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Abstract : In this paper, a model-based predictive framework is proposed to optimize the 
operation and maintenance actions for power system equipment which operates in a 
changing environment of the future grid. In this framework, a predictive health model is 
proposed that predicts the health state of this equipment based on its operation and 
maintenance actions. In particular, this framework is used to predict the health state of 
transformers based on their usage and operating environment. The hot-spot temperature 
of the transformer is predicted from the expected loading of the transformer. Based on the 
hot-spot temperature predictions, the allowed loading limits of the transformers are 
determined. In the case of absence of the anticipated loading of the transformer, a 
maximum allowable loading limit of the transformer is estimated. 
 

 
1 INTRODUCTION 

Electrical power systems have been changing 
drastically in recent years, especially due to the 
introduction of deregulation in the power industry 
and the increase of distributed generation. 
Moreover, a significant portion of the electrical 
infrastructures are reaching the end of their 
operational age within the coming decade [1]. On 
the one hand, the impending replacement wave of 
these infrastructures will require extensive 
investments in the near future. On the other hand, 
the aging infrastructures are degrading the 
reliability of the system. There is a greater need for 
reducing the risk of the aging related failures and 
at the same time deferring the new investments by 
extending the life of the aging infrastructures. In 
addition, power equipment of the future grid will 
need to work with distributed generation, 
deregulation, and accelerated aging. So there is a 
need for maximum utilization of equipment without 
degrading the reliability of the system beyond the 
acceptable level [2]. 

The utilization of equipment should be based on its 
actual operating conditions as the operating 
conditions change significantly due to the 
introduction of distributed generation and 
renewable energy sources. The evolution of the 
health state of the component due to changing 
operation conditions should be tracked. For optimal 
utilization of equipment, the operational, 
maintenance, and planning decisions should be 
based on its health state. The health state of the 
equipment can be estimated by monitoring the 
equipment’s operational condition and its condition 
parameters. With the knowledge of its health state, 
operational, maintenance, and planning actions 
can be taken when they are required. 

A proper and efficient framework is required to 
incorporate the health information in these actions. 
A framework for modelling the health state of 
power system equipment was proposed in [2]. This 
framework is used for predicting the hot-spot 
temperature of the transformer. Based on the hot-
spot temperature prediction, the dynamic loading 
limit of the transformer is determined. The dynamic 
loading limit is determined for two cases. In the first 
case the predicted loading of the transformer is 
available where as in the second case the 
predicted loading of the transformer is not 
available. 

2 FRAMEWORK FOR MODEL-BASED 
OPTIMIZATION 

A framework for model-based optimization consists 
of a predictive health model and an optimizer [2]. 
The framework also defines the cost function for 
the optimization. Below, the components of this 
framework are outlined briefly. 

2.1 Predictive health model 

The predictive health model in the framework 
includes a dynamic stress model, a failure model, 
and a model for the estimation of cumulative 
stresses. As equipment ages, various stresses, 
such as electrical, thermal, mechanical, and 
environmental stresses, weaken the strength of the 
equipment. The cumulative stresses of the 
equipment depend on the usage pattern (e.g., the 
loading) and the maintenance actions (e.g., the 
replacement of parts) performed on the equipment. 
The health state of the equipment is represented 
by the cumulative stresses. Their dynamics can be 
described using a dynamic stress model such as 
the following discrete-time state-space model: 
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 ( ) ( ) ( )( )1 , ,k k k+ =x f x u  (1) 

where ( ) ( ) ( ) TT T
a d .k k k =  u u u  At discrete time 

step k, the future cumulative stresses ( )1k +x  are 

predicted based on the usage of the equipment 
( )d ku , the maintenance actions ( )a ku , and the 

current cumulative stresses ( )kx . 

As the cumulative stresses increase over time, the 
probability of failure of the equipment also 
increases. The relationship between the 
cumulative stresses and the failure rate of the 
equipment is described in a failure model. The 
failure model uses the predicted cumulative 
stresses to predict the failure rate of the 
equipment. The failure model directly maps the 
cumulative stresses x to the failure rate y as 
follows: 

 ( ) ( )( ).y k g k= x  (2) 

The cumulative stresses x can be estimated by 
condition parameters of the equipment, such as 
the partial discharge, temperature measurements, 
etc. Different online and offline monitoring systems 
can detect these condition parameters. In practice, 
only a few condition parameters (such as the 
electrical and thermal stresses) are measured by 
monitoring systems. Estimates of the monitored 
cumulative stresses xe can be made based on 
measurements c of the monitoring systems as 
follows: 

 ( ) ( )( )e x .k k=x h c  (3) 

The estimated cumulative stresses xe can be used 
to update the corresponding cumulative stresses x. 
The remaining unmonitored cumulative stresses 
are predicted by the dynamic stress model (1). 

2.2 Optimization of maintenance and 
usage 

Typically, maintenance improves the health state 
of the equipment, which, in turn, reduces its failure 
rate. An optimal maintenance action balances the 
economical cost of the maintenance, the 
improvement of the health state, and the reduction 
in the failure rate of the equipment. 

The total cost of the usage and the maintenance 
actions consist of three sub-cost functions. The 
sub-cost function of the planned usage and the 
maintenance actions Ja incorporates the 
economical cost of the planned usage and the 
maintenance. The sub-cost function of the failure 
rate Jf takes into account the cost associated with 
the failure of the equipment. The sub-cost function 
of the cumulative stresses Jcs incorporates the cost 

of the deterioration of the equipment. The 
summation of these three sub-cost functions gives 
the total cost of a particular maintenance action in 
a particular state. 

The optimization of the usage and the 
maintenance actions is considered over a given 
predicted time frame of N steps in the future, such 
that future usage and future maintenance actions 
can be optimized. The total cost over the predicted 
time frame is considered in the optimization. 
Hence, the model-based optimization problem is 
formulated as follows: 
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The predictive health model is thus used to predict 
the cumulative stresses and the failure rates for the 
planned usage and the future maintenance 
actions. The total cost is evaluated for different 
future usage and maintenance actions over the 
predicted time frame. The optimal usage and 
maintenance actions minimizing the total cost over 
the time horizon is searched for. 

3 THERMAL LOADING OF TRANSFORMER 

The framework of model-based optimization is 
applied in the dynamic loading of the transformer 
based on its thermal performance.  

The maximum allowable loading of a transformer 
mainly depends on the thermal performance of the 
transformer. IEEE C57.91 [3] defines four types of 
loading regimes, for which the suggested 
maximum hot-spot temperature is given in Table 1. 

Table 1 : Suggested maximum loading types based 
on the hot-spot temperature [3]. 

Loading types Maximum hot-spot 
temperature (°C) 

Normal life expectancy loading 120 
Planned loading beyond nameplate 130 
Long-time emergency loading 140 
Short-time emergency loading 180 

 
Under normal life expectancy loading, the 
maximum hot-spot temperature allowed is 120°C. 
The planned loading beyond the nominal rating is 
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suggested for a planned, repetitive load, provided 
that the transformer is not loaded continuously at 
the rated load. The long-time emergency loading is 
suggested only for rare emergency conditions. The 
short-time emergency loading is only suggested for 
a short time in a few abnormal emergency 
conditions. Normal life expectancy loading is 
considered risk free [3]. This loading regime is 
considered in this paper. 

4 THERMAL MODEL IN THE FRAMEWORK 
OF MODEL-BASED OPTIMIZATION 

The top-oil temperature of a transformer is 
calculated based on the ambient temperature and 
on the dynamics of the heat transfer from the oil to 
the environment through the radiators. Similarly, 
the hot-spot temperature is calculated based on 
the top-oil temperature and on the dynamics of the 
heat transfer between the windings and the oil. 
The time constants of the dynamics of the top-oil 
and hot-spot temperatures are the top-oil time 
constant and hot-spot time constant, respectively. 

IEEE C57.91 [3] suggests a top-oil time constant 
based on the mass of different parts and on the 
cooling type of the transformer. The winding time 
constant is estimated based on the cooling 
experiments. Swift et al. [4] propose a thermal 
model based on heat transfer theory, which 
includes thermal capacitances and non-linear 
thermal resistances. Their approach is extended by 
Susa [5] by considering the oil viscosity changes 
and the loss variation with the temperature.  

The differential equations describing the dynamics 
of the top-oil and the hot-spot temperatures are 
discretized by using the forward Euler 
approximation [6]. The resulting thermal models 
can be converted to the dynamic stress model (1) 
of the model-based optimization framework as 
follows [6]. The top-oil temperature xθ,oil and the 
hot-spot temperature xθ,hs are taken as cumulative 
stresses. The load factor uI is taken as the usage. 
The ambient temperature uθ,amb is taken as the 
exogenous input. The discretized top-oil model is 
given by: 
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where R is the ratio of the load losses at the rated 
current and the no-load losses, ∆θoil,rated is the rated 
top-oil temperature rise over the ambient 
temperature, τoil,rated is the rated top-oil time 
constant, n is a constant that depends on the type 

of cooling, h is the time step, and µpu is the variable 
oil viscosity in pu given by: 
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The discretized hot-spot model is then given by: 
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where ∆θhs,rated is the rated hot-spot temperature 
rise over the top-oil temperature, τwdg,rated is the 
rated hot-spot time constant, and Pcu,pu is the 
variable load losses in pu given by: 
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This thermal model is used for dynamic loading of 
transformer. Two cases are considered in this 
paper. In the first case, the predicted loading of the 
transformer is known. In the second case, the 
absence of the predicted loading is considered. 
These cases are presented in the following 
sections. 

5 DYNAMIC LOADING BASED ON 
PREDICTED LOADING 

The predicted loading of the transformer can be 
obtained from the power flow calculations based 
on anticipated generations and loads. Based on 
this predicted loading, a time-varying maximum 
loading limit is calculated. This loading limit is 
assumed to be respected by controlling the power 
flow of the transformer in the network. 

For the transformer, there are two different kinds of 
scenarios which might occur in determining the 
loading limit, which are: 

1. Case 1: The hot-spot temperature for the 
given predicted loading is below the 
maximum limit. Then there is no need for 
reducing the power flow of the transformer. 

2. Case 2: The hot-spot temperature for the 
given predicted loading is above the 
maximum limit. In this case, the loading of 
the transformer has to be reduced by 
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rerouting the power through other parts of 
the network. 

In Case 1, there is no issue regarding violation of 
the maximum hot-spot temperature limit. However, 
there is a possibility of an increase (or decrease) in 
the loading of the transformer due to unforeseen 
events, for example, another transformer in the 
network could be overloaded and the resulting 
excess power could be rerouted through the former 
transformer. In such a case, the maximum 
loadability of the transformer should be known. 
This can be achieved by giving a maximum loading 
limit for which the maximum hot-spot limit is not 
violated within the predicted time horizon. This 
maximum loading limit is chosen such that it is 
proportional to the predicted loading. 

In Case 2, the hot-spot temperature will exceed the 
maximum limit if the predicted loading is allowed 
through the transformer. In this case, the only 
option is to reduce the loading of this particular 
transformer by rerouting the power through other 
parts of the network. A ‘safe’ loading limit should 
be provided so that the hot-spot temperature does 
not exceed the maximum limit. At the same time, 
there is a need for the maximum utilization of the 
loading capability of the transformer, so that the 
net burden of rerouting of the power through other 
parts of the network is minimized. Thus, for this 
case, a maximum loading limit is provided which 
follows the predicted loading as much as possible. 
In other words, the difference between the 
maximum loading and the predicted loading is kept 
at the minimum level. 

The desired operation can be translated into the 
cost function of the optimization. These two 
different cases clearly indicate that the cost 
function of the optimization problem should have ‘a 
kind of’ double term to deal with them. The 
optimization problem is summarized as follows: 
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( )(
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where uI,pred is the predicted loading and uI,max is 
the maximum loading. c1 and c2 are coefficients of 
the two terms of the cost function. xθ,hs,max is the 
maximum hot-spot temperature. The functions foil 

and fhs represent the top-oil temperature model (5) 
and the hot-spot temperature model (7), 
respectively. α is a slack variable. 

The slack variable α is used to deal with the dual 
scenarios mentioned in Case 1 and Case 2. The 
optimization tries to minimize the quadratic term 

( ) ( )( )2

I,max I,predu k l u k lα+ − +  and maximizes the 

slack variable α. In Case 1, the maximum loading 
limit can be more than the predicted loading. Thus, 
the optimization would maximize the slack variable 
α while keeping the quadratic term to the 
minimum, i.e. 0. Effectively, this means that the 
maximum load will be larger than the predicted 
load by a factor of the slack variable α which is 
greater than 1. As a result, a maximum loading 
limit uI,max which is proportional to the predicted 
loading profile uI,pred is obtained. 

In Case 2, maximization of the slack variable α is 
not possible as the maximum loading should be 
less than the predicted load. Thus the slack 
variable α is set to its minimum value which is 1. 
Then the optimization attempts to minimize the 
difference between the maximum loading and the 
predicted loading while keeping the hot-spot 
temperature below its maximum limit. 

The optimization problem (9) consists of non-linear 
constraints. The optimization therefore is solved by 
a non-linear solver, SNOPT [7]. This solver is used 
through the Tomlab v6.1 [8] interface in Matlab 
v7.5. Analytically computed gradients of the 
constraints and the cost function are supplied to 
the solver in order to reduce the execution time of 
the optimization. 

5.1 Simulation 

The optimization presented above is solved for the 
transformer with the parameters given in [6]. A 
daily load profile of the transformer is assumed 
based on the energy demand data for an average 
Dutch household as given in [9]. The loading 
regime of normal life expectancy loading (Table 1) 
is considered for the maximum hot-spot 
temperature, i.e. xθ,hs,max = 120°C. 

The proposed algorithm is simulated for 24 hours. 
The simulation results for the period from 960 
minutes to 1380 minutes are shown in Figure 1. A 
prediction horizon N of 60 (minutes) is considered 
for the simulation. 

Between the time interval of 1080 minutes and 
1259 minutes, α cannot be increased beyond its 
minimum value of 1 due to the maximum hot-spot 
temperature constraint. Thus, the maximum 
loading is less than the predicted loading and the 
difference between them is minimized as far as 
possible. In the remainder of the time interval, the 
maximum hot-spot constraint is not violated by the 
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predicted loading, thus the slack variable α takes a 
value greater than 1. Thus, the maximum loading 
is larger than the predicted loading given by a 
factor of α. 
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Figure 1: Simulation of the dynamic loading of the 
transformer for peak load period. The prediction 
horizon is 60 minutes. Between the time interval of 
1080 minutes and 1259 minutes, the actual loading 
uI of transformer is less than the predicted loading 
uI,pred. 

6 DYNAMIC LOADING IN ABSENCE OF 
PREDICTED LOADING 

In the case of lack of predictions of the loading of 
the transformer, a number of assumptions should 
be made in order to safely control the loading. 
Predicting the loading of a transformer could be 
difficult in the case of a network with renewable 
energy sources whose generations are stochastic 
in nature. In the power distribution system, the load 
forecasting system is not present so the loading of 
a transformer cannot be predicted accurately. 
Moreover, the control equipment used in such a 
system would have a limited computational 
capability due to the cost of such equipment. 

In such a system, the working principle of the 
dynamic loading should be simple enough so that 
the control equipment can take the dynamic 
loading into consideration along with its other 
functions, such as the metering, the control and 
protection of the network, and the information 
exchange support. In the absence of the predicted 
loading, a constant loading limit based on the 
current hot-spot temperature is provided for a 
certain time period. This constant loading limit is 
the maximum loading that the transformer could 
supply for the time period considered, without 
exceeding the maximum hot-spot temperature 
limit. The optimization problem for this kind of 
dynamic loading can be formulated as follows: 
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The solution to the optimization problem (11) gives 
the maximum loading limit. This algorithm requires 
less coding and less computation power, 
compared to the algorithm of solving the 
optimization problem (9). By simplifying the 
optimization problem, the computational 
requirement of the system is reduced. Thus, the 
system can be incorporated in the existing control 
system without taking a major portion of the 
computation power of the system. 

6.1 Simulation 

The optimization problem (11) is solved for the 
transformer given in the previous section with the 
same operating conditions. The simulation results 
for a prediction horizon N of 60 (minutes) is 
presented in Figure 2. As observed in the figure, 
the maximum loading limit uI,max provided by this 
optimization is a constant level for the prediction 
horizon of 60 (minutes). The optimization does not 
require the predicted loading uI,pred, however, it is 
plotted in the figure to provide an impression of the 
required rerouting of the transformer load. As seen 
in the figure, the hot-spot temperature xθ,hs is 
maintained below the maximum limit of 120°C. 
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Figure 2: Simulation of the dynamic loading of the 
transformer without the information of the load 
prediction. A constant maximum loading limit uI,max 
is provided for the period of the prediction horizon 
of 60 minutes. 
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7 COMPARISON OF SIMULATION RESULTS 

The dynamic loading of a transformer is 
considered for two cases. In Section 5, the 
predicted loading of the transformer is taken into 
account while determining the maximum loading 
limit of the transformer. In Section 6, the maximum 
loading limit is generated based on the current 
condition of the transformer without the knowledge 
of the predicted loading. 

The amount of energy rerouted for the simulations 
presented in these two sections is summarized in 
Table 2. As seen in the table, the simulation 
without the knowledge of the predicted loading 
(Section 6), with a prediction horizon of 1 minute 
gives the least energy rerouting requirement. This 
is because the optimization calculates the new 
loading limit after each time step. This means the 
communication between the transformer controller 
and the power flow controller has to be done in a 
time interval of 1 minute. As the prediction time is 
increased from 1 minute to 15 minutes and 60 
minutes, the rerouted energy increases. 

Table 2:  Total energy required to be rerouted 
during the simulation of 24 hours. 

Prediction Horizon 
N 

Energy Rerouting Required 
( )( )I,pred I

24 hours

) ( )u k u k h−∑  

Based on predicted loading 
60 minutes 43.7 MWh 
15 minutes 42.8 MWh 
Without predicted loading 
60 minutes 48.3 MWh 
15 minutes 43.7 MWh 
1 minute 42.7 MWh 

 
When the predicted loading is taken into account 
(Section 5), the energy rerouted is less than the 
case without predictions (Section 6) for the same 
prediction horizon. In addition, for a larger 
prediction horizon, the required rerouted energy 
does not increase as much as in Section 6. 

8 CONCLUSION 

A model-based predictive optimization framework 
has been applied for the optimization of the loading 
of a transformer. The proposed method optimizes 
the utilization of the transformer by recommending 
load changes when required and by keeping the 
temperature within the safe limits. Scenarios of 
availability and absence of predicted loading of the 
transformer were considered. For the both 
scenarios, the hot-spot temperature was 
maintained below the allowed limit. 

For the same prediction horizon, the required load 
control in the first case is less. The second case 
has the advantage that it is simpler for 
implementation. 
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