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Abstract — In this paper, we study the effect of tuning factors on our formerly pro-
posed method [1] for control of distributed multi-rate systems with linear input coupled
dynamics. These systems are multi-rate in the sense that neither output measurements
nor input updates are available at certain sampling times. Such systems can arise when
the number of sensors is less than the number of variables to be controlled. Or when
measurements of outputs cannot be completed simultaneously because of application
limitations. The multi-rate nature gives rise to lack of information which will cause un-
certainty in the system’s performance. A distributed model predictive control (MPC)
approach based on Nash game theory was proposed earlier in [1] to control distributed
multi-rate systems in which multiple control agents each determined actions for their
own parts of the system. Via communication, the agents can take one another’s actions
into account. To compensate for the information loss due to the multi-rate nature of the
system in this study, a distributed Kalman Filter is proposed to provide optimal estima-
tion of the missing information. The effect of changing control and prediction horizons
as control tuning parameters on performance is studied. Using simulation studies on a
distillation column the effect of tuning parameters on the proposed controller is illus-
trated.

Keywords — Multi-Agent Systems, Distributed Predictive Control, Distributed Estima-
tion, Nash game.

I Introduction

Model predictive control (MPC) is a popular tech-
nique and has been successfully used in the con-
trol of various linear and nonlinear dynamic sys-
tems [2, 3]. The main advantage of MPC is that
the objectives and constraints associated with the
control problem are embedded in the control al-
gorithm. However, an obvious drawback of MPC
for large-scale systems is that it is computationally
intensive resulting in formidable on-line computa-
tional effort. Practically, there exist a great num-
ber of complex high dimensional systems in which
the number of variables and constraints is large.

Thus, it has become very important to develop
computationally efficient control architectures and
algorithms with less computational burden. Many
distributed MPC methods have been developed by
researchers to cope with large-scale control prob-
lems. Examples include the work in [3, 4, 5].
In multi-rate plants either the measurements are
available less frequently or the control moves are
made at a lower rate. This kind of system can
be seen in many industrial applications [6],[7] and
it illustrates practical situations in which measure-
ments of process variables and input updates occur
at different rates. For instance, they illustrate that
in the process industry even when quality vari-



ables such as product concentration or the average
molecular weight distribution of a polymerization
process are measured on-line time delays involved
in the measurements are significantly large when
compared to other process measurements. The
aim of our proposed framework is to develop a
generalized scheme that covers both of these as-
pects for large-scale systems. In [6] a state space
based multi-rate MPC scheme for the centralized
case has been developed. In a distributed MPC
architecture the overall system is decomposed into
a number of small subsystems. Each subsystem
is controlled by a so-called agent which solves its
own local optimization problem. We proposed a
new MPC control strategy for large-scale systems
with multi-rateness in its subsystems. This means
that each of the subsystems is multi-rate in inputs
and/or outputs. The multi-rate control method
that we have developed allows control moves to
be made using state estimates from a distributed
Kalman Filter.

II Distributed Multi-Rate MPC

a) State-Space Representation

Consider distributed MPC of plants with linear
dynamics whose centralized nominal model is de-
composed into m subsystems. Let t be the global
discrete-time index for the system under control.
Let the following augmented model 1 represents a
distributed multi-rate system with input coupling:

xi(t+ 1) = Aixi(t) + Bii∆ui(t)

+ Divi(t) +

m∑
j=1
j 6=i

Bij∆uj(t) (1)

yi(t) = Cixi(t) + zi(t), (2)

where for each subsystem i, xi and yi denote the
state and output variables respectively, vi, zi are
the state and measurement noise sequences respec-
tively. Ai, Bii, Bij , Di and Ci are matrices of
appropriate dimensions. Variable ∆ui(t) is the
multi-rate input signal which is injected into sub-
system i at sampling time t. As can be seen in
(1), subsystems are coupled through inputs only
(∆uj(t)) which restricts the use to linear plants
with block diagonal matrix Ai when the plant un-
der control is in continuous-time form.
Assume that the sampling instants for the system
vary as t = 1, 2, . . . , Tf , where Tf is the final sam-
pling time. We follow a strategy similar to [5] to
implement multi-rate measurement or input up-
dating mechanisms for subsystem i. In a multi-
rate output setting, the output vector yi(t) of sub-
system i can be measured every Tyi units, where

1Augmenting the state-space model is an approach to
include the integration in state-space model when ∆u is
used as input signal instead of u [2].

Tyi > 0. Define the output switching function for
subsystems i, γij , for j = 1, 2, . . . , qi with qi being
the number of outputs of subsystem i as follows:

γij (t) =

{
1 if t = τTyj

0 otherwise,
(3)

where τ is an integer. The following multi-rate
output vector ϕϕϕi(t) can now be defined:

ϕϕϕi(t) = ΥΥΥi(t)yi(t), (4)

where

ΥΥΥi(t) = diag[γi1(t) γi2(t) . . . γiq (t)]. (5)

In a multi-rate input setting, the input vector
∆ui(t) of subsystem i is updated every Tui

units,
where Tui

> 0. Introduce the input switching func-
tion µij for j = 1, 2, . . . , li with li being the number
of inputs of subsystem i. Define the inputs holding
mechanism as:

µij (t) =

{
1 if t = τTuj

0 otherwise,
(6)

where τ is an integer. The following input matrix
ΨΨΨi(t) for subsystem i can be defined.

ΨΨΨi(t) = diag [µi1(t) µi2(t) . . . µil(t)] . (7)

Now a new control variable ϑϑϑi(t) is introduced to
implement the input administering mechanism:

∆uuui(t) = ΨΨΨi(t)ϑϑϑi(t). (8)

In fact, the control input computed by the local
MPC controller is ϑϑϑi(t) and not ∆ui(t). However,
in a multi-rate system the manipulated variables
are defined as in (8) which includes both the com-
puted inputs and the input updating matrix ΨΨΨi(t).
After substituting (8) into (1) we get:

xi(t+ 1) = Aixi(t) + BiiΨΨΨi(t)ϑϑϑi(t) + Divi(t)

+

m∑
j=1
j 6=i

BijΨΨΨj(t)ϑϑϑj(t). (9)

As multi-rate systems’ output measurements are
made at specific sampling times, the output sam-
pling mechanism needs to be included in the sys-
tem’s model. To do that, both sides of (2) are mul-
tiplied by the output sampling parameter ΥΥΥi(t):

ϕϕϕi(t) = ΥΥΥi(t)Cixi(t) + ΥΥΥi(t)zi(t). (10)

Equations (9) and (10) give the linear state-space
representation of the distributed multi-rate system
for i = 1, 2, . . . ,m. Next, the Nash-based solution
to distributed MPC problem will be formulated for
such a system.



Fig. 1: Distributed control and estimation architecture.

b) Nash Game Approach

In the distributed control structure, input coupling
among subsystems is considered as given by (9).
These subsystems communicate with one another
to accomplish a global objective (see Fig. 1). One
type of Distributed MPC based on Nash optimal-
ity has been investigated in [4, 5]. In this ap-
proach, the agents communicate but they do not
take a cooperative decision. The agents iterate to
resolve their local optimization problem simultane-
ously and obtain their optimal solution [5]. An ini-
tial guess for each agent is first given based on the
solution found at the last sampling time. Then,
each agent checks if its terminal condition satis-
fies a user-defined threshold. This implies that the
agents do not share information about the util-
ity of each decision; agreement (Nash equilibrium)
among the agents is reached when neither of their
solutions can be improved. The main advantage
of this scheme is that the on-line optimization of a
large-scale problem can be converted into several
small-scale subproblems. Thus, reducing the com-
putational complexity significantly while keeping
satisfactory performance.
Consider a linear multi-rate system consisting of
m subsystems and m control agents (9),(10). In
Nash-based distributed MPC each control agent
calculates the manipulated variable ϑϑϑi(t) by mini-
mizing its local cost function as follows:

min
θθθi(t))

Ji(t) =
∥∥Yi(t)−Y0

i (t)
∥∥2
Qi

+ ‖θθθi(t)‖2Ri
,

(11)

subject to

θθθi,min ≤ θθθi(t) ≤ θθθi,max, (12)

Yi(t) = Fixi(t) +φφφii(t)θθθi(t) + ΓΓΓiζζζi(t)

+

m∑
j=1
j 6=i

φφφij(t)θθθj(t), (13)

where θθθi,min and θθθi,max are the lower and upper
bounds for the inputs, respectively. And,

Yi(t) = [yT
i (t+ 1) yT

i (t+ 2), . . . ,yT
i (t+Np)]T ,

Y0
i (t) = [y0T

i (t+ 1) y0T
i (t+ 2), . . . ,y0T

i (t+Np)]T ,

θθθi(t) = [ϑϑϑTi (t) ϑϑϑTi (t+ 1), . . . ,ϑϑϑTi (t+Nc − 1)]T ,

ζζζi(t) = [vT
i (t) vT

i (t+ 1), . . . ,vT
i (t+Nc − 1)]T ,

Fi = [(CiAi)
T (CiA

2
i )T, . . . , (CiA

Np

i )T]T ,
(14)

φφφij(t) =
CiBijΨΨΨj(t) 0 . . . 0

CiAiBijΨΨΨj(t)
...

. . .
...

...
...

... 0

CiA
Np−1
i BijΨΨΨj(t) . . . . . . CiA

Np−Nc

i BijΨΨΨj(t + Nc − 1)


(15)

ΓΓΓi =


CiDi 0 . . . 0

CiAiDi CiDi

. . .
...

...
...

... 0

CiA
Np−1
i Di CiA

Np−2
i Di . . . CiA

Np−Nc

i Di

 .

(16)

Note that in (11), θθθi(t) is used as the control input
and the input sampling matrix ΨΨΨj(t) is embedded
in (15). In practice, the current state xi(t) is usu-
ally not available from measurements and a state
observer needs to be used to reconstruct the full
state vector. In this case, we replace xi(t) by its
estimate x̂i(t), in (13) and also, replace Yi(t) by
Ŷi(t) in (11).
Problem (11)–(13) is a quadratic programming
problem which can be solved efficiently and re-
liably using standard off-the-shelf solvers. The
Nash-based MPC algorithm for solving the con-
trol problem proceeds by allowing each subsys-
tem/agent to optimise its objective function using
its own control decision ϑϑϑi(t) assuming that other
subsystems’ solutions ϑϑϑj(t) are known. Let ϑϑϑni (t)
define the computed control input for subsystem
i at iteration n, (n ≥ 0). At each sampling time
each agent makes an initial guess of its decision
variables over the control horizon and broadcasts
that to other agents:

θθθni (t) = [ϑϑϑni (t) ϑϑϑni (t+ 1), . . . ,ϑϑϑni (t+Nc − 1)]T ,
(17)

Then, each agent solves its optimization problem
(11)–(13) and gets its optimal solution θθθn+1

i (t).
Next, all the agents compare the new solution
θθθn+1
i (t) with the solution obtained at the previous

iteration θθθni (t) and check the convergence condi-
tion:

||θθθn+1
i (t)− θθθni (t)||∞ ≤ εεε, (18)

in which εεε is the error accuracy. If the Nash op-
timal solution has been achieved, each subsystem
does not change its decision θθθni (t) because it has
achieved an equilibrium point of the coupling deci-
sion process [5], [8]; otherwise the local cost func-
tion Ji(t) will degrade. In the following section, a
novel distributed Kalman Filter algorithm is pro-
posed to provide optimal estimation x̂i(t) of the
state vector xi(t) while compensating for the inter-
sampling information loss due to the multi-rate na-
ture of the systems under study.



III Distributed multi-Rate Kalman
Filter

Consider the linear model in (9)–(10). We want to
use the available measurements ϕϕϕi to estimate the
state of the system xi. We propose a linear opti-
mal filter which is based on Kalman Filter for dis-
tributed systems. To understand the distributed
Kalman Filter equations, let us consider the pro-
cess noise vi(t) to be discrete-time white noise for
each subsystem i. The following covariance matrix
for each agent can hence be defined:

E{vi(t)vTi (t)} = Spi(t) (19)

where E[·] denotes the expectation operator and
Spi

(t) represents the covariance matrix of the pro-
cess noise. Consider measurement noise zi(t) in
(10) to be discrete-time white noise, the follow-
ing covariance matrix for the measurement noise
Smi

(t) can be defined similarly:

E{zi(t)zTi (t)} = Smi(t). (20)

Let the states estimated by the distributed
Kalman Filter for a multi-rate system be given by:

x̂i(t+ 1|t) = Aix̂i(t|t− 1) + Bii∆ui(t)

+ Li(t)[ϕϕϕi(t)−ΥΥΥi(t)Cix̂i(t|t− 1)]

+

m∑
j=1
j 6=i

[
Bij∆uj(t)

+ Lj(t)[ϕϕϕj(t)−ΥΥΥj(t)Cjx̂j(t|t− 1)]
]
,

(21)

where the terms Li(t) and Lj(t) are referred to as
the Kalman Gains. Variable Lj(t) is the Kalman
gain which is made by neighbouring agents and
can be different from Li(t). From (21) it is clear
that local estimators share their gains and also es-
timated states to accomplish their estimation task.
Substituting (10) into (21) and subtracting that
from (9) we proceed to the next step to obtain the
estimation error ei(t+1|t) = xi(t+1|t)−x̂i(t+1|t)
at sampling time t. The index (t|t−1) refers to the
information at sampling time t given knowledge of
the process prior to sampling time t. Therefore,

ei(t+ 1|t) = [Ai − Li(t)ΥΥΥi(t)Ci]ei(t|t− 1)

+ Divi(t)− Li(t)ΥΥΥi(t)zi(t)

−
m∑
j=1
j 6=i

(
Lj(t)ΥΥΥj(t)Cjej(t|t− 1)

+ Lj(t)ΥΥΥj(t)zj(t)
)
. (22)

Now to initialize the estimator algorithm, consider
E[xi(0| − 1)] = x̂i(0| − 1) then E[ei(t|t − 1)] =
0, ∀t. This means we assume that the mean of

the estimates should be equal to the mean of the
expected value in the Kalman Filter design. In
order to develop the Kalman Filter for the multi-
rate and distributed case we define a covariance
matrix Si(t+1) = E{ei(t+1|t)eT

i (t+1|t)}. By the
properties of the vector covariance and expansion
of the terms [6] we obtain the final form of the
multi-rate distributed Kalman Filter as:

Si(t+ 1) = AiSi(t)A
T
i + Di Spi

(t) DT
i

−AiSi(t)C
T
i ΥΥΥi(t)ΩΩΩ

−1
i (t)ΥΥΥi(t)CiSi(t)A

T
i

+

m∑
j=1
j 6=i

AjSi(t)C
T
j ΥΥΥj(t)ΩΩΩ

−1
j (t)ΥΥΥj(t)CjSj(t)A

T
j ,

(23)

with ΩΩΩi(t) and ΩΩΩj(t) positive definite and defined
as:

ΩΩΩi = ΥΥΥi(t)CiSi(t)C
T
i ΥΥΥi(t) + ΥΥΥi(t)Smi

(t)ΥΥΥi(t)

+ [Iq×q −ΥΥΥi(t)] (24)

ΩΩΩj = ΥΥΥj(t)CjSj(t)C
T
j ΥΥΥj(t) + ΥΥΥj(t)Smj (t)ΥΥΥj(t)

+ [Iq×q −ΥΥΥj(t)]. (25)

It should be noted that (23) is an algebraic Ricatti
equation. The solution of the Ricatti equation is
found iteratively backwards in time by using (24)
and (25). Then, the Kalman gains are computed
as:

Li(t) = AiSi(t)C
T
i ΥΥΥi(t)ΩΩΩ

−1
i (t), (26)

Lj(t) = AjSi(t)C
T
j ΥΥΥj(t)ΩΩΩ

−1
j (t). (27)

The reason for adding [Iq×q −ΥΥΥi(t)] and
[Iq×q −ΥΥΥj(t)] to (24) and (25), respectively,
is that in the process of inverting ΩΩΩ−1i (t) and
ΩΩΩ−1j (t) for the Kalman gain equations (26) and
(27), singularity may occur at those sampling
times for which we have no output measure-
ments (ΥΥΥi(t) = 0). Thus, to guarantee the
non-singularity of ΩΩΩ−1i (t) and ΩΩΩ−1j (t) the extra
terms [Iq×q −ΥΥΥi(t)] and [Iq×q −ΥΥΥj(t)] have been
added to (24) and (25), respectively, in which Iq×q
is qbyq identity matrix, [6]. The block diagonal
matrix [Iq×q −ΥΥΥ(t)] only adds non-zero terms to
the scalar diagonal elements of ΩΩΩi(t) and ΩΩΩj(t)
during the output sampling mechanism and in no
way affects the predictor equation.

IV Simulation Results

In this section the proposed method has been an-
alyzed for a multi-rate large-scale system through
simulation. The system under control is a high
purity distillation column studied as a benchmark
for large-scale systems [4]. The outputs of the
system, y1 and y2, are top and bottom product
compositions, respectively, and the inputs u1 and



u2 are reflux flow-rate and boil-up, respectively.
As the composition dynamics in this system are
usually much slower than the flow dynamics, the
system can be considered as a multi-rate system.
The inputs are constrained to −2 ≤ u1 ≤ 2 and
−1 ≤ u2 ≤ 2; there are no constraints on the out-
puts. The weighting matrices for the outputs and
inputs are Q = I and R = I, respectively. The
set-point value for the first subsystem switches be-
tween one and zero every 200 minutes and for the
second subsystem the set-point is zero. The nom-
inal model is decomposed into two subsystems as
follows:
Subsystem 1:

ẋ1 = −0.0133x1 + 0.0117u1 + 0.0115u2 (28)

y1 = x1 (29)

Subsystem 2:

ẋ2 = −0.0133x2 + 0.0146u1 + 0.0144u2 (30)

y2 = x2. (31)

The continuous-time model is discretized with a
sampling time of 1 min. The process and mea-
surement noises for both subsystems are zero mean
white noise sequences with covariances SSSp1

(t) =
SSSp2

(t) = SSSm1
(t) = SSSm2

(t) = 10−5. In Fig. 2,
the effect of changing prediction and control hori-
zons on the tracking of the proposed method is
illustrated. In Fig. 2a, the proposed method has
been simulated over various control horizons and
the prediction horizon is kept as Np = 20. As it
can be seen from Fig. 2a, the control horiozn does
not affect the set-point tracking significantly. In
Fig. 2b, the proposed method has been simulated
over different prediction horizons and the control
horizon is kept as Nc = 5. From Fig. 2b, it is clear
that the longer the prediction horizon, the better
set-point tracking.
In Fig. 3 the number of iterations in the proposed
method has been ploted againts simulation time.
In Fig. 3a, the prediction horizon is Np = 20 and
the proposed method simulated over different con-
trol horizons. From Fig. 3a, it can be observed that
the number of iterations needed for convergence is
more or less the same in different control horizons,
whereas from Fig. 3b it can be observed that the
larger predictioction horizon needs a larger num-
ber of iterations to converge. Since from Fig. 2a
and Fig. 3a, changing the control horizon does
not affect the system’s performance significantly,
we computed the elapsed CPU time for computa-
tion of optimal inputs at different control horizons
while the prediction horizon was fixed. As is clear
from Table1, a shorter control horizon requires a
shorter simulation time.

Table 1: The elapsed CPU computation time for
optimal input at different control horizons in the
proposed method.

Control Horizon (Nc) CPU Elapsed Time (sec)

20 0.0045
15 0.0030
10 0.0020
5 0.0012

V Conclusions And Future Research

From the simulation results, it can be concluded
that for the proposed distributed multi-rate con-
troller, selection of large prediction horizon and
short control horizon drives the system toward
a desired tracking performance. The presented
method uses a communication-based optimization
based on Nash Equilibrium (NE), which is non-
cooperative. However, the best achievable perfor-
mance is characterized by a Pareto set which repre-
sents the set of optimal trade-offs among the com-
peting controller objectives [3]. Further research
is required to extend the proposed method for co-
operative situations. Also, further research needs
to be done toward analysing different aspects of
the proposed method such as stability and conver-
gence.
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