖r j + h0

j − sj‖2T j

whereU j = {us j(0), . . . ,us j(N−1)}, (xr j ,ur j ) is the steady state and the input associated
with r j for the j-th subsystem according to the models (15) and (16), andsj is the set-
point to be reached.Ms j is the matrix such that (xr j ,ur j ) = Ms jr j . Then the proposed
MPC optimization problem for each subsystemj is PN, j(xs j , sj) is given by

V∗N, j(xs j , sj) = min
U j ,r j

VN, j(xs j , sj ,U j , r j)

s.t. xs j(0) = xs j ,

xs j(i + 1) = A j xs j(i) + B(l)
j us j(i), l , j

(xs j(i),us j(i)) ∈ Z j , i = 0, · · · ,N − 1 ,

(xr j ,ur j ) = Ms jr j ,

(xs j(N), r j) ∈ Ωa
t,K j
.
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Figure 6: Evaluation of the control test in the real plant of the decentralized MPC scheme.

The setZ j defines the constraints on the the states and the input of subsystem j. The
weighting matrices areQ j = I andRj = 0.01I . The terminal control gain of each
subsystemj, K j , is the corresponding LQR gain, the matrixP j is derived from the
Riccati equation and the terminal setΩa

t,K j
is calculated as proposed in [9]. The offset

cost weighting matrix has been chosen asT j = 100 and the chosen prediction horizon
is N = 5. The results of the experiments can be seen in Figure 6; the performance index
is J = 39.5421.

3.3. Distributed MPC based on a cooperative game

In this section we present the distributed MPC scheme based on a cooperative game
approach presented in [11]. This control scheme considers aclass of distributed linear
systems composed of subsystems coupled with the neighboring subsystem through the
inputs. The four-tank plant belongs to this class of models.In particular, the linear
models (13), and (14) are used to design the distributed controller.

The control objective of this controller is to regulate the system to the given set-
points while guaranteeing that a given set of state and inputconstraints are satisfied.
The proposed distributed scheme assumes that for each subsystem, there is a controller
that has access to the model and the state of that subsystem. The controllers do not
have any knowledge of the dynamics of their neighbor, but cancommunicate freely
among them in order to reach an agreement on the value of the inputs applied to the
system. The proposed strategy is based on negotiation between the controllers on the
basis of a global performance index. At each sampling time, agents make proposals
to improve an initial feasible solution on the basis of theirlocal cost function, state,
and model. This initial feasible solution is obtained from the optimal solution of the
previous time step and two stabilizing controllers defined by feedback gainsK1 andK2.
These proposals are accepted if the global cost improves thecorresponding cost of the
current solution. The trajectories chosen are denoted byUd

1 andUd
2.
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The MPC controllers minimize the sum of two local performance indicesJ1 andJ2

that depend on the future evolution of both states and inputs:

J1(x1,U1,U2) =
N∑

i=1
‖ys1(i) − r1‖2Q1

+ ‖us1(i) − ur1‖2R1
,

J2(x2,U2,U1) =
N∑

i=1
‖ys2(i) − r2‖2Q2

+ ‖us2(i) − ur2‖2R2
,

wherer1 = s1 − h0
1, andr2 = s2 − h0

2. The target for the inputsur1 andur2 are given
by the steady inputu corresponding to the set-point (s1, s2) calculated using (1).U1 =

(us1(0), · · · ,us1(N − 1)) andU2 = (us2(0), · · · ,us2(N − 1)). The predicted outputs are
calculated using the model (13) and (14) taking into accountvs1 = us2 andvs2 = us1.

For this benchmark , the weighting matrices were chosen to minimize the bench-
mark objective function, that is,Q1 = Q2 = I , R1 = R2 = 0.01. The prediction
horizonN was chosen asN = 5. The local controller gains for each controller were
K1 = [0.17,0.21] andK2 = [−0.16,−0.14]. These gains were designed with LMI
techniques based on the full model of the system in order to stabilize both subsystems
independently while assuring the stability of the centralized system. The role of these
gains is important to guarantee closed-loop stability (see[11] for more details).

Each controller solves a sequence of reduced-dimension optimization problems to
determine the future input trajectoriesU1 andU2 based on the model of its subsystem.
We summarize the DMPC algorithm proposed in [11] as follows:

1. At time stepk, each controllerl receives its corresponding partial state measure-
mentxsl(k).

2. Both controllers communicate. Controller 1 sendsK1xs1(N) and controller 2
sendsK2xs2(N), wherexs1(N) andxs2(N) are theN-steps ahead predicted states
obtained from the current states applyingUd

1(k − 1),Ud
2(k − 1) shifted one time

step. This information is used to generate the shifted trajectoriesUs
l (k), which is

the initial solution.
3. Each controllerl minimizesJl assuming that the neighbor keeps applying the

shifted optimal trajectory evaluated at the previous time stepUs
nl(k). The optimal

solution is denoted byU∗l (k).
4. Each controllerl minimizesJl optimizing the neighbor input assuming that it

applies the shifted input trajectoryUs
nl. Solving this optimization problem, con-

troller l defines an input trajectory denoted byUw
nl(k) for its neighbor that opti-

mizes its local cost functionJl .
5. Both controllers communicate. Controller 1 sendsU∗1(k) and Uw

2 (k) to con-
troller 2 and receivesU∗2(k) andUw

1 (k).
6. Each controller evaluates the local cost functionJl for each of the nine possible

combinations of input trajectories, i.e.,

U1 ∈ {Us
1(k),Uw

1 (k),U∗1(k)},
U2 ∈ {Us

2(k),Uw
2 (k),U∗2(k)}.

7. Both controllers communicate and share the information of the value of their
local cost function for each possible combination of input trajectories. In this
step, both controllers receive enough information to take acooperative decision.
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Us
2 U∗2 Uw

2

Us
1

J1(x1,Us
1,U

s
2)

+J2(x2,Us
2,U

s
1)

J1(x1,Us
1,U

∗
2)

+J2(x2,U∗2,U
s
1)

J1(x1,Us
1,U

w
2 )

+J2(x2,Uw
2 ,U

s
1)

U∗1
J1(x1,U∗1,U

s
2)

+J2(x2,Us
2,U

∗
1)

J1(x1,U∗1,U
∗
2)

+J2(x2,U∗2,U
∗
1)

J1(x1,U∗1,U
w
2 )

+J2(x2,Uw
2 ,U

∗
1)

Uw
1

J1(x1,Uw
1 ,U

s
2)

+J2(x2,Us
2,U

w
1 )

J1(x1,Uw
1 ,U

∗
2)

+J2(x2,U∗2,U
w
1 )

J1(x1,Uw
1 ,U

w
2 )

+J2(x2,Uw
2 ,U

w
1 )

Table 2: Cost function table used for the decision making.

8. Each controller applies the input trajectory that minimizesJ = J1 + J2. Because
both controllers have access to the same information after the second communi-
cation cycle, both controllers choose the same optimal input setsUd

1(k),Ud
2(k).

9. The first input of each optimal sequence is applied and the procedure is repeated
at the next sampling time.

From a game-theoretical point of view, at each time step bothcontrollers are play-
ing a cooperative game. This game can be synthesized in strategic form by a three-by-
three matrix. Each row represents one of the three possible decisions of controller 1,
and each column represents one of the three possible decisions of controller 2. The
cells contain the sum of the cost functions of both controllers for a particular choice of
future inputs. At each time step, the option that yields a lower global cost is chosen.
Note that both controllers share this information, so they both choose the same option.
The nine possibilities are shown in Table 2.

The proposals made are suboptimal because each controller has an incomplete view
of the system and proposes the best solutions from its own point of view. The proposed
algorithm has low communication and computational burdensand provides a feasi-
ble solution to the centralized problem assuming that a feasible solution is available to
initialize the controller. In addition, an optimization-based procedure to design the con-
troller such that practical stability of the closed-loop isguaranteed is provided in [11].
In this benchmark, the controller has not been designed to guarantee closed-loop sta-
bility because neither a terminal region nor a terminal costhas been considered in the
controller formulation.

Note that this control scheme is designed for systems controlled only by two agents
because the number of options of the cooperative game for more than two controllers
grows in a combinatorial manner.

At this point we have to remark the fact that when the reference is switched from
one working point to another it is necessary to reset the value of Us to a feasible so-
lution. This solution is obtained by solving a feasibility problem, in particular a linear
programming (LP) problem, based on the full model of the system.

The proposed distributed MPC controller only needs three communication steps
in order to obtain a cooperative solution to the centralizedoptimization problem, has
low communication and computational burdens, and providesa feasible solution to the
centralized problem.

The designed controller has been successfully tested on thereal plant; the trajec-
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Figure 7: Evaluation of the control test in the real plant of the DMPC scheme based on a cooperative game.

tories are shown in Figure 7. The performance index of the test is J = 29.5787. The
performance index is close to the performance index of the centralized MPC for regu-
lation. Note however that the input trajectories are not smooth because the controllers
switch between different modes.

3.4. Sensitivity-driven DMPC

A novel sensitivity-driven DMPC (S-DMPC) scheme [22] is considered in this sub-
section. S-DMPC is based on a new distributed dynamic optimization method employ-
ing a sensitivity-based coordination mechanism [21]. For the distributed controllers the
four-tank system is decomposed first according to (11) and (12). On each prediction
horizon [t0(k), t f (k)], the continuous-time optimal control problem can be formulated
as

min
us j

J j (18a)

s.t. J j =

t f (k)∫

t0(k)

(ys j − r j)
2
+ 0.01(us j − ur j ) dt, (18b)

d xs j

dt
= Ac jxs j + B(l)

c jus j + B( j)
c j vs j + d̂ j , l , j, xs j(0) = xs j,0(k), (18c)

ys j = Cc jxs j , (18d)

0 ≤ D j(xs j ,us j) + ej , j = 1,2. (18e)
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wherer j = sj − h0
j and the target for the inputsur1 andur2 are given by the steady

input u corresponding to the set-point (s1, s2) calculated using (1).xs j,0(k) denotes the
measured initial conditions at time samplek, andd̂ j denotes additive disturbances to
be estimated. If no disturbance estimation is available,d̂ j , j = 1,2, are assumed to be
zero. The linear state and input constraints are described by matricesD j and vectors
ej , j = 1,2, in equation (18e). In order to solve the continuous-time optimal control
problems, they are transcribed into quadratic parametric programming problems by
means of control vector parametrization [20], i.e., a discretization of the input variables
us j(t) using parameter vectorsp j with p = (p1, p2). As a result the quadratic programs
(QPs)

min
p j

J j(p) (19a)

J j(p) =
1
2

pT A j p+ pT B j
+ C j , (19b)

c j(p) = D j T p+ E j ≥ 0, (19c)

j = 1,2, can be derived, beingA j , B j , C j , D j , andE j appropriate matrices. In order to
achieve global optimality, the QP (19) forj = 1,2 are coordinated based on sensitivities
[21, 22]. In particular, the objective functions are modified as follows:

J∗j (p, p
[κ]) = J j(p) +



2∑

l=1
l, j

∂Jl

∂p j

∣∣∣∣∣∣
p[κ]

− ∂cl

∂p j

∣∣∣∣∣∣
T

p[κ]

λ
[κ]
l


(p j − p[κ]

j ) (20)

+
1
2

(p j − p[κ]
j )T
Ω j(p j − p[κ]

j ),

j = 1,2 .

The first term of the objective function is a copy of the subsystem’s objective func-
tion. To relate the local optimization problems to the overall objective, all nonlocal
contributions are accounted for by linear approximations to result in the second term
of the objective function. The third term of the objective function J∗i is added to im-
prove convergence of the method by means of Wegstein’s method [22, 28]. The index
[κ] indicates variables of theκ-th iteration, andλ j denotes the Lagrange multipliers
associated to the corresponding constraint functionsc j .

The S-DMPC algorithm at control stepk comprises the following steps:

1. Transcribe the optimal control problem to computeA j , B j(k), C j(k), D j , and
E j(k); A j andD j do not depend on the initial statex0(k) = x0(t0(k)) and need to
be computed only once.

2. Select initial parametersp[0](k) and an estimate of the initial Lagrange multipli-
ersλ[0](k) based on the solution (p∗(k − 1), λ∗(k − 1)) of the last sampling time
k− 1 and setκ := 0.

3. Send the control parametersp[κ]
j (k) and the Lagrange multipliersλ[κ]

j (k), j = 1,2,
to the distributed controllers.
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4. Solve the following QP to obtain the minimizerp[κ+1]
j and the Lagrange multi-

plier λ[κ+1]
j :

min
p j

J∗j

s.t. c j(p) ≥ 0,

j = 1,2.

5. Increaseκ := κ + 1 and go back to 3.
6. Stop iteration, ifp[κ] satisfies a predefined convergence criterion.

The method is implemented with a prediction horizon of 500 seconds, in order to
achieve a stable closed-loop control. The input variablesui have been discretized using
3 parameters for each input. One parameter has been chosen toreflect the steady-state
values, while the others have been chosen to approximate thetransient part within the
first 10 seconds of the horizon by piece-wise constant representations, i.e.

usi(t) =
3∑

j=1

pi, j · φ j(t), with (21a)

φ1(t) =


1, t0(k) < t < t0(k) + 5

0, else
, (21b)

φ2(t) =


1, t0(k) + 5 < t < t0(k) + 10

0, else
, (21c)

φ3(t) =


1, t0(k) + 10< t

0, else
(21d)

We have tested the controller for three different configurations:

(a) With a fixed number of 3 iterations, i.e., an implementation without convergence
leading to suboptimal control,

(b) with a fixed number of 10 iterations for optimal control, and
(c) with a fixed number of 10 iterations and an additional Kalman filter to eliminate

the steady-state offset.

The design of the Kalman filter in configuration (c) aims at improving control perfor-
mance. The linear Kalman filter


dx̂s j

dt
dd̂ j

dt

 =
[
Ac j I
0 0

] [
x̂s j

d̂ j

]
+

[
Bc j

0

]
us + K(xs j − x̂s j),

[
x̂s j(0)
d̂ j(0)

]
=

[
x̂s j,0

d̂ j,0

]
, (22)

j = 1,2 ,

is added for each of the subsystems for combined state and disturbance estimation. The
additive disturbanceŝd j ∈ R

2 are introduced to model plant-model mismatch. They are
assumed to be constant (or slowly time-varying). The KalmangainK ∈ R

4×2 is calcu-
lated using the algebraic Riccati equation.
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Figure 8: Evaluation of the control test in the real plant of the S-DMPC scheme.

Due to the strong coupling of the subsystems, convergence ofthe method is rather
slow. It is possible to achieve optimality in approximately10 iterations. However, al-
ready with only three iterations, good performance can be achieved. The performance
index in the real plant for the configurations investigated are J = 45.072 for config-
uration (a),J = 35.525 for configuration (b), andJ = 28.616 for configuration (c).
The trajectories for configuration (b) are shown in Figure 8,while the trajectories for
configuration (c) are given in Figure 9. The Kalman filter in configuration (c) is able to
estimate the steady-state disturbancesd j of the plant successfully, such that the steady-
state control errors vanish. A non-smooth behavior of the controlled flow ratesqa and
qb can be observed, which is induced by the Kalman filter and could be reduced by a
better tuning of the filter. So far, the controllers have onlybeen tuned in a simulation
environment and applied to the real plant without further tuning.

3.5. Feasible-cooperation DMPC based on bargaining game theory concepts

In this section, a distributed predictive control scheme based on bargaining game
theory is presented. A game is defined as the tuple (T, {Ω j} j∈T , {φ j} j∈T), whereT =
{1, . . . ,M} is the set of players,Ω j is a finite set of possible actions of playeri, and
φ j : Ω1 × . . . ×ΩM −→ R is the payoff function of thej-th player [1].
Based on the definition of a game, a DMPC problem can be defined as a tupleG =
(T, {Ω j} j∈T , {φ j} j∈T), whereT = {1, . . . ,M} is the set of subsystems,Ω j is the non-
empty set of feasible control actions for subsystemj, andφ j : Ω1 × . . . × ΩM −→ R,
whereφ j is the cost function of thej-th subsystem. From this point of view, DMPC is
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Figure 9: Evaluation of the control test in the real plant of the S-DMPC scheme with Kalman filter.

a game in which the players are the subsystems, the actions are the control inputs, and
the payoff of each subsystem is given by the value of its cost function.

In the specific case of the four-tank plant, the whole system model has been decom-
posed into two subsystems modeled by (9) and (10). Based on these prediction models,
the cost functions used to measure the performance of subsystem j, j = 1,2, is

ł j (̃y j(k) − r̃ j(k), ũ j(k) − ũr j (k)) = ‖̃y j(k) − r̃ j(k)‖2 + ‖̃u j(k) − ũr j (k)‖2, (23)

whereỹ j(k) = (ys j(k|k), . . . , ys j(k + N|k)), ũ j(k) = (us j(k|k), . . . ,us j(k + N|k)), r̃ j(k) =
(r j(k), · · · , r j(k)) andũr j (k) = (usr j (k), · · · ,usr j (k)). The targetr j(k) is given byr j(k) =
sj(k)−h0

j and the target for the inputsur j (k) is given by the steady inputr j(k) calculated
using (9) or (10).
Therefore, the DMPC of the four-tank system is a game withT = {1,2}, in which
the feasible setΩ j is determined by the constraint, the state, and the input of the j-th
systemZ j . The feasible cost function for a given sequence of predicted inputsũ(k),
φ j (̃u(k)), is a quadratic function obtained from (23) by calculating the predictions̃y j(k)
using the following recursion (derived from the models (9) and (10)):

xs j(k+ i + 1|k) = A j xs j(k+ i|k) + Bjus(k+ i|k),

ys j(k+ i|k) = C j xs j(k+ i|k),

with xs j(k|k) = xs j(k).
Following the cooperative game theory introduced in [14, 15, 18], the formulation

of the DMPC as a game is completed by introducing the concept of a disagreement
point. The disagreement point,δ j(k), at time stepk, is defined as the benefit that the
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j-th player receives when no agreement is achieved among the players. In the case of
DMPC, the disagreement point can be computed as follows

δ j(k) = arg min
ũ j (k)

max
ũ− j (k)
φ j (̃u(k))

s.t.ũ j(k) ∈ Ω j ,

ũ− j(k) ∈ Ω− j ,

(24)

wherẽu j(k) denotes the solution of thej-th player at time stepk, ũ− j(k) = (̃u1(k), . . . , ũ j−1(k), ũ j+1(k), . . . , ũM(k))
andΩ− j = Ω1 × . . . ×Ω j−1 ×Ω j+1 × . . . ×ΩM.
Note that the optimization problem (24) defines the worst case for subsystemj. Then,
δ j(k) is the best benefit that thej-th subsystem can achieve given the worst case.

According to [13, 15], the solution of the cooperative game associated with the
DMPC problem can be computed as the solution of the optimization problem [7, 18]

max
ũ(k)

M∑

j=1

w j log
(
δ j(k) − φ j (̃u(k))

)

s.t.δ j(k) > φ j (̃u(k)), for j = 1, . . . ,M

ũ j(k) ∈ Ω j , for j = 1, . . . ,M,

(25)

wherew j are weights withw j > 0 and
∑M

j=1 w j = 1. This problem can be solved in a
distributed fashion using the feasible-cooperation approach presented in [26, 27].

Let φ j (̃u(k)) = σ j (̃ul(k), ũ−l(k)). Then assuming̃u−l(k) fixed, the maximization
problem

max
ũl (k)

M∑

j=1

w j log
[
δ j(k) − σ j (̃ul(k), ũ−l(k))

]

s.t. δ j(k) > σ j (̃ul(k), ũ−l(k)), for j = 1, . . . ,M

ũl(k) ∈ Ωl

(26)

defines the maximum profit that the whole system can achieve while the control actions
of the other subsystems are fixed atũ−i(k). Thus, the maximization problem (25) can
be solved in a distributed (and cooperative) way by letting each subsystemi solve (26).
It is easy to verify that (26) corresponds to a convex minimization problem, for which
efficient solvers are accessible.

With the purpose of implementing the DMPC controller described in this section,
the following steps have been proposed:

1. Given the initial conditions,x(k), all subsystems compute their disagreement
pointsdi(k) according to (24) in a separated way.

2. After computing the disagreement points, each subsystemsends its disagreement
point to the other subsystems.
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3. Each subsystem solves the optimization problem (26). If (26) is feasible, let
ũ∗i,q(k) be an optimal solution (so it satisfies the constraints, i.e., δr (k) >
σr (̃u∗i,q(k), ũ−i,q−1(k)), for r = 1, . . . ,M). If (26) is not feasible, subsystemi de-

cides not to cooperate. In this step, ifq = 1, thenũd
i (k) is considered as initial

condition for subsystemi, for solving (26). Otherwise,̃ui,q−1(k) is considered as
initial condition for subsystemi, for solving (26).

4. The subsystems that decide to cooperate update their control actions by a convex
combinatioñui,q(k) = wi ũ∗i,q(k) + (1 − wi )̃ui,q−1(k). The subsystems that decide

not to cooperate select their control actions equal toũi,q(k) = wi ũd
i (k) + (1 −

wi )̃ui,q−1(k), where 0< wi < 1.
5. Each subsystem sends its control actions to the other subsystems. If‖̃ui,q(k) −

ũi,q−1(k)‖ 6 ξ (ξ > 0) for all subsystems, or ifq = qmax, or if the maxi-
mum allowable time for the computation of the optimal control input ũ∗(k) =
(̃u∗1(k), . . . , ũ∗M(k)) has been reached, the first element of the control sequence
ũi,q(k) is applied and each subsystem returns to step 1. Else, each subsystem
returns to step 3.

At time stepk+ 1 the initial conditions for subsystemi for solving (24) are determined
by the shifted control sequencẽui,0(k + 1) = (u∗i,qend

(k + 1, k), . . . ,u∗i,qend
(k + Nu, k),0),

whereu∗Ti,qend
(k+ 1, k) denotes the optimal value of the control inputs for subsystem i at

iterationqend at time stepk+ 1 given the conditions at time stepk.
Figure 10 shows the behavior of the four-tank system, when the DMPC controller

based on game-theoretical concepts computes the optimal control inputs. The perfor-
mance index calculated for the control test isJ = 46.3177. This result was obtained
consideringqmax = 1.
Note that the aim of the game-theoretical formulation of theDMPC problem is that
the subsystems cooperate while obtaining some benefit. FromFigure 10, it is possible
to conclude that this aim has been achieved, because the pumps are working jointly in
order to reach the reference values for the levelsh1 andh2, which is the global control
objective. Also, the control decisions are taken in a cooperative way. Therefore, when
the changes in the reference values were applied, the pumps react with the purpose of
achieving the new operating point in a cooperative fashion without sacrificing the local
performance.

3.6. Serial DMPC scheme

We have implemented the scheme proposed in [16, 17] for the four-tank system.
This scheme is derived from a serial decomposition of an augmented Lagrangian for-
mulation of the centralized overall MPC problem. This results in a scheme in which
controllers perform at each control step a number of iterations to obtain agreement on
which actions should be taken. The goal of the iterations is to obtain actions that are op-
timal from a system-wide point of view using only local models and measurements and
communicating only with neighboring agents on values of interconnecting variables.

Below we first summarize the assumptions and characteristics of the serial DMPC
scheme. Then we describe how this scheme can be used to control the four-tank system.
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Figure 10: Evaluation of the control test in the real plant ofthe DMPC scheme based on a bargaining game.

3.6.1. Local dynamics and objectives
In general, consider a system divided inton = 2 subsystems. The dynamics of sub-

systemj ∈ {1, . . . ,n} are assumed to be adequately modeled by the deterministic linear
discrete-time time-invariant model (13) and (14), where the vs j(k) variables represent
the influence of other subsystems on subsystemj. For variablesxs j(k),us j(k), ys j(k)
upper and lower bounds are specified.

So-called interconnecting input variableswin,l j (k) represent the variables of sub-
systemj that are influenced by subsysteml, i.e., a selection ofvs j(k). So-called inter-
connecting output variableswout,l j (k) are the variables of subsystemj that influence a
neighboring subsysteml, i.e., a selection ofxs j(k), us j(k), andys j(k). Define the inter-
connecting inputs and outputs for the control problem of controller j at control stepk
as

win, j(k) = ys j(k), wout, j(k) = E j(xs j(k),us j(k), ys j(k)), (27)

whereE j is an interconnecting output selection matrix that contains zeros everywhere,
except for a single 1 per row corresponding to a local variable that corresponds to an
interconnecting output variable. The variableswin, j(k), wout, j(k) are partitioned such
that

win, j(k) = (win,l j,1 j(k), . . . ,win,l j,mj j(k)), (28)

wout, j(k) = (wout,l j,1 j(k), . . . ,wout,l j,mj j(k)), (29)

whereN j = {l i,1, . . . , l j,mj } is the set of indexes of themj neighbors of subsystemj. The
interconnecting inputs to the control problem of controller j with respect to controller
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l must be equal to the interconnecting outputs from the control problem of controller
l with respect to controllerj, since the variables of both control problems model the
same quantity. For controllerj this thus gives rise to the following interconnecting
constraints

win,l j (k) = wout, jl (k), wout,l j (k) = win,l j (k). (30)

The controllers are assumed to be striving for the best overall network performance
in a distributed way. In addition, the common assumption is made that the objectives of
the controllers can be represented by convex functionsJlocal, j , for j ∈ {1, . . . ,n}, which
are typically linear or quadratic.

3.6.2. Scheme outline
The distributed MPC scheme forn agents comprises at control stepk the following

steps:

1. For j = 1, . . . ,n, controller j makes a measurement of the current state of the
subsystemxs j(k).

2. The controllers cooperatively solve their control problems in the following serial
iterative way1:

(a) The iteration counters is set to 1 and the Lagrange multipliersλ̃(s)
in,l j (k),

λ̃
(s)
out, jl (k) are initialized arbitrarily.

(b) For j = 1, . . . ,n, one controllerj after another determines ˜xs
(s)
j (k + 1),

ũs
(s)
j (k), w̃(s)

in,l j (k), w̃(s)
out,l j (k) as solutions of the optimization problem

min Jlocal, j

(
x̃s j(k+ 1), ũs j(k), ỹs j(k)

)
+

∑

l∈N j

J(s)
inter, j

(
w̃in,l j (k), w̃out,l j (k)

)
,

(31)

subject to the local dynamics (13)–(14) (including the bound constraints)
and (27) of subsystemj over the horizon and the current statexs j(k). The
additional performance criterionJinter, j in (31) at iterations is defined as

J(s)
inter, j

(
w̃in,l j (k), w̃out,l j (k)

)
=


λ̃

(s)
in,l j (k)

−λ̃(s)
out, jl (k)


T [

w̃in,l j (k)
w̃out,l j (k)

]
+
γc

2

∥∥∥∥∥∥

[
w̃in,prev, jl (k) − w̃out,l j (k)
w̃out,prev, jl (k) − w̃in,l j (k)

]∥∥∥∥∥∥
2

,

wherew̃in,prev, jl (k) = w̃(s)
in, jl (k) andw̃out,prev, jl (k) = w̃(s)

out, jl (k) is the informa-
tion computed at the current iterations for each controllerl ∈ N j that has
solved its problembeforecontroller j in thecurrent iterations. In addition,
w̃in,prev, jl (k) = w̃(s−1)

in, jl (k) andw̃out,prev, jl (k) = w̃(s−1)
out, jl (k) is the information com-

puted at thepreviousiterations− 1 for the other controllers. The constant

1The tilde notation is used to represent the predicted variables over the prediction horizonN.
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γc is a positive scalar that penalizes the deviation from the interconnecting
variable iterates that were computed by the controllers before controllerj
in the current iteration and by the other controllers duringthe last iteration.
The resultsw̃(s)

in,l j (k) andw̃(s)
out,l j (k) of the optimization are sent to controller

l.
(c) Update the Lagrange multipliers,

λ̃
(s+1)
in,l j (k) = λ̃(s)

in,l j (k) + γc

(
w̃(s)

in,l j (k) − w̃(s)
out, jl (k)

)
. (32)

Sendλ̃(s+1)
in,l j (k) to controllerl and receive the multipliers from controllerl to

be used as̃λ(s+1)
out, jl (k).

(d) Move on to the next iterations+ 1 and repeat steps 2b–2c. The iterations
stop when the infinity norm for each̃λ(s+1)

in,l j (k) − λ̃(s)
in,l j (k) is smaller than a

small positive scalarγǫ .
3. The controllers implement the actions until the beginning of the next control

step.

The scheme just presented does not guarantee stability; however, as the interaction
between controllers is taken into account via the objectivefunction only, the local
optimization problems remain feasible over the iterations. In addition, under the as-
sumptions on the objective functions and prediction modelsthe solution of this scheme
converges to the solution that a centralized MPC controllerwould have obtained for a
sufficiently smallγǫ and given sufficient time for performing iterations.

3.6.3. The four-tank system
For control of the four-tank system two subsystems are defined, according to the

partition proposed in Section 2.3, but in this case,win,21 = u1, wout,12 = u1, win,12 = u2,
wout,21 = u2. The local control objectives are defined as follows:

Jlocal,1 =

N−1∑

i=0

(
(ys1(i + 1)− r1)2

+ 0.01(us1(i) − ur1)2
)

Jlocal,2 =

N−1∑

i=0

(
(ys2(i + 1)− r2)2

+ 0.01(us2(i) − ur2)2
)
.

wherer1 = s1 − h0
1, andr2 = s2 − h0

2. The target for the inputsur1 andur2 are given
by the steady inputu corresponding to the set-point (s1, s2) calculated using (1). The
output of each subsystem is predicted using the models givenby (13) and (14). The
control test performed is done using as parametersγc = 1, γǫ = 1e−2, andN = 5.
Controller 1 starts the iterations.

Figure 11 shows the trajectories resulting from the controltest. The calculated
performance index for this controller isJ = 38.18.

4. Evaluation and comparison of the results of the benchmark

4.1. Evaluation of the controllers
In this paper, eight different MPC controllers have been considered. Table 3 shows

some qualitative properties of these controllers. The entry Model Requirementsshows
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Figure 11: Evaluation of the control test on the real plant ofthe Serial DMPC scheme.

whether the controllers need full or partial knowledge of the system and whether the
model used is linear or nonlinear. The entryControl Objectivesshows whether the
controller is optimal from a centralized point of view (i.e., provides the same solution
as the centralized MPC for regulation), guarantees constraint satisfaction if a feasible
solution is obtained and whether it can be designed to guarantee closed-loop stability
in a regulation problem. TheAuxiliary Softwareentry shows which type of additional
software is needed by each controller of the distributed scheme.

The two centralized controllers are based on a linear prediction model of the full
plant and are included as a reference for the performance of the distributed MPC
schemes. Note that if the controllers could communicate without limits, they would
be able to obtain the optimal centralized solution for the linear model of the plant. No-
tice that the real optimal centralized controller should consider an accurate nonlinear
prediction model of the plant. This has not been implementedin the benchmark and
could be considered as future work.

On the other hand, the decentralized controller provides a reference on what can
be achieved with no communication among the controllers at all. All the distributed
predictive controllers are based on linear prediction models and assume that each agent
has access only to its local state and model.

It is worth noting that the centralized MPC scheme for tracking can designed to
guarantee closed-loop stability not only for regulation problems, but also for track-
ing problems with any given reference at the cost of optimality. In this benchmark,
all the ingredients needed to provide stability guaranteesfor the nominal case were
taken into account. The decentralized controller considered cannot guarantee optimal-
ity, constraint satisfaction, nor stability. Note that in order to guarantee closed-loop
stability, the DMPC scheme based on a cooperative game needsfull model knowledge
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in order to design the optimization problem (including the terminal region, the terminal
cost function, and the corresponding local controllers, see [11]) of each agent. In this
benchmark, this controller was not designed to guarantee closed-loop stability.

The distributed controllers that guarantee optimality (provided sufficient evalua-
tion time) are the serial DMPC scheme and the S-DMPC scheme. Note that these
controllers are also the ones with a larger communication and computational burden.

Another key issue in distributed schemes is the class of computational capabilities
that each controller must have. In particular, for the schemes considered each controller
must be able to solve either QP problems or general nonlinearoptimization problems.
In the experiments, the controllers used MATLAB’s optimization toolbox, in particular
quadprog andfmincon.

The properties of each of the proposed controllers are discussed and studied in the
previous works which have been included in the references. In this paper, we comment
these theoretical properties in order to compare these controllers. Note however, that in
general, these properties may not hold in the proposed benchmark because the theoret-
ical properties often assume that there are no modeling errors or disturbances and that
a given set of assumptions hold. We have carried out all the experiments with the real
plant, so there are modeling errors and disturbances. In addition, although most of the
controllers are defined for regulation, the benchmark is a reference tracking problem.
Issues such as steady-state error and disturbance estimation play a relevant role in this
benchmark. These issues may cause the designed controllersto not satisfy the design
conditions established in the original work.

4.2. Evaluation of the experimental results
The experimental results demonstrate how centralized solutions provide the best

performance while the performance of a fully decentralizedcontroller is worse. Dis-
tributed schemes in which the controllers communicate in general improve this per-
formance, although the experimental results also demonstrate that a distributed MPC
scheme is not necessarily better (according to a certain performance index) than a de-
centralized scheme and it depends on the formulation of the controller and its design.

It is also clear how those controllers that incorporate offset-free techniques (the
MPC scheme for tracking, the MPC scheme for regulation and the S-DMPC scheme
with Kalman filter) provide a better performance index. In order to obtain a measure of
the performance without the effect of the steady offset, thetransient performance index
Jt has been calculated. This index is evaluated computing the cumulated cost during
the transient. The entryts shows the cumulated settling times of the three reference
changes. This shows that those offset-free controllers have a transient performance
index similar to the total performance index while for the rest of the controllers, the
transient index is better. Note that this index only evaluates the performance during
the transient and does not take into account steady-state errors. It can be seen that the
decentralized scheme shows the shortest settling timets and the best transient perfor-
manceJt, although this controller exhibits the worst overall performanceJ. This is
due to the fact that the controller rapidly reaches an equilibrium point of the controlled
system that’s far from the real set-point (see the third stepresponse in Figure 6).

All the controllers were implemented using a MATLAB function and were not
designed to optimize the computational time. For this reason, the computation time has
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Qualitative properties
Model
Requirements

Control
Objectives

Auxiliary
Software

Centralized Tracking MPC
Linear system
Full model

Suboptimal
Constraints
Stability

QP

Centralized Regulation MPC
Linear system
Full model

Optimal
Constraints
Stability

QP

Decentralized MPC
Linear system
Local model

Suboptimal QP

DMPC Cooperative game
Linear system
Local model
(Full model)

Suboptimal
Constraints
(Stability)

QP

S-DMPC
Linear system
Local model

Optimal
Constraints

QP

DMPC Bargaining game
Linear system
Local model

Suboptimal
Constraints

NLP

Serial DMPC
Linear system
Local model

Optimal
Constraints

QP

Table 3: Table of qualitative properties of each tested controller.

not been taken into account. These computation times were lower than the sampling
time chosen for each controller and, moreover, they could bedramatically reduced
using an appropriate implementation framework.

Motivated by these issues, the computational burden is bestmeasured by the num-
ber and size of the optimization problems solved at each sampling time. The centralized
schemes solve a single QP problem with 2N optimization variables while the decen-
tralized controller solves 2 QP problems withN optimization variables. The difference
in the computational burden between these schemes grows with the prediction horizon
and the number of subsystems. Distributed schemes try to finda trade-off between the
burden of computation and communication, and optimality. The DMPC scheme based
on a cooperative game and the DMPC scheme based on a bargaining game solve a
fixed number of low-complexity optimization problems. The S-DMPC scheme and the
serial DMPC scheme provide optimality at the cost of a highercomputational burden.

On the other hand, the communicational burden of each controller is measured by
the average number of floating point numbers that have to be transmitted each sampling
time by each agent and the number of communication cycles involved. It can be seen
that iterative DMPC schemes (S-DMPC and Serial DMPC) in general need to transmit
a larger amount of information, while the two controllers based on game theory reach
suboptimal cooperative solutions with a lower communicational burden.

The centralized and distributed predictive controllers tested can potentially deal
with the satisfaction of hard constraints in the inputs and states of the plant under
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Control performance J Jt ts N # floats # trans
Centralized Tracking MPC 28.4 28.12 3280 5 N.D N.D.
Centralized Regulation MPC 25.46 23.78 2735 5 N.D N.D.
Decentralized MPC 39.54 21.2 1685 5 0 0
DMPC Cooperative game 30.71 28.19 2410 5 20 3
S-DMPC (w/o KF) 35.65 23.28 2505 100 33 10
S-DMPC (with KF) 28.61 28.26 1895 100 33 10
DMPC Bargaining game 46.32 39.52 3715 5 6 2
Serial DMPC 38.18 35.96 2800 5 [20,70]† [2,7]†

†: [a,b] denotes a possible value in this interval.

Table 4: Table of the quantitative benchmark indexes of each tested controller. # floats stands for the number
of floating-point reals transmitted between the controllersduring a sampling period. # trans denotes the
number of data packets transmitted during a sampling period.

appropriate assumptions. However, state constraints are not active throughout the evo-
lution of the controlled system although there exist statesclose to the physical limits
of the plant. All the controllers considered have demonstrated good properties in the
closed-loop experiments carried out, exhibiting stable and feasible trajectories in spite
of the disturbances and mismatches between the prediction model and the plant.

5. Conclusions

In this paper the results of the HD-MPC four-tank benchmark have been presented.
In this benchmark, eight different MPC controllers were applied to the four-tank pro-
cess plant. These controllers were based on different models and assumptions and
provide a broad view of the different distributed MPC schemes developed within the
HD-MPC project. The results obtained show how distributed strategies can improve
the results obtained by decentralized strategies using theinformation shared by the
controllers. Future work will focus on benchmarking of morecomplex systems involv-
ing more than two subsystems and on testing on the four-tank process a centralized
nonlinear MPC controller with a sufficiently large prediction horizon in order to mea-
sure the loss of performance due to the linear nature of the prediction model.
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