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Hybrid model predictive control using time-instant optimization

for the Rhine-Meuse Delta

H. van Ekeren, R.R. Negenborn, P.J. van Overloop, B. De Schutter

Abstract— In order to provide safety against high sea water
levels, in many low-lying countries on the one hand dunes are
maintained at a certain safety level and dikes are built, while on
the other hand large control structures that can be controlled
dynamically are constructed. Currently, these structures are
often operated purely locally, without coordination on actions
between different structures. Automatically coordinating the
actions is particularly difficult, since open water systems are
complex, hybrid systems, in the sense that continuous dynamics
(e.g., the evolution of the water levels) are mixed with discrete
events (e.g., the opening or closing of barriers). In low-lands,
this complexity is increased further due to bi-directional water
flows resulting from backwater effects and interconnectivity of
flows in different parts of river deltas. In this paper, we propose
a model predictive control (MPC) approach that is aimed at
automatically coordinating the different actions. Hereby, the
hybrid nature is explicitly addressed. In order to reduce the
computational effort required to solve the hybrid MPC problem
we propose to use TIO-MPC, where TIO stands for time-instant
optimization. A simulation study illustrates the potential of the
proposed controller in comparison with the current setup in
the Rhine-Meuse delta in The Netherlands.

Index Terms— Hybrid systems, open water systems, model
predictive control, time-instant optimization

I. INTRODUCTION

Floods are one of the most common type of natural

disasters that Europe has to face. In the period between

1998 and 2004 there were more than 100 major floods in

Europe. Due to the changing climate, in the nearby future,

flood prevention will become even more important as sea

levels will rise and precipitation will intensify [1].

One of the areas where increased problems are expected is

the highly populated Rhine-Meuse delta in The Netherlands,

including the large cities of Rotterdam and Dordrecht, and

the largest port of Europe (see Figure 1) [1]. To protect the

area against floods, storm surge barriers and dikes have been

constructed. The barriers each have local control systems

consisting of simple if-then-else rules that determine when a

barrier should be closed or opened. These local rules do not

in the best way utilize the capacity available in the system.

We therefore investigate how coordination of the actions of

these structures can improve performance.

The storm surge barriers and the water system of the

Rhine-Meuse delta can be considered as a hybrid system,
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Fig. 1: The Rhine-Meuse delta divided into 4 reservoirs.

in the sense that several barriers are designed to be either

opened or closed (discrete) and dikes can overtop (discrete),

while at the same time some other barriers are operated with

continuous actions and the water system involves continuous

dynamics (evolution of water flows and levels). The decision

to close the barriers depends on water levels, water flows,

and weather conditions in the near future. The main control

goal in the Rhine-Meuse delta involves a trade-off between

keeping water levels low and minimizing the cost of using

the storm surge barriers.

Instead of using local rule-based control, we propose to

use model predictive control (MPC), an optimization-based

control technique originating from the process industry [2],

and now gaining increasing attention also in other fields,

including the field of open water systems [3], [4], [5], [6],

[7], [8], [9], [10]. In our case, we are considering a hybrid

system representation of the water system due to the presence

of both continuous and discrete elements. Each of these water

applications, however, does not consider this hybrid nature

explicitly. Therefore, we propose to use a particular hybrid

MPC technique for coordinating the actions of the structures

that explicitly takes into account the hybrid nature of the

system, here referred to as TIO-MPC, where TIO stands for

time-instant optimization. Contrarily to other hybrid MPC

techniques (such as the well-known hybrid MPC based on

mixed-logical dynamic (MLD) modeling framework [11],

[12]), this technique optimizes time instants. This has as

advantage that computational time requirements are reduced

and nonlinear prediction models can directly be used. Before,

such a technique has been used for traffic control [13]; here

we investigate its use for water control.

This paper is organized as follows. Section II describes

the model of the Rhine-Meuse case study. Section III pro-

poses hybrid MPC using time-instant optimization. Section

IV illustrates the potential of the proposed approach in a

simulation study. Section V concludes this paper.

II. RHINE-MEUSE DELTA

The Rhine-Meuse delta water system consists of a large

number of rivers and sea outlets. The boundary conditions in
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Fig. 2: Structure of the Rhine-Meuse delta model.

the East of the water system consist of the rivers Lek, Waal,

and Meuse. The boundary conditions in the West consist

of the connections of two rivers (Nieuwe Waterweg and

Hartelkanaal) and one outlet (Haringvliet) with the North

Sea. There are three main barriers: the Maeslant barrier,

the Hartel barrier, the Hollandsche IJssel barrier, and the

Haringvliet sluices. The first three barriers are designed

to be either completely open or completely closed. In the

open state the rivers in which these barriers are build can

flow freely and ships can pass without any disturbance. In

the closed state river flows and navigation are completely

blocked. The last barrier consists of 17 gates that can move

independently between a maximum and a minimum height.

There, ships can pass via a lock.

A. Area model

Below the most important characteristics of the discrete-

time model of the Rhine-Meuse delta considered in this paper

are given. The description of the full model, including all

equations and parameters can be found in [14]. The model

presented is an extension of the model in [15].

The water system under consideration is represented by 4

large reservoirs that are interconnected by rivers, see Figures

1 and 2. The states x1, x2, x3, and x4 represent the water levels

in reservoirs 1, 2, 3, and 4, respectively. The change in each

of these water levels is determined using a discretized mass

balance as follows:

x1(k+ 1) = x1(k)+
Ts

As1

(

uhijb(k)
) [q12

(

x1(k),x2(k)
)

+ q1d(k)− qnw

(

x1(k),hhvh(k),umb(k)
)

− qhk

(

x1(k),hhvh(k),uhb(k)
)

] (1)

x2(k+ 1) = x2(k)+
Ts

As2

[−q12

(

x1(k),x2(k)
)

+ q23

(

x2(k),x3(k)
)

+ q24

(

x2(k),x4(k)
)

] (2)

x3(k+ 1) = x3(k)+
Ts

As3

[−q23

(

x2(k),x3(k)
)

+ q34

(

x3(k),x4(k)
)

+ q3d(k)

− qhs

(

x3(k),hhs(k),uhs(k)
)

] (3)

x4(k+ 1) = x4(k)+
Ts

As4

[−q24

(

x2(k),x4(k)
)

− q34

(

x3(k),x4(k)
)

+ q2d(k)], (4)

where k is the discrete time step; Ts (s) is the simula-

tion sample time; As1

(

uhijb(k)
)

, As2, As3, and As4 (m2)

are the surface areas of reservoir 1, 2, 3, and 4, re-

spectively; x1(k), x2(k), x3(k), and x4(k) (m) are the

water levels of reservoir 1, 2, 3, and 4, respectively;

q1d(k), q2d(k), and q3d(k) (m3/s) are disturbance in-

flows from the rivers Lek, Waal, and Meuse, respectively;

qnw

(

x1(k),hhvh(k),umb(k)
)

, qhk

(

x1(k),hhvh(k),uhb(k)
)

, and

qhs

(

x3(k),hhs(k),uhs(k)
)

(m3/s) are disturbance inflows

from the sea and are controlled by the Maeslant bar-

rier, the Hartel barrier, and the Haringvliet sluices, respec-

tively; q12

(

x1(k),x2(k)
)

, q23

(

x2(k),x3(k)
)

, q24

(

x2(k),x4(k)
)

,

q34

(

x3(k),x4(k)
)

(m3/s) are the flows between the reservoirs,

described by qi j

(

xi(k),x j(k)
)

= fChézy

(

xi(k),x j(k)
)

, where

fChézy is the formula of Chézy [16]:

fChézy

(

xi(k),x j(k)
)

= Ac,i j

(

xi(k),x j(k)
)

Ci jsign(x j − xi)

×

√

Ri j

(

xi(k),x j(k)
) ∣

∣x j − xi

∣

∣

li j
, (5)

where qi j

(

xi(k),x j(k)
)

is the flow between reservoirs i

and j; Ac,i j

(

xi(k),x j(k)
)

(m2) is the (smallest) water cross

section of the transport region of flow qi j

(

xi(k),x j(k)
)

;

Ci j (m1/2/s) is the Chézy roughness coefficient of flow

qi j

(

xi(k),x j(k)
)

; Ri j

(

xi(k),x j(k)
)

(m) is the hydraulic radius

of flow qi j

(

xi(k),x j(k)
)

; li j (m) is the length of the river

between reservoir i and reservoir j. Note that the sign

function is used to indicate the direction of the flow.

The water cross sectional area Ac,i j

(

xi(k),x j(k)
)

and the

hydraulic radius Ri j

(

xi(k),x j(k)
)

are variables that depend

on the water level in the river that connects a reservoir i

with a reservoir j. This river water level is approximated

by the average of the water levels xi and x j. The water

cross sectional area and the hydraulic radius depend also on

the physical structure of the river cross section. The river

cross sections are approximated with straight lines. As a

result, Ac,i j

(

xi(k),x j(k)
)

and Ri j

(

xi(k),x j(k)
)

are nonlinear

functions of xi(k) and x j(k). For more details, see [15].

The flows qnw

(

x1(k),hhvh(k),umb(k)
)

and qhk

(

x1(k),
hhvh(k), uhb(k)

)

are also determined with (5), but in addition

depend on the state of a barrier:

qnw

(

x1(k),hhvh(k),umb(k)
)

= umb(k) fChézy

(

x1(k),hhvh(k)
)

(6)

qhk

(

x1(k),hhvh(k),uhb(k)
)

= uhb(k) fChézy

(

x1(k),hhvh(k)
)

,
(7)

where hhvh(k) (m) is the water level of the North Sea at Hoek

van Holland, and umb(k) is the state of the Maeslant barrier,

defined as:

umb(k) =

{

1 if the barrier is closed at time k

0 otherwise.
(8)

The state of the Hartel barrier uhb(k) is defined similarly.

The flow qhs

(

x3(k),hhs(k),uhs(k)
)

through the Haringvliet

sluices depends on the water level of the North Sea near these

sluices hhs(k), the water level x3(k) in reservoir 3 (because
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the Haringvliet is part of reservoir 3), and the height of the

gates of the sluices uhs(k). The flow is determined by using

the equations for free and submerged orifice flow and the

equations for free and submerged weir flow, as given in [15].

The influence of the Hollandsche IJssel barrier is modeled

via the surface area of reservoir 1 as follows:

As1

(

uhijb(k)
)

= As1,normal −As1,hij

(

1− uhijb(k)
)

, (9)

where As1,normal is the surface area of reservoir 1 (m2) when

the Hollandsche IJssel barrier is open (uhb(k) = 1) and where

As1,hij is the reduction in surface area caused by closure of

the Hollandsche IJssel barrier (uhb(k) = 0). The state of the

Hollandsche IJssel barrier uhijb(k) is defined similarly as the

state of the Maeslant barrier in (8).

B. Current control systems

The current control systems for the barriers consist of

simple rules. E.g., the decision to close the Maeslant barrier

and the Hartel barrier is based on predictions of water levels

24 hours ahead of time in the case that these barriers are

open. The goal of the local controllers is to achieve the

following objectives [17]:

1) To prevent the water level at Rotterdam to rise above

3.87 mMSL (m above mean sea level) and at Dordrecht

to rise above 3.25 mMSL.

2) To prevent water levels in the Hollandsche IJssel to

rise above 2.25 mMSL, while preventing saline water

to flow into this river.

3) To maintain a minimum water level of 0.00 mMSL at

Moerdijk (in the Hollandsche Diep).

4) To maintain a minimum discharge, averaged over a

tide, through the Nieuwe Waterweg of 1500 m3/s.

5) To prevent water flowing directly from the North Sea

into the Haringvliet.

When the water levels at Rotterdam and Dordrecht stay

below their critical value (i.e., the dike height), the whole

area is safe, since the most critical (i.e., lowest) dikes

are located at these locations [15]. Currently, the Maeslant

barrier and the Hartel barrier are used mostly for objective

1; the Hollandsche IJssel barrier for objective 2; and the

Haringvliet sluices for objectives 1 and 3–5.

It is noted, however, that the evolution of the water levels

when different control actions are applied at the same time,

is not taken into account. This may lead to low performance

of the local control systems in extreme conditions. The

controller proposed in the next section is expected to improve

this performance.

III. TIME-INSTANT OPTIMIZATION MPC

Instead of having a binary variable1 for each control cycle

step as degrees of freedom (as is common, e.g., when using

1Note that TIO-MPC is not restricted to binary input variables only,
but can also be used for continuous input variables. In contrast to time
instant optimization for a binary variable, there are then two (instead of
one) continuous variables needed for each time instant: one for the time
instant (e.g., t1) and one for the new input value (e.g., u1).

summer bed

r11

r12

Floodplain Dike

Rotterdam
x 1

Fig. 3: A schematic view of a river and its surrounding area.

MLD-MPC), time instants are the degrees of freedom. A time

instant ti is the moment at which the binary input changes

its state. The time instants are continuous optimization vari-

ables instead of the computationally more demanding binary

variables. With this technique the amount of optimization

variables will typically be lower. It is hereby noted, however,

that if the number of time instants is lower than the number

of control cycle steps in the prediction horizon, the input will

have less freedom.

To design a TIO-MPC controller for the Rhine-Meuse

delta we have to define the objective function, the prediction

model, the constraints, and the solution method.

1) Objective function: The objective function has to rep-

resent the trade-off between input effort and costs on (too)

high water levels. We consider the following function:

J(k) = Jx1
(x̃1(k))+ Jx2

(x̃2(k))

+ Jmb(ũmb(k))+ Jhb(ũhb(k))+ Jhs(ũhs(k)), (10)

where

x̃1(k) =
[

x1(k+ 1) x1(k+ 2) · · · x1(k+N)
]T

x̃2(k) =
[

x2(k+ 1) x2(k+ 2) · · · x2(k+N)
]T

ũmb(k) =
[

umb(k) umb(k+ 1) · · · umb(k+N− 1)
]T

ũhb(k) =
[

uhb(k) uhb(k+ 1) · · · uhb(k+N − 1)
]T

ũhs(k) =
[

uhs(k) uhs(k+ 1) · · · uhs(k+N − 1)
]T

,

with N the length of the prediction horizon in discrete time

steps. We next describe the terms in this function.

The first part of the objective function consisting of the

terms Jx1
(x̃1(k)) and Jx2

(x̃2(k)) describes the damage and

flood risk of high water levels. This part of the objective

function is illustrated with Jx1
(x̃1(k)) and Figure 3. When

the maximum of water level x1 stays below a reference level

r11 there will be no damage at all. In this situation the river

is in its summer bed. Exceeding reference level r11 can lead

to some damage (e.g., damaged houses, cattle, and fields

on the floodplains) and flood risk (e.g., risk of collapsing

dikes), depending on the water level. Therefore, a water level

exceeding reference level r11 is penalised with a quadratically

increasing cost. The dike height r12 is the most important

reference level. Exceeding reference level r12 will suddenly

lead to enormous high (economic and social) costs caused

by flooding of the crowded area of Rotterdam. Therefore,

exceeding level r12 is penalized with a constant cost value,

but also with a quadratically increasing cost. In case it is

impossible to prevent that the water level exceeds the dike

height, this quadratic cost ensures that the controller still

minimizes the magnitude of the flood. The cost function that

we propose, is now defined on the cumulative exceedance of
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the critical water level by x1 as follows:

Jx1
(x̃1(k)) = α11ecum,11(k)+α12ecum,12(k)+α13ẽ13(k),

where

ecum,11(k) =
N

∑
j=1

(max(x1(k+ j)− r11,0))
2

ecum,12(k) =
N

∑
j=1

(max(x1(k+ j)− r12,0))
2

ẽ13(k) =

{

1 if max(x̃1(k))> r12

0 otherwise,

where ecum,11(k) and ecum,12(k) are the cumulative ex-

ceedances for reference levels r11 and r12, respectively. The

parameters α11, α12, and α13 are cost weights. The cost

function Jx2
(x̃2(k)) is defined in a similar way.

The second part of the objective function (10) consisting

of Jmb(ũmb(k)), Jhb(ũhb(k)), and Jhs(ũhs(k)) describes the

cost of closing and moving the storm surge barriers. Closure

of the Maeslant barrier or the Hartel barrier blocks the

navigation in the corresponding canals. Secondly, movement

of a barrier also costs money due to wear and tear and energy

costs. The cost function of the Maeslant barrier is therefore

defined as

Jmb(ũmb(k)) = αmb1

N

∑
j=1

[1− umb(k+ j− 1)]

+αmb2

N

∑
j=1

|umb(k+ j− 1)− umb(k+ j− 2)|, (11)

with αmb1 the cost of closing the Maeslant barrier for one

discrete time step, and αmb2 the cost of changing the state

of the Maeslant barrier. The cost function of the Hartel

barrier Jhb(ũhb(k)) is defined similarly. The cost function for

the Haringvliet sluices Jhs(ũhb(k)) is also defined similarly,

except for that only costs on the movements are considered

(i.e., a term similar to the second term in (11)).

The Hollandsche IJssel barrier is not a part of the objective

function, since the control actions for this barrier will not

be optimized. The control objective of keeping the water

level in the Hollandsche IJssel below 2.25 mNAP results into

trivial control actions. Namely, closing the Hollandsche IJs-

sel barrier when the water level x1(k) at Rotterdam exceeds

2.25 mNAP. This is also the control rule of the current control

system of the Hollandsche IJssel barrier. Moreover, the water

level in the Hollandsche IJssel is not a state of the model

presented in II-A.

2) Model: As already mentioned, the complete nonlinear

reservoir model is used as a prediction model for the TIO-

MPC approach. The Haringvliet sluices are an input of the

TIO-MPC prediction model. The nonlinear relation between

the sluice gates, the water levels, and the flow through these

sluices fits inside the nonlinear optimization problem. The

Hollandsche IJssel barrier and its control system are included

in the TIO-MPC prediction model. Thus, the control actions

for this barrier are not optimized.

0

1

0

1

0

1

t
1,mb

 (k) t
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Hartel barrier

Haringvliet sluices

Maeslant barrier

Fig. 4: Illustration of typical TIO-MPC inputs.

The TIO-MPC prediction model has time instants as inputs

and also regular (conventional) inputs. The state (open or

closed) changes of the Maeslant barrier and the state changes

of the Hartel barrier are both modelled with four time

instants. These time instants represent the moments at which

the state of the barriers change: from open to closed or from

closed to open. The positions of the gates of the Haringvliet

sluices are modelled with one regular input. This results

in the following TIO-MPC prediction model of the Rhine-

Meuse delta:

x̃(k) = f
(

t̃(k), ũhs(k),x(k)
)

, (12)

with:

x̃(k) =
[

xT(k+ 1) xT(k+ 2) · · · xT(k+N)
]T

ũhs(k) =
[

uhs(k) uhs(k+ 1) · · · uhs(k+N − 1)
]T

t̃(k) =[t1,mb(k) t2,mb(k) t3,mb(k) t4,mb(k)

t1,hb(k) t2,hb(k) t3,hb(k) t4,hb(k)]
T,

where uhs(k) is the gate position (m) of the Haringvliet

sluices at time step k. The time instants t1,mb(k), t2,mb(k),
t3,mb(k), and t4,mb(k) (s) are the moments at which the

Maeslant barrier changes its state for the kth MPC step.

Similarly, the time instants t1,hb(k), t2,hb(k), t3,hb(k), and

t4,hb(k) (s) are the moments at which the Hartel barrier

changes its state for the kth MPC step. The inputs of the

TIO-MPC model are illustrated in Figure 4. The time instants

are possibly beyond the length of the prediction horizon,

which makes it possible to have no discrete state changes

at all in the prediction horizon. The discrete-time nonlinear

reservoir model of the Rhine-Meuse delta requires regular

input sequences for the state of the Maeslant barrier and

the Hartel barrier. Therefore, a transformation is needed

from the time instants into regular input sequences. This

transformation is done as follows:

ũmb(k) =
[

umb(k) umb(k+ 1) · · · umb(k+N − 1)
]T

,

with

umb(k+ j) =















umb(k− 1) if j ≤ k1,mb

or k2,mb ≤ j ≤ k3,mb

or j ≥ k4,mb

1− umb(k− 1) otherwise,

for j = 0, ..,N−1, where ũmb(k) is the regular input sequence

created from the time instants. The integer variables k1,mb,

k2,mb, k3,mb, and k4,mb are the discrete-time rounded equiva-

lents of the continuous variables t1,mb(k), t2,mb(k), t3,mb(k),
and t4,mb(k).
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3) Optimization: The TIO-MPC receding horizon opti-

mization problem consists of the model and the objective

function that are discussed in the previous paragraphs. The

model (12) relates the inputs of the water system to the

evolution of the states (water levels) over the prediction

horizon. The objective function (10) is a function of the

inputs and the state evolution. These two relations together

form a function that relates the inputs (degrees of freedom)

to the value of the objective function:

J
(

t̃(k), ũhs(k)
)

= fopt

(

t̃(k), ũhs(k)
)

. (13)

In fact, the actual state x(k) of the system and the predicted

disturbances q1d(k + j), q2d(k + j), q3d(k + j), hhvh(k+ j),
and hhs(k+ j), for j = 0, . . . ,N − 1, are also inputs of this

function. However, these inputs are not degrees of freedom in

the optimization problem. They are constant in the optimiza-

tion problem. Therefore, they are left out of (13). Function

fopt

(

t̃(k), ũhs(k)
)

is the function to be minimized by the

optimization algorithm, subject to the following constraints:

0 ≤ t1,mb (14)

t1,mb(k)− tmin ≤ t2,mb(k) (15)

t2,mb(k)− tmin ≤ t3,mb(k) (16)

t3,mb(k)− tmin ≤ t4,mb(k) (17)

t4,mb(k)≤ tmax (18)

0 ≤ t1,hb (19)

t1,hb(k)− tmin ≤ t2,hb(k) (20)

t2,hb(k)− tmin ≤ t3,hb(k) (21)

t3,hb(k)− tmin ≤ t4,hb(k) (22)

t4,hb(k)≤ tmax (23)

uhs,min ≤ uhs(k+ j)≤ ũhs,max(k+ j) (24)

for j = 0, ..,N − 1, with:

ũhs,max(k+ j) =

{

uhs,max if x3(k+ j)≥ hhs

uhs,min otherwise,
(25)

where tmin (s) is the minimum time between two state

changes, tmax (s) is the maximum value of t4,mb (k) and

t4,hb(k) and is larger than the prediction horizon, uhs,min and

uhs,max (m) are respectively the minimum and maximum gate

positions of the Haringvliet sluices. The relation in (25) is the

constraint of a one-directional flow through the Haringvliet

sluices. The constraints (14)–(22) are constraints for the

Maeslant barrier and the Hartel barrier and describe the order

of the time instants.

The cost function is minimized using the nonlinear

derivative-free optimization algorithm pattern search. The

pattern search algorithm is started i times from i different

initial solutions (i.e., multi-start optimization) until the end

of the control cycle length. See for more information on

pattern search [18].

The TIO-MPC optimization is now as follows:

1) A large set2 of initial solutions is created.

2The initial solution set has to be larger than the number of pattern search
optimizations that can be performed in the control cycle length. This ensures
that the multi-start pattern search optimization algorithm uses the complete
control cycle length to search for good control actions.

2) The cost function values fopt

(

t̃(k), ũhs(k)
)

of the initial

solutions of step 1 are calculated.

3) The initial solutions are ranked based on the cost

function values calculated in the previous step. An

initial solution with a lower cost function value is

usually more promising than a initial solution with a

higher cost function value.

4) A pattern search optimization is started with the most

promising initial solution based on the ranking calcu-

lated in step 3. After convergence of the pattern search

optimization, a new optimization is started with the

next most promising initial solution. This procedure is

repeated until time runs out.

5) The best solution calculated in Step 4 is selected as the

output of the multi-start pattern search optimization.

IV. SIMULATION EXPERIMENTS

A. Setup

We consider a simulation study in which the nonlinear

reservoir model is used as the simulation model. The current

local control systems and the TIO-MPC approach are imple-

mented with a prediction horizon of 24 hours (equal to the

current practice [17]) and a control cycle length of 10 and

30 minutes, respectively. It is assumed that the controllers

have perfect predictions of the boundary conditions (the three

river inflows and the two sea water levels) over the prediction

horizon. The total simulation time span is 48 hours.

Many scenarios have been investigated to determine the

potential of the proposed control system [14]. The scenarios

have been created based on historical measurement data

of Rijkswaterstaat [19]. This data set consists of historical

data of November 7–9, 2007. This also includes the period

in which the Maeslant barrier was closed due to storm

conditions at sea. Due to space restrictions, here, we show

illustrative results from one scenario only.

The considered scenario involves conditions due to a storm

surge at sea and a sea level rise of 0.65 m. The flow of

the river Rhine at Lobith (which gives an indication of the

amount of water flowing into the Rhine Meuse delta) is 1 600

m3/s. This results in a maximum sea water level of 3.81

mMSL with relatively low discharges of the three rivers.

B. Result

Figure 5 shows the results of the simulation using the

current control systems of the Rhine-Meuse delta. As can be

observed, the Maeslant barrier and Hartel barrier are both

closed for 20 hours. This long closure in combination with

the relatively low inflows of the rivers Lek, Waal, and Meuse

keeps the water levels at Rotterdam (y1) and Dordrecht (y2)

very low. The area is therefore well protected against floods.

However, the long closure is very expensive, since ocean

vessels are blocked for more than 24 hours (4 hours before

closure of the Maeslant barrier no navigation is allowed

anymore. The discharge through the Haringvliet sluices is

quite low (a volume of 15×106 m3), since it is related to the

relatively low flow of the river Rhine at Lobith.
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Fig. 5: Simulation results of the current control systems.
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Fig. 6: Simulation results of the TIO-MPC approach. The

dotted horizontal lines are respectively from down to top

reference levels r21, r11, r22, and r12.

Figure 6 shows the results of the simulation when using

the TIO-MPC approach. We observe that instead of closing

the Maeslant and the Hartel barrier both for a long period,

the TIO-MPC approach only closes the Maeslant barrier for

two short periods (3 hours in total). The maximum water

levels at Rotterdam and Dordrecht are just above respectively

the first reference levels r11 and r12. This clearly illustrates

the trade-off between exceeding the first reference levels

(where damage starts) and input effort (cost on closing

the barriers) that the TIO-MPC controller considers. The

Haringvliet sluices are maximally open when possible (i.e.,

when constraint y3 > yhvh is not violated), resulting in a large

discharge volume of 705× 106 m3.

V. CONCLUSIONS & FUTURE RESEARCH

In this paper we have proposed a model predictive control

(MPC) approach for water systems represented as hybrid

systems (i.e., involving both continuous and discrete dy-

namics). The approach proposed is based on so-called time-

instant optimization (TIO). The idea of TIO-MPC is that the

moments at which actions should take place are determined,

rather than that for each time step it is determined whether an

action should be taken or not (as is typically the case in more

conventional predictive control approaches). In particular

when considering hybrid MPC problems, involving discrete

and continuous variables, this approach can be promising in

terms of reduced computational requirements.In a simulation

study based on the Rhine-Meuse delta in The Netherlands the

potential of the approach has been illustrated, in particular

when a trade-off has to be made between input effort and

damage costs.

Future research focuses on the computational performance

analysis of the proposed approach for future Rhine-Meuse

delta setups and coordination among MPC controllers that

control different, but interconnected, parts of large water

systems.
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“Predictive control with constraints of a multi-pool irrigation canal
prototype,” Latin American Applied Research, vol. 37, pp. 177–185,
September 2007.

[9] P. O. Malaterre and J. Rodellar, “Multivariable predictive control
of irrigation canals. design and evaluation on a 2-pool model,” in
Proceedings of the International Workshop on Regulation of Irrigation

Canals: State of the Art of Research and Applications, Marrakech,
Morocco, April 1997, pp. 239–248.
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