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Abstract— In most countries, especially in deltas, there is a 
long tradition in the management of water resource systems, 
in particular related to structural measures such as the 
construction of dikes and riverine/coastal hydraulic 
structures. We discuss how this infrastructure can be 
supported and managed in order to serve as non-structural 
measures. Therefore, we present a review about technology 
for the prediction and control of water resources. This covers 
techniques for flow and water quality forecasting including 
modeling and data assimilation as well as its combination with 
predictive controllers for managing hydraulic structures. 
These techniques are discussed both from a conceptual and 
technical perspective. Furthermore, we give an overview 
about ongoing and future work in this field, which is aimed at 
integrating the techniques from both the water prediction and 
the water control community. 
 

I. INTRODUCTION 

OR multiple reasons, such as the access to international 
trade, the possibility to transport goods over inland 

waters, and having irrigation water available all year round, 
people tend to live close to water ways. Water ways in 
delta areas on the one hand receive their flows from 
precipitation of upstream areas and on the other can receive 
additional water from high sea levels. Each of these 
influences is variable in time and may result either in 
extremely high or extremely low water levels, which 
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consequently can lead to undesired inundation and 
droughts, respectively. Inundation is undesirable due to 
loss of crops, damaging of houses and residential areas, 
and in the extreme cases human casualties. Droughts are 
undesirable, since they cause damage to potential crops, 
non-navigable water ways, insufficient cooling water for 
power plants, high water temperatures causing toxic algae 
growth and fish mortality, and potential danger for securing 
drinking water. 

In order to deal with threats of these potential damages, 
people implement measures. This is an ongoing process, 
mainly because the demands that society imposes on safety, 
wealth, and well-being continue to increase. The measures 
that are being implemented can be of a structural or of a 
non-structural nature. On the one hand, non-structural 
measures are measures that can be taken to adverse 
threatening situations in real-time, taking into account the 
actual situation. On the other hand, structural measures are 
measures that do not have this flexibility and that do not 
take into account the actual situation. E.g., in order to avoid 
casualties due to inundations, as a structural measure, the 
dikes protecting the land from the water can be raised or, as 
a non-structural measure, an evacuation plan can be 
developed, which aims at moving out the people of the 
threatened area as quick as possible.  

Structural measures are usually seen as safer to most 
people. However, this feeling of safety comes at a high 
price, since structural measures are usually very costly. In 
fact, guaranteeing 100% security against inundation and 
droughts using only structural measures is simply 
unaffordable for society. Moreover, structural measures are 
not flexible and are therefore only prepared and optimized 
for dealing with the contingencies and situations 
envisioned at design time. Non-structural measures do not 
have these drawbacks. 

To illustrate the potential of non-structural measures, 
consider as an example a spillway used for filling an 
emergency inundation area to relieve the pressure on the 
river dikes due to high river flows. Figure 1 illustrates the 
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Figure 1. Difference in timing for proper and improper 
timing of effectuating an emergency inundation area. Qmax 
is the maximum flow to which the flow in the river is 
reduced for this particular peak, shape, duration and 
timing, Vstorage is the volume that can be stored in the 
emergency inundation area and toutlet is the moment in time 
at which the spill from the river to the area starts. 

non-optimal filling of a system with a structural spillway. If 
the spillway is designed as a structural measure without 
any control, it would be designed to function 
autonomously. It would be a fixed weir with a design width 
and a design height that are based on a certain design high 
water wave passing through the water way. For precisely 
this design wave the structural spillway can top off the 
peak. However, for any wave with a different shape, peak 
height, or duration the structural spillway will either cause 
a not completely filled inundation area or a fully inundated 
area before the actual peak of the wave arrives. When the 
spillway measure is designed as a non-structural measure, 
it can be implemented as an undershot gate that can be 
opened or closed at the right time, depending on the actual 
situation at hand. Due to this added flexibility, the 
inundation area can be used in an optimal way and the peak 
of the wave can be lowered as much as possible. The 

operation of the gate, however, requires knowledge on the 
future system behavior, i.e., a quantitative prediction of the 
approaching flood event. 

Presently consensus exists that both types of measures, 
structural and non-structural, need to be considered when 
upgrading water systems [28]. This raises the question of 
how such non-structural measures should be used and what 
the role of prediction systems is in this. This paper strives 
to give a state-of-the-art overview of research addressing 
these questions. Particular attention is hereby given to the 
contributions presented in the sessions on “Water 
Prediction and Control Technology”, organized at the 2011 
IEEE International Conference on Networking Sensing and 
Control, Delft, The Netherlands. 

This paper is organized as follows. Section II gives a 
state-of-the-art review on methods in forecasting and 
related techniques such as data assimilation and uncertainty 
analysis. In Section III the status of predictive control of 
water resources system is summarized. Section IV reflects 
on the combination of both disciplines. Current research in 
progress and directions for future research are given in 
Section V.  

 

II. PREDICTIONS IN WATER SYSTEMS 

Operational predictions in water systems are traditionally 
applied in the context of flood forecasting [2,16]. Mainly 
driven by the progress in this field, the techniques became 
also popular for general flow forecasting [31] or even 
water quality applications [17]. We follow this path in our 
discussion before highlighting more general, supporting 
techniques such as data assimilation and uncertainty 
analysis, as well as the evolution of technical systems. 

Flood events across Europe, including the 1993 and 
1995 events in the Rhine and Meuse basins, the summer 
floods of 1997, 2002, and 2010 in the Oder, Elbe, and 
Danube basins, the UK floods of 2000/2001, and 
widespread flooding in the summer of 2005 in Southern 
Germany, Switzerland, Hungary, Rumania, and Bulgaria 
frequently raise the public interest in flood protection. 
Besides classical structural measures such as the 
construction of dikes, the provision of timely flood 
warnings has become an accepted non-structural measure 
to reduce losses of property and life due to large floods 
[1][27]. 

Whilst the role of flood forecasting in the flood warning 
process traditionally held a modest position in the chain of 
detection, forecasting, warning, and response [13], its 
potential in added effectiveness of warnings through an 



 
 

 

increase of lead time means its significance is becoming 
more and more relevant in state-of-the-art systems. This 
lead time can be effectively used to implement measures 
either to reduce the consequence of flooding through for 
example evacuation, or to reduce flooding itself through 
controlling dedicated hydraulic structures [9,29,31] or ad-
hoc interventions, such as  placing sandbags.  

Flow forecasting in general may serve various needs. 
Applications are therefore diverse and range from low 
water monitoring or water allocation purposes during 
droughts to day-to-day flow forecasting for navigation or 
hydropower needs. Whereas the type of hydrological 
model may change significantly in these applications, the 
technological system set-up is comparable to those of flood 
forecasting systems. 

Water quality forecasting is a relative new discipline. 
Current applications aim for example at the prediction of 
water temperature [12]. It becomes, apart from ecological 
reasons, relevant to cooling water requirements of thermal 
power plants and therefore also affects the trading policy 
of energy companies. Furthermore, the forecasting of salt 
concentration in estuaries has been part of some coastal 
forecasting systems [23] when salt intrusion endangers 
freshwater environments. Even more complex water 
quality processes are covered in new forecasting systems, 
see the examples of [23] on the monitoring and forecasting 
of algae bloom and eutrophication events. 

A discussion on the modeling techniques itself would go 
beyond the scope of this paper. However, we would like to 
address general techniques which typically come along 
with models in operational applications. The most 
important ones are aiming at data assimilation [2,16,17,29] 
and uncertainty analysis. These techniques try to update the 
inputs, parameters, states, or outputs of a model based on 
historical observations for improving the lead time 
accuracy of the model or for providing information of the 
probable model error. Whereas historical applications 
directly build into the models [19], state-of-the-art 
implementations such as OpenDA, formerly COSTA [33] 
and DATools [35], decouple the assimilation technique 
from the model itself. Uncertainty analysis tools have 
become popular in combination with ensemble forecasts. 
We refer to the international HEPEX initiative for a state-
of-the-art overview in flow forecasting [32]. 

From a technical point of view, most forecasting systems 
in the past have been developed as an interface around a 
hydrological or hydraulic model, thus concentrating on the 
model rather than the data process [1]. Increasing 
availability of observed data through online telemetry and 

from technologies such as weather radar and quantitative 
precipitation forecasting are, however, requiring attention 
to shift to the complete process of information and data in 
forecasting. This has led to the development of software 
packages such as Delft-FEWS [36] with an open systems 
approach for integration of arbitrary data and models in the 
forecasting process. The modular approach has the 
advantage that many of the components used, such as the 
underlying models can be easily adapted or exchanged, 
without the need to change how the forecasting system is 
operated by its users. This allows for a much more rapid 
adaptation to advances in modeling techniques, without the 
added effort in organizational change.  

One of the technical efforts that needs to be made in 
order to improve the predictions of water systems that are 
influenced by human interactions (operators) or automatic 
control loops,  is to somehow include the control dynamics 
of these entities. Here, the knowledge of control theory can 
play a role that is until now in many prediction systems 
somewhat underexposed. 
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Figure 2.  Difference in control methodologies for a 
water system with constraints on pump outflow and 
water level. 



 
 

 

III. CONTROL OF WATER SYSTEMS 

Non-structural measures in water systems, such as 
adjustable structures like gates, pumps, and sluices, are 
operated in order to keep water levels [9,11,29,31], flows 
[5,14,24,31], or water quality variables [1,17,18] in a 
desired state. There are many ways in which these 
adjustable structures can be controlled. Several successful 
implementations of control systems on water systems are 
described in [21]. In increasing order of information usage, 
three possible types of control for water systems are 
feedback control [5,11,18], feed-forward control [17, 31], 
and model predictive control [1,8,9,14,24,29]. 

To achieve a simple feedback controller, at least a 
measurement of the current situation, i.e., a defined system 
state, is necessary for a controller that determines the 
required actions for a non-structural measure. Feed-
forward control requires that also measurements or 
estimates of the disturbance that is bringing the actual 
system state away from the desired state are known. A 
combination of feed-forward and feedback control is 
achieved using so-called model predictive control [4,7,26]. 
The control approach model predictive control can, in 
addition, take into account constraints when calculating the 
required actions. This is especially useful for control of 
water systems, as many constraints are present, e.g., in the 
form of limits on water variables and adjustable structures, 
and due to imposed water management regulations. 
Another feature of MPC is that, through optimization, 
conflicting subobjectives can be satisfied as much as 
possible. 

Consider as example control of pumps in a storage canal 
system. The pumps in this canal system together have a 
maximum capacity of 60 m3/s. The disturbance inflow due 
to runoff from an extreme storm event is higher than this 
capacity plus the storage capacity between set-point and the 
maximum allowed water level. Hence, adequate control is 
required. Considered is feedback, combined feedback and 
feedforward, and model predictive control for such a 
system. 

A feedback controller for this system only reacts when 
the disturbance causes the water level to rise. As this 
controller only reacts after a deviation occurs, its reaction 
is always late. Once the control flow becomes larger than 
the maximum capacity of the pumps, the outflow is limited 
and eventually, the water level rises much higher than the 
maximum allowed water level, as is also seen in Figure 2.  

A feedforward controller with which the feedback 
controller can be extended uses the prediction of the effect 
that the disturbance has on the water level and counteracts 

on this in order to keep the water level as close as possible 
to set-point. This works well as long as the control flow 
does not exceed the maximum pump capacity. Also with 
this control method, the maximum allowed water level 
constraint is violated, as is also seen in Figure 2. 

A model predictive controller can use the same 
prediction of the disturbance as the feed-forward controller. 
In addition, it uses an objective function in which the water 
level deviation from set-point is penalized over a prediction 
horizon. The controller also explicitly takes into account 
the constrained control flow, so it can predict the high 
water levels at the end of the prediction horizon. To 
minimize the water level deviations over the entire 
prediction horizon, the model predictive controller starts 
earlier (i.e., it anticipates) with pumping out water to lower 
the water level before the disturbance inflow even takes 
place. In this way, the maximum allowed water level is 
violated to a much lower extent, as Figure 2 illustrates. 

From this, we can observe that by using predictions of 
the upcoming event, the model predictive controller is 
capable of much better satisfying the objectives, while not 
significantly violating the operational constraints. 

In addition to anticipating on predicted disturbances, 
there is another axes along which gains in improved water 
management can be achieved: coordination among several 
water systems. Problems never occur at the same location 
with the same intensity. One part of a water system can be 
flooded, while another part still has significant storage 
available. If these parts are linked and the flow is 
controllable, the potential flood problems can be diverted 
in order to lead to the lowest overall damage. This 
promotes the idea of not only controlling relatively small-
scale water systems, but also for coordinating the non-
structural measures in large-scale water systems (entire 
catchments). Issues with optimization for large-scale water 
systems can then be addressed with the emerging 
technology of distributed or coordinated model predictive 
control [25,1]. 

It is important to note that due to the limitations on 
calculation time, the optimizations in model predictive 
control schemes can only be applied using reduced models, 
such as a simple (delayed) reservoir models [5,8,9,14,24]. 
In [3,15,26,30,29], model predictive control utilizing more 
accurate, hydraulic models ranging from kinematic wave 
models to full Saint-Venant based models are implemented. 
These non-linear models are still significantly reduced by 
using a large spatial discretization. In [38,1,17], the water 
quantity model is combined with a water quality model. It 
is clear, however, that ideally the most advanced prediction 



 
 

 

tools discussed in Section II would be used for providing 
the predictions. 

 

IV. COMBINING PREDICTION AND CONTROL 

As the prediction tools need to be run in real-time using 
controller and operation modeling and as controllers are 
becoming more powerful when using advanced predictions, 
the disciplines of water systems prediction and water 
systems control are approaching one another. It therefore 
seems obvious to start combining the technologies and 
tools from both fields. Prediction models can benefit from 
knowledge of tuning fast controllers (feedback and feed-
forward) that can represent the operation of the non-
structural measures over the prediction horizon. Predictive 
control can benefit from the accurate predictions of future 
disturbances and input constraints, the most probable 
behavior of the water system when no anticipation is 
implemented, and the accurate evaluation of the water 
system’s behavior resulting from the optimal control 
actions. 

We see two implementation approaches in which 
prediction tools can be used in control schemes in a rather 
straightforward way. The first approach uses, in each 
iteration, two separate modules, one for generating control 
actions over the prediction horizon and the other for 
actually evaluating the consequences of these control 
actions using the prediction model. This is the most 
straightforward approach, but it also requires a large 
number of expensive evaluations of the high resolution, 
detailed prediction model. So, presently, the non-linear 
prediction models need to be reduced considerably in order 
to be tractable  [30,8,9]. The second approach uses the 
prediction model to generate time-variant bounds of the 
control inputs (inequality constraints) and the trajectory 
along which the non-linear model is linearized and 
reduced. Next, an efficient linear model predictive 
controller is formulated using this simplified model. 
Usually, due to the non-linearities in the system dynamics, 
the steps of generating the bounds, linearizing, and solving 
the simply optimization problem have to be iterated a 
number of times before the final solution is found [4].  

 

V. CONCLUDING REMARKS 

In this paper, we reason that over the next decades we 
expect water prediction and control technologies to become  
accepted and powerful approaches for determining non-
structural measures that should be implemented next to 

structural measures. We promote the idea of optimal 
control of large scale water systems and the construction of 
adjustable structures in these water systems to increase the 
flexibility required for control. 

Future work lies in bridging the gap between prediction 
and control technologies. To improve control, further 
improvements of predictions are necessary both in 
accuracy and suitability for optimization-based control. To 
improve predictions, it is necessary to investigate in more 
detail the modeling of present human-induced decision 
making and the way in which advanced automatic 
controllers can be represented in prediction tools.  
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