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Abstract: As the complexity of power networks increases, the installation of devices such as
High Voltage Direct Current links (HVDC) and Flexible AC Transmission Systems (FACTS),
and the use of advanced control techniques, can be used to improve network stability. Model
Predictive Control (MPC) is an example of such an advanced control technique. However, it
is often impractical to implement this technique in a centralised manner, as often the problem
can be too computationally complex or several independent controllers may be responsible
for different subsystems. Distributed approaches use communication between a number of
controllers to approximate control of a centralised system. In this paper it is proposed to use
distributed MPC for controlling a multiple link HVDC system using local communications only.

1. INTRODUCTION

Power networks are large, complex, highly interconnected
systems. As increasing demands are imposed on power
networks more advanced control techniques are needed
in order to maintain network stability. HVDC lines allow
for the efficient transmission of large quantities of power
over long distances. Moreover, due to their high level of
controllability these devices can improve transient stability
and power system damping (Kundur, 1994). In Erikkson
(2008), a multiple HVDC link system based on part of
the Nordic power grid is presented. The techniques used
to control this system were primarily centralised, non-
optimization based control techniques.

Model Predictive Control (MPC) (Rossiter, 2003) (also
known as Receding Horizon Control) is an optimisation
based control technique, in which the controller uses state-
space and output predictions to calculate optimal control
moves for the system. One of the main advantages of this
control technique, over non-optimization based techniques,
is the systematic and intuitive manner in which constraints
are incorporated into the control system and the fact that
delays are naturally catered for. It is a mature technology
at this stage, with stability and robustness analysis well
established for the linear, time-invariant, centralised case.

Power system MPC problems can get quite large, and
span vast geographical areas. Sections of these power
systems can are often controlled by separate controllers,
e.g. countries may share the a power network but will
usually have their own control operator, or in a deregulated
system many different companies may control the grid
within a country. Thus, it is often desirable to use a control
technique that allows a number of subsystems, using local
controllers, to coordinate their actions.

Distributed MPC techniques allow these problems to be
broken into a number of smaller local MPC problems that
can be coordinated with communication. These methods
have been seen to be quite effective when used for the
control of power systems, many of which have included
FACTS devices (Negenborn et al., 2008; Venkat, 2006;
Talukdar et al., 2005). In this paper it is proposed to
use distributed MPC using local communications for the
control of the multiple HVDC link system. The distributed
MPC technique used here (Negenborn et al., 2008) is
extended to allow the coordination of the inputs, as well
as states that are common to control problems of different
agents.

2. THE MULTIPLE HVDC LINK SYSTEM

The continuous-time dynamics of the multiple link HVDC
system under study here are described in this section.

2.1 Multiple HVDC link system description

Fig. 1 shows the system to which we will in this paper
apply the generally applicable distributed MPC scheme
discussed in the next section. This system is based on the
multiple HVDC link system between Denmark, Norway,
and Sweden (Erikkson, 2008). It consists of 4 buses with
their own generation and loads. Both AC and HVDC
lines connect the buses. The HVDC lines are of the Line
Commutated Converter type (HVDC-LCC) (Pai et al.,
1981). Generation capacities and loads are kept constant
in this paper.

2.2 Modelling

The classical swing equations for generator a are:
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Fig. 1. The multiple HVDC link system with areas con-
trolled by agents (Erikkson, 2008).

d

dt
δr,a(t) = ω0∆ωr,a(t) (1)

d

dt
ωr,a(t) =

1

2Ha

(Pm,a(t) − PG,a(t) − Da∆ωr,a(t)), (2)

where δr,a(t) is the rotor angle (rad/s), Ha is the inertial
constant (s), ωr,a(t) is the rotor speed per unit, ∆ωr,a(t)=
ωr,a(t)−1 is the rotor speed deviation per unit, ω0 is the
base rotor speed (rad/s), Pm,a(t) and PG,a(t) are the
mechanical and generated power per unit, respectively,
and Da is the damping factor per unit (Kundur, 1994).

The current injected by generator a,
−→
Ig,a(t), is given by:

−→
Ig,a(t) =

−→
E

′

qa(t) −
−→
Ua(t)

jx
′

da

, (3)

where
−→
E

′

q,a(t) = E
′

q,a(t)∠δa(t) is the internal voltage per

unit with magnitude E
′

q,a(t) and angle δa(t),
−→
Ua(t) =

Ua(t)∠θa(t) is the voltage per unit at the bus to which
the generator is connected with magnitude Ua(t) and

angle θa(t), and x
′

d,a is the d-axis transient reactance. All

variables are defined as in Kundur (1994). The generated
power is then given by:

PG,a(t) = ℜ[
−→
Eg,a(t)

−→
I ∗
g,a(t)]. (4)

Equations (1) and (2) of the classical model of a syn-

chronous generator assume that E
′

q,a(t) and x
′

d,a are con-

stant (Kundur, 1994). These classical equations are suit-
able for analysis of power oscillations and transient sta-
bility studies. Note: For the sake of notational simplicity,
below the continuous time index t is omitted.

An impedance matrix gives the relationship between the
voltage nodes and currents in the system. Lines and loads
are represented by impedances in this matrix.

A π-model representation (Kundur, 1994) of the AC lines
is used to represent the line inductances and capacitances,
including the possibility for 3-phase to ground faults in
the middle of the lines. Loads are modelled as constant
impedances in the impedance matrix, i.e. where

−→
Sa =

PLLa + jQLLa is the consumed complex load power in VA,

the load impedance
−→
XLLa is given by

−→
XLLa =

−→
Ua

−→
U ∗

a
−→
S ∗

a

, (5)

where x∗ denotes the complex conjugate of x.

The HVDC link model in Erikkson (2008) is used to
simplify the representation of the system dynamics. This
idealised version of the HVDC link assumes instantaneous,
lossless power delivery and that the power factors are equal
on both the inverter and rectifier sides. This model is fur-
ther simplified by assuming that QHVDC,j = qr,jPHVDC,j ,
where qr,j is a constant, and PHVDC,j and QHVDC,j are
the active and reactive HVDC powers in HVDC line j
(Pai et al., 1981).

The internal node representation is used to model the
system dynamics (Erikkson, 2008) as it allows the power
system to be represented using a system of first order
differential equations. To do this it is assumed that Pm,a

is constant and that the loads are modelled as constant
impedances.

Using Kirchoff’s current law, an impedance matrix is
constructed:

(

Ig

IHVDC

)

=

(

Y A Y B

Y C Y D

) (

E
U

)

, (6)

where Ig = [
−→
Ig,1, . . . ,

−→
Ig,n]T, E = [

−→
E

′

q,1, . . . ,
−→
E

′

q,n]T, U =

[
−→
U1, . . . ,

−→
Un]T and IHVDC = [

−→
IHVDC,1,1, . . . ,

−→
IHVDC,n,m]T

where
−→
IHVDC,i,j denotes the current coming from HVDC

line i as seen by bus j.

From (6) the following can be found for Ig in terms of
IHVDC and E:

Ig =(Y A − Y BY −1
D Y C)E + Y BY −1

D IHVDC

= (G + jB)E + Y HVDCIHVDC.
(7)

where G=ℜ[Y A − Y BY −1
D Y C], B=ℑ[Y A − Y BY −1

D Y C]

and Y HVDC=Y BY −1
D .

Using (2), (4), and (7), yields the following swing equation
for generator a:
d

dt
ωr,a =

1

2Ha

(

Pm,a − Ga,aE
′2
q,a−

n
∑

l=1
l 6=a

E
′

q,aE
′

q,l(Ga,l cos(δr,a − δr,l) + Ba,l sin(δr,a − δr,l))

+ ga,1PHVDC,1 . . . + ga,mPHVDC,m − Da∆ωr,a

)

(8)

where ga,j is the coefficent of the contribution of the power
injections from HVDC line j at bus a.

It is desired to maintain the rotor frequencies as close as
possible to 1 pu at all times. Separate control operators
are made responsible for the control of the 4 different
areas. Therefore it is desirable to install a control system
that returns the rotor frequencies to this setpoint in the
minimum possible time after disturbances, in a distributed
manner.

3. MODEL PREDICTIVE CONTROL

3.1 Definition of an agent

An agent is defined here as an entity responsible for
the control of a system or subsystem, with access to
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the current state of the system or subsystem it controls.
Agents have access to a model of the local system or
subsystem and in the distributed case, agents are able
to communicate with other agents who share a common
variable. Agents compute values for their control inputs at
discrete time steps based on the information available to
them.

3.2 Description and state-space prediction

In MPC a control agent uses a discrete-time system
model that predicts the system’s future trajectory over a
prediction horizon in order to calculate optimal discrete
inputs over this horizon. Only the input for the first
discrete time step is applied. At the next time step a
new action is determined. The prediction horizon moves
forward in a receding manner each time step.

A system consisting of n subsystems is considered, where
each subsystem consists of a set of nodes and the intercon-
nections between these nodes. Subsystems are assumed to
be non-overlapping, i.e., nodes do not appear in 2 different
subsystems. A discrete, linear, time-invariant state-space
model is used to model the subsystem dynamics. This is
given as follows:

xi(k + 1) = Aixi(k) + Biui(k) + Didi(k) + Vivi(k) (9)

yi(k) = Cx
i xi(k) + Cu

i ui(k) + Cd
i di(k) + Cv

i vi(k), (10)

where xi(k) is the state of subsystem i, ui(k) are local
subsystem inputs, di(k) are known disturbances, yi(k) are
subsystem outputs, and vi(k) are external inputs from
other subsystems that influence subsystem i at sample
time k.

To simplify notation, the prediction vector, of horizon N
is first introduced. For a general vector z, its prediction
vector is z̃(k) = [zT(k) . . . zT(k + N − 1)]T. State predic-
tions for subsystem i over the prediction horizon are then
determined using (9) as follows:

x̃i(k+1) = Af
ixi(k)+Bf

iũi(k)+Df
id̃i(k)+V f

iṽi(k) (11)

where Af
i, Bf

i, Df
i, V f

i are the state space prediction ma-
trices. The derivation of these matrices is well established
in the literature (Rossiter, 2003).

3.3 MPC formulations

MPC for an individual subsystem: In a system of n sub-
systems, with agents i=1, . . . , n, assume a situation where
agent i operates individually without communication with
other agents. Suppose for now that it knows xi(k), d̃i(k),
and ṽi(k). The following optimisation problem is then
solved at each time step:

ũi(k) = arg min
ũi(k)

J local
i (xi(k), ũi(k), d̃i(k), ṽi(k))

subject to ũi(k) ∈ Ωi, x̃i(k) ∈ θi,
(12)

where Ωi and θi are the sets of admissable inputs and
states, respectively, for subsystem i, and the local cost
of subsystem i at the kth sample time is (henceforth, de-

note J local
i (xi(k), ũi(k), d̃i(k), ṽi(k)) as J local

i (k), for con-
venience),

J local
i (k) =

N−1
∑

p=0

J
stage
i (k, p). (13)

Here J
stage
i (k, p) is the cost at the pth step of the prediction

horizon for subsystem i at sample k. This is generally set
up as a weighted sum of the square of the errors at the pth

prediction step.

Only the value for ui(k) is applied to the subsystem after
optimisation, and this process is repeated every time step,
with the new prediction horizon moving forward one time
step.

However, when many subsystems are interconnected, then
knowledge of ṽi(k) cannot be assumed, as ṽi(k) is depen-
dent on the dynamics of other subsystems. Hence, subsys-
tems must reach a consensus on values for interconnecting
variables. Before showing how to achieve consensus with
MPC, terminology is developed to define interconnecting
inputs and outputs.

Consider that there is a set of mi agents, with indices j ∈
Ni, which are connected to agent i. The interconnecting
input vector, win

ji, is defined as the vector of inputs to
control problem i from agent j and the interconnecting
output vector wout

ji is defined as the vector of outputs to
control problem j from agent i.

The vectors of all interconnecting inputs, w̃in
i , and out-

puts, w̃out
i , of agent i are given as follows:

w̃in
i = ṽi(k),

w̃out
i = Ei[x̃

T
i (k + 1) ũT

i (k) ỹT
i (k)]T

(14)

where Ei is a matrix of zeros except those places where a
1 picks out the appropriate variables shared with agents
j ∈ Ni.

Centralised MPC: In centralised MPC, instead of each
subsystem having its own control agent, one central agent
controls the whole system solving all the individual sub-
systems MPC problems simultaneously. For a system of n
subsystems, the combined overall optimization problem is
formed as follows:

min
ũ1(k),...,ũn(k)

n
∑

i=0

J local
i (k)

subject to ũi(k) ∈ Ωi, x̃i(k) ∈ θi,

(15)

and subject to the following equality constraints for i =
1, . . . , n,

w̃in
ji = w̃out

ij , for j ∈ Ni, (16)

i.e., all interconnecting variables are made equal to each
other over the prediction horizon according to the dynam-
ics of each subsystem as given in (11). This is usually a
quadratic function that can be solved using a standard
quadratic solver such as quadprog in Matlab.

However, often the implementation of centralised MPC
can be impractical due to technical constraints, e.g., the
computational load being too large. Therefore several
agents are used to control different subsystems and the
behaviour of these agents together approximates the be-
haviour of the centralised MPC.

Decentralised MPC: Decentralised MPC schemes as-
sume that interconnected subsystems interact weakly and
so ignore the effects of interactions with other subsystems
in their MPC problems. Agents do not communicate with
each other and independently solve an optimisation prob-
lem similar to (12) for each subsystem without seeking to
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achieve consensus amongst connected subsystems. How-
ever ignoring these interactions between subsystems can
lead to highly suboptimal behaviour.

Distributed case: In distributed MPC systems agents
communicate with each other in order to coordinate their
control actions. An augmented Lagrangian formulation
can be made of (15) to incorporate the equality constraints
(16) into the cost function. In Negenborn et al. (2008) the
quadratic terms of the augmented Lagrangian formulation
are distributed across agents using Block Coordinate De-
scent (Royo, 2001).

In this method one agent at a time optimises values for its
inputs, ũi(k), and its desired interconnecting input vari-

ables w̃in
ji(k) for each j ∈ Ni. The optimization problem

of agent i, for i = 1, . . . , n, for the lth iteration of the
distributed MPC cycle, at the kth sample is:

min
ũi(k),{w̃

in

ji
:j∈Ni}

J local
i (k) +

∑

j∈Ni

J inter
i (k, l) (17)

where J inter
i (k, l) is the cost associated with the inter-agent

coordination given by:

J inter
i (k, l) =

[

λ̃
in

ji(l)

−λ̃
in

ij(l)

]T
[

w̃in
ji(l)

w̃out
ji (l)

]

+
c

2

∥

∥

∥

∥

∥

[

w̃
in,prev
ij (l) − w̃out

ji (l)

w̃
out,prev
ij (l) − w̃in

ji(l)

]
∥

∥

∥

∥

∥

2

2

.

(18)

where c is a positive constant and λ̃
in

ji is the Lagrange
multiplier associated with the interconnecting constraint
w̃in

ji = w̃out
ij .

Each agent optimises this function, using a suitable opti-
misation package, in a serial fashion communicating the
interconnecting variables with its neighbours. The values
w̃

out,prev
ij (l), w̃

in,prev
ij (l) are taken as the most recently

updated values of w̃out
ij and w̃in

ij respectively.

One optimisation cycle is completed when all agents have
performed an optimisation. When the optimisation cycle
is finished, Lagrange multipliers are updated as follows:

λ̃
in

ji (l + 1) = λ̃
in

ji (l) + c
(

w̃in
ji − w̃out

ij

)

, (19)

Iterations are continued until:

||λ̃
in

ji(l + 1) − λ̃
in

ji(l)||∞ ≤ ǫ

for i = 1, . . . , n and j ∈ Ni

(20)

where ǫ is a specified tolerance and ‖.‖∞ denotes the
infinity norm.

3.4 Extension to coupled inputs

In typical control applications, agents have their own local
control inputs and control inputs are not shared between
agents. However, in the application in this paper all 4
agents have to determine actions for the 2 control inputs,
PHVDC,1 and PHVDC,2. In other circumstances different
agents’ local inputs may be coupled for example via the
objective function or through the system dynamics.

In this paper agents achieve consensus on these shared
control inputs by creating duplicate variable vector, w̃u,a,
for agent a, of the control inputs, ũ. These duplicate

variables are then treated as local control inputs by each
of the agents. Equality constraints are then placed on the
duplicate variables as follows w̃u,1=w̃u,2, w̃u,2=w̃u,3,. . . ,
w̃u,n−1=w̃u,n, such that w̃u,1=. . .=w̃u,n for a system of
n subsystems. When the problem is distributed amongst
agents, then each agent will optimise to find the local du-
plicate inputs. Agents then compare their local duplicate
inputs to the values calculated previously by connected
agents’ for their duplicate variables in order to achieve
consensus.

When consensus is reached, i.e., agents have agreed on
values for duplicate control inputs and other intercon-
necting variables, one agent is chosen per control input
(the designation of these agents is problem dependent and
would be chosen as seen fit by the parties involved in
the control of the system) to apply its calculated value
for the input to the real system. The input applied will
differ slightly from that calculated by the other agents,
depending on the values of c and ǫ, as these determine to
what extent agents will form consensus on variables.

4. SIMULATION RESULTS

The distributed MPC scheme is used to control the coupled
HVDC link system. The control inputs, the HVDC line
powers, are common to all 4 agents and the AC connected
buses share interconnecting variables too. A simplification
here is to directly calculate and apply the HVDC powers.
However in a real system, currents are injected and so these
would have to be calculated from these powers.

One agent is assigned per HVDC link as the HVDC link
control agent, sending the HVDC power it calculated at
the end of each control cycle through the link. Communi-
cation is needed between the agents in order to coordinate
the HVDC powers sent to and received by each agent.

4.1 Simulation description and parameters

Simulations are carried out in Matlab 7.6. Simulink is used
to simulate the nonlinear, continuous time power system.
All MPC optimisations are performed using quadprog.
Distributed and centralised MPC optimisations, using
linearised state space models, are carried out at fixed time
steps of 10ms using Matlab. A 3 phase to ground fault is
applied to line 1 for 100ms after 1ms in the simulation. All
output measurements are considered noise-free. The power
system is set up as described in Section 2. The control
system setup is described next.

Linear, state-space control models of the subsystems are
derived from (1) and (8), for each generator, in order to
form state predictions. Before each control cycle the state
equations are linearised about the current operating point
as follows:

d

dt

[

∆δr,a

∆ωr,a

]

=

[

0 ω0
∂fr,a

∂δr,a
|op

∂fr,a

∂ωr,a
|op

] [

∆δr,a

∆ωr,a

]

+

[

0 0
∂fr,a

∂P1
|op

∂fr,a

∂P2
|op

] [

∆P1

∆P2

]

+

[

0
∂fr,a

∂δrl
|op

]

∆δrl

(21)

where ∆ denotes a deviation of the relevant variable from
its operating point, fr,a(δr,a, ωr,a, P1, P2, δrl) = d

dtωr,a,
op denotes the current operating point for the relevant
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Fig. 2. Sample plots of pu frequency vs. time.

variable and Pn is used instead of PHVDC,n for convenience
in the above equation.

Taking the states xa = [∆δr,a ∆ωr,a]T, the inputs ua =
[∆PHVDC,1 ∆PHVDC,2]

T, the interconnecting input va =
∆δr,l and discretising equation (21) using Euler’s method
with a sample time τ = 0.01s, the state-space equations
can be formed as in (9). This is then used to make pre-
dictions for the distributed MPC controller. A prediction
horizon of N = 50 is used so as to accurately represent the
system dynamics in the optimisation.

Each agent a’s stage cost function (there is one agent for
each bus so for convenience the subscript a is used to index
both), J stage

a (k, p), for the pth prediction step at sample
step k, is given as follows:

J stage
a (k, p) = (ωr,a(k + p) − 1)Ra(ωr,a(k + p) − 1), (22)

where Ra = 0.8. This cost function penalises deviations of
the frequency from the base frequency.

The interconnection cost for the distributed MPC case at
sample k and iteration l of the control cycle, J inter

a (k, l),
is formed from a centralised augmented Lagrangian MPC
formulation which is given as follows:

min
ũ1(k),...,ũ4(k)

4
∑

a=1

(

J local
a (k)

)

+





























λ̃
δr,4

in41

λ̃
δr,3

in32

λ̃
δr,2

in23

λ̃
δr,1

in14

λ̃u,41

λ̃u,12

λ̃u,23

λ̃u,34





























T
























w̃
δr,4

in41 − w̃
δr,4

out14

w̃
δr,3

in32 − w̃
δr,3

out23

w̃
δr,2

in23 − w̃
δr,2

out32

w̃
δr,1

in14 − w̃
δr,1

out41
w̃u,1 − w̃u,4

w̃u,2 − w̃u,1

w̃u,3 − w̃u,2

w̃u,4 − w̃u,3

























+
c

2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

w̃
δr,4

in41 − w̃
δr,4

out14

w̃
δr,3

in32 − w̃
δr,3

out23

w̃
δr,2

in23 − w̃
δr,2

out32

w̃
δr,1

in14 − w̃
δr,1

out41
w̃u,1 − w̃u,4

w̃u,2 − w̃u,1

w̃u,3 − w̃u,2

w̃u,4 − w̃u,3

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

2

(23)

where l’s are omitted for compactness. This formulation
enables the distribution of the problem in such a way that
agents can reach agreement on the control inputs, i.e., the
HVDC powers.

Each agent a has a duplicate vector of the control inputs
w̃u,a(k) = [∆P̃ HVDC,1(k)T ∆P̃ HVDC,2(k)]. The order in
which agents optimise for the distributed MPC cycles
starts with agent 1 and ends with 4. Therefore in the cen-
tralised case the equality constraint w̃u,a(k) = w̃u,a,last(k)
is applied for each agent (wu,a,last denotes the last agent
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Fig. 3. Number of control iterations needed at each sample.

to optimise) in order to reach consensus on the duplicate
input values. Interconnecting constraints between inter-
connecting rotor position variables, δr, are also applied.

When (23) is distributed amongst the agents using Block
Coordinate Descent, J inter

a (k, l), takes the following dis-
tributed form for agent a, where bus j is AC connected to
bus a:

J inter
a =
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∥
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∥

∥

∥

∥

∥

∥
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(24)

where wu,a,next denotes the next agent to optimise and k’s
and l’s are dropped for compactness.

After agent a optimises, it sends the relevant updated val-
ues of the variables to the agents to which it is connected
for use in their distributed MPC optimisations. The total
cost function for agent a is given by (17). This can be
put into quadratic form using simple matrix manipula-
tion where the optimisation vector is ũopt(k) = [ũT(k)

w̃T
in(k)]T. This is a vector of 149 variables representing

the HVDC powers and interconnecting inputs to each area
over the full prediction horizon.

The HVDC lines range in per unit are −2 ≤ P̃ HVDC(k) ≤
2 and the per unit frequency range at all buses is 0.99 ≤
ω̃(k) ≤ 1.01, where A=[A, . . . , A]T. The distributed MPC
parameters related to communication are given as follows:
c = 0.1, ǫ = 10−4.

When the distributed MPC control iterations are com-
pleted the final control inputs, PHVDC,1(k) and PHVDC,2(k)
calculated by agents 2 and 3 respectively, are the control
inputs that are applied.
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scheme
MPC

Decentralised Centralised Distributed

Jsim 0.0065 0.0023 0.0045

Table 1. Comparison of Jsim for MPC schemes.

4.2 Results

The results of the simulation run can be seen in the Figs.
2(a) and 2(b), which show the frequencies at buses 1 and
3 plotted against time. These results are compared with
centralised and decentralised MPC controllers. The cost
over the full simulation is computed as follows:

Jsim =

n
∑

a=1

tf
∑

k=1

J stage
a (k). (25)

where tf is the final sample in the simulation. The state
values used in calculating J stage

a (k) are the state values
taken from the power system at the kth sample measured
during simulation. It can be seen in Table 1 that the Jsim

performance of the distributed MPC lies between that of
the decentralised MPC and the centralised MPC.

Looking at Figs. 2(a) and 2(b), the frequency responses
obtained with distributed MPC are quite close to those
of the centralised controller and much better than those
found with the decentralised controller. The trade-off
for this performance is a significant computational and
communications overhead.

The average and longest times for a full distributed MPC
cycle (i.e. the time taken for agents to reach their final
decisions with consensus on the interconnecting variables)
were 1.23 s and 3.17 s respectively on a computer with an

Intel R© Core
TM

2 6400 operating at 2.13GHz and with 3
GB of RAM. Each agent communicates to it’s connected
agents once in a serial fashion during during a distributed
MPC iteration.

The number of distributed MPC iterations necessary to
complete each optimisation cycle (i.e. the number of itera-
tions needed at each distributed MPC cycle for all agents
to reach consensus) represents the level of communication
necessary at each sample. This is given in Fig 3.

The disparity between centralised and distributed MPC
setpoint tracking performance could be accounted for by
the fact the distributed MPC optimises for a set of dupli-
cations of the control inputs and only seeks agreement on
these duplications within ǫ in order to calculate the suit-
able control inputs. The centralised MPC calculates only
one set of control inputs which are applied to the system
and so the predictions for each area are more accurate,
resulting in better setpoint tracking performance.

In the example in this paper, generation capacities are kept
constant and the modulation of the HVDC links alone is
used to restabilise the system. System performance could
potentially be improved by allowing generator capacities
to vary, as is the case in most real systems. The improved
controllability could allow offsets such as those in Fig. 2(a)
to be reduced.

5. CONCLUSIONS AND FUTURE RESEARCH

Here the application of a distributed MPC to a multiple
link HVDC system is proposed. The resultant setpoint

tracking performance is significantly better than that of
a decentralised MPC controller and close to that of a
centralised MPC controller.

However this performance comes with a significant com-
munication and computational overhead. Ways of reducing
the computational and communication overhead will be
needed before the distributed MPC in this paper could
be implemented in reality. Furthermore, stability and con-
vergence guarantees should be investigated for this dis-
tributed MPC technique. Communication delays and data
transmission errors are other issues that would affect the
control performance. These problems form the basis for
future research in this area.
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