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Abstract: Sewer systems are large-scale systems that collect and transport stormwater and sanitary
sewage out of urban areas. Sewer systems are mainly operatedusing pumping stations and pollutants are
removed from sewage by treatment plants before water is released into the environment. When a sewer
overflow occurs, e.g., caused by a strong rainfall, sewage isdischarged directly into the environment
without any treatment. An efficient use of storage capacities and pumping stations can help to minimize
the environmental pollution caused by sewer overflows. In this paper a nonlinear predictive control
approach is presented to improve the operation of sewer systems. To deal with the nonlinear and non-
differentiable features of the prediction model used, a pattern search method is proposed to solve the
underlying optimization problem. The technique proposed is implemented on a part of the sewer system
of Bogotá, Columbia. Simulation results illustrate the potential of the approach.

Keywords:Sewer systems, model predictive control, nonlinear optimization, pattern search.

1. INTRODUCTION

Sewer systems are large-scale water transportation systems that
span complete urban areas. On the one hand, they are the
complementary part of water distribution systems by draining
wastewater (produced by domestic usage and industrial facil-
ities) out of urban areas up to wastewater treatment plants
that remove physical, chemical, and biological contaminants,
before releasing the wastewater into the natural environment
(Hendricks, 2005). On the other hand, sewer systems prevent
stormwater arising from excessive rainfall to flood into streets
by draining water up to neighboring rivers. In separated sewer
systems, stormwater and wastewater are transported using two
different grids, whereas in combined sewer systems they mix
in the same pipes. Both types are generally present in old
cities: a combined sewer system is used in the older parts anda
separated sewer system is used in the more recent parts.

Clearly, the efficient operation of sewer systems is of crucial
importance to minimize the amount of pollutants that are re-
leased into the environment. Cities in areas that experience
heavy rainfall as well as coastal towns that regularly experience
storms are hereby of major concern. Moreover, global climate
changes cause more intense periods of precipitation than before
(Intergovernmental Panel on Climate Change, 2007), increas-
ing the risk of floods and overflows. In particular the combined
sewer overflows can cause serious water pollution problems as
untreated sewage is then released into the environment.

Sewers are operated using pumping stations to control the flows
in the system. This operation is generally carried out manually
and in a centralized way (Schütze et al., 2004). When storage
facilities are present, they allow to store sewage during a storm.
When the storm is over, sewage is pumped out of the storage

facilities and sent to a wastewater treatment plant. An efficient
operation of the pumping stations and an efficient use of the
storage facilities can minimize the sewer overflows, the useof
the water treatment plant, and consequently the uncontrolled
release of pollutants.

The approach presented in this paper is in line with recent
innovative work about modeling, simulation, and control of
urban wastewater systems. Roughly, these approaches have a
model-based framework, optimal control features, and real-
time computation concerns in common (Schütze et al., 2004;
Marinaki and Papageorgiou, 2005). The present work focuses
on the interconnection between subsystems such as sewers,
pumping stations, and water treatment plants, and is generally
referred to as an integrated approach. Currently, these subsys-
tems are considered as separate units and controlled locally
without knowledge of the neighboring subsystems. Considering
the whole system as one large-scale dynamical system in an
integrated way allows to implement model-based control ap-
proaches (Schütze et al., 2004).

So-called model predictive control (MPC) strategies have in
particular attracted the attention for over a decade due to
their ability to handle explicitly economic objectives as well
as operational constraints, see, e.g., (Gelormino and Ricker,
1994; Cembrano et al., 2004; Ocampo, 2007; Fiorelli and
Schutz, 2009). In this paper we propose a novel nonlinear
predictive control approach for improving the operation of
sewer systems using a so-called pattern search optimization
technique. Pattern search methods are very suitable here as
the prediction model of the sewer system that is used in the
controller is nondifferentiable and these methods do not require
any explicit information about the gradient of the objective
function or constraints.



The paper is organized as follows. In Section 2 sewer sys-
tems are described and modeling issues are discussed. A case
study based on the sewer system of Bogotá, Colombia, is in-
troduced and modeled using the dedicated City Drain blockset
(Achleitner et al., 2006) of Matlab-Simulink. In Section 3 the
constrained predictive control problem of a sewer system is
presented. The underlying nonlinear optimization problemis
solved using a pattern search method in Section 4. Simulation
results on the Bogotá case study are presented in Section 5
and conclusions and directions for future research are given in
Section 6.

2. SEWER SYSTEMS

A sewer system is a drainage network composed of sewers,
collectors, and surface or open channels that drain stormwater
and urban sewage. A sewer system is in general composed of
one or more watersheds (drainage bassin) the characteristics
of which depend strongly on the topography of the area. In
separated watersheds, a storm sewer is intended to transport
only stormwater, surface runoff, or street drainage, whereas a
sanitary sewer carries liquid and waterborne wastes from resi-
dences, buildings, industrial facilities, and institutions. In com-
bined watersheds, sewers carry both stormwater and sewage.
Since they mix with each other while flowing in the same pipe,
stormwater is somehow contaminated with sewage in combined
sewer systems.

To manage volumes and flows in the system, several elements
are present, such as weirs, storage tanks, collectors, gates,
valves, and pumping stations. A weir is a small dam that
regulates the flow of water in an open channel. A weir can be
used to allow sewage overflow into stormwater channels and
consequently prevent sewage flooding. A storage tank is used
to store excess rain in order to avoid overflows. In combined
sewer systems such overflows are referred to as combined sewer
overflows. A collector is a conduit that receives stormwater
and/or sewage from lateral sewers or other branch conduits.
Gates and valves are elements that essentially constrain orblock
the sewer and allow to regulate its flows. A pumping station is
a facility including pumps and equipment to push sewage to
water treatment plants. It is worth noting that a water treatment
plant has a limited capacity (maximum flow).

Sewer systems can be considered as large-scale transportation
networks. Under normal conditions, operators or local con-
trollers act on the system with the aim to regulate locally
volumes and flows in the network. Under particular conditions
such as intense rainfall, volumes and flows grow rapidly, and
flooding and combined sewer overflows may occur. Storage
facilities and pumping stations may prevent or minimize such
overflows.

2.1 Bogot́a sewer system

The case study considered in this paper is based on a part
of the sewer system of Bogotá, Colombia. The whole sewer
network consists of approximately 5400 km of sanitary sew-
ers and 2000 km of storm sewers. The case study consists of
approximatively 15 % of the whole sewer system as depicted
in Figure 1. It includes 25 watersheds of which 3 are com-
bined watersheds. The watersheds are connected to collectors
equipped with weirs. Each collector is equipped with a storage
tank of 30m3 with a maximum output flow rate of 0.02m3/s,

Fig. 1. Schematic representation of a part of the Bogotá sewer
system with 22 separated watersheds (polygons) and 3
combined watersheds (triangles) interconnected by collec-
tors (bold lines) and channels (thin lines).

and connected to a pump station equipped with a storage tank
of 10m3 that can pump sewage to a single water treatment plant
with a maximum treatment capacity of 20m3/h (0.0056m3/s).

Due to frequent strong rainfall events, the Bogotá sewer system
experiences regular sewer overflows and releases of contami-
nated water directly into the environment. Clearly the physical
limitations in terms of maximum volumes and flows would
not permit to prevent completely the overflows in the system,
but an improvement in the coordination of the local control
actions of storage tanks and pumping stations could help to
reduce the overflows when such strong rainfall events occur.
This is the purpose of the control scheme that is proposed in
this paper. Therefore stormwater and sewage flows that enter
into the system are considered as disturbances.

2.2 Sewer system modeling using City Drain

A model of the just described part of Bogotá sewer system
has been implemented in City Drain and calibrated using real
data by the Research Center in Environmental Engineering of
Los Andes University1 jointly with the Water Distribution
and Sewer System Company of Bogotá2 (Rodrı́guez et al.,
2008). City Drain is an open source Matlab-Simulink blockset
for integrated dynamic modeling of urban drainage systems
(Achleitner et al., 2006). It incorporates a variety of models
covering hydraulics, mass transport, processes for conversion
of matter, etc. The user interface is block-oriented and blocks
are connected to one another to provide information flow.

A sewer system model implemented using City Drain allows
to easily compute the dynamic responses to stormwater and
sewage flow profiles. In this paper, the City Drain blockset
is used to build a prediction model for predictive control,
i.e., this model will be used inside a control loop to predict
the future behavior of the sewer system (and consequently its
performance) and to choose the best action to apply with respect
to given control objectives, see Section 3.

In City Drain, the following assumptions are made (Achleitner
et al., 2006):

1 Centro de Investigación en Ingenierı́a Ambiental (CIIA).
2 Empresa de Acueducto y Alcantarillado de Bogotá (EAAB).



• unsteady flows in conduits are one-dimensional;
• fluids are homogeneous and incompressible;
• pressure distribution is hydrostatic;
• the longitudinal axis of a conduit is approximated as a

straight line;
• the bottom slope of a conduit does not change with the

distance;
• the effects of scour and deposition are assumed to be

negligible;
• friction can be described using the steady-state resistance

laws.

Under those assumptions flows, sewers, weirs, storage tanks,
and pumping station models are modeled as follows.

Flow in both sewers and conduits is described by the continu-
ity and momentum equations of the well-known Saint-Venant
equations (Schütze et al., 2002). The continuity equationrepre-
sents the mass balance equation in the flow direction as:

∂a(x, t)

∂t
+

∂q(x, t)

∂x
= 0, (1)

wherea is the cross-sectional area of the conduit (m2), x is the
spatial coordinate along the length of the conduit (m),t is the
time (s), andq is the flow rate (m3/s). The momentum equation
is related to the momentum conservation and is given by:

ga(x, t)
∂h(x, t)

∂x
+

∂q(x, t)

∂t

− σ

(

2ν
∂a(x, t)

∂t
+ ν2 ∂a(x, t)

∂x

)

+ ga(x, t)sf(x, t) = 0,

(2)
whereh is the water level (m),ν is the average velocity (m/s),
g is the gravitational constant (m/s2), σ is a constant depending
on the flow depth, andsf is the friction slope. The latter is
determined using Manning’s equation as:

sf(x, t) =
(n/1.49)2

a(x, t)r
4
3

q(x, t) |ν| , (3)

wheren is the coefficient of roughness andr is the hydraulic
radius (m).

Weirs and storage tanks are modeled by a mass-conservation
equation:

dv(t)

dt
= qin(t) − qout(t) − qoverflow(t), (4)

wherev is the volume stored in the tank (m3), qin is the inflow
rate (m3/s), qout is the outflow rate (m3/s), andqoverflow is the
overflow (m3/s). The outflow rateqout is controllable within
boundsqmin

out and qmax
out , and is consequently considered as a

bounded control input.

A pumping station consists of a storage tank and one or more
pumping units. The state of the pump is controlled by a lo-
cal on-off controller as illustrated in Figure 2. This discrete
behavior can be described by a finite state automaton with 2
states. When the pump statexpump is off and the stored volume
reaches the maximum thresholdvmax

pump from below, the pump
state becomeson. When the pump state is on and the stored
volume reaches the minimum thresholdvmin

pump from above, the
pump state becomesoff. In practice, the minimum threshold is
a constant value that corresponds to a residual volume in order
to avoid pump damage. The maximum threshold is then taken
as a bounded control input.
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Fig. 2. Pumping station model.

In this implementation of the model a continuous statexc is
defined to include the stored volumes and flow rates, a discrete
statexd is defined to include the pump states (on/off), an output
y is defined to include the pump, watershed and collector flow
rates, the stored volumes, and the pump state, and an inputu is
defined to include the maximum thresholds of the pumps and
outflow rates of the tanks.

2.3 Prediction model

This section details how the City Drain model can be used as
a prediction model. Consider a time interval[t0, tf ], i.e., the
prediction interval. Given an initial continuous statexc(t0) ∈
R

nxc , an initial discrete statexd(t0) ∈ R
nxd , and a collection

of inputsu(t) ∈ R
nu over the full prediction interval, com-

puting a prediction means solving an initial value problem and
obtaining the outputsy(t) ∈ R

ny , for t ∈ [t0, tf ].

In a discrete-time control framework, control inputs are pro-
vided at discrete control sample stepskc+i, for i = {0, 1, . . .},
wherekc+i corresponds to continuous timet0+(kc+i)Tc and
Tc is the control sample time. A zero-order hold is used to main-
tain the control inputs constant between two control sample
times, i.e.,u(t) = u(kc) for t ∈ [t0 + kcTc, t0 + (kc + 1)Tc).
Then a prediction model is given by a sequence ofNc in-

puts,ũ(kc) =
[

uT(kc), . . . ,u
T(kc + Nc − 1)

]T
, whereNc =

⌊ tf−t0
Tc

⌋ + 1 is the number of control inputs over the prediction
horizon (⌊τ⌋ is the integer part ofτ ). Similarly, we assume that
computing the outputy for everyTc time units adequately rep-
resents the underlying continuous signals. The output sequence

is then defined as̃y(kc) =
[

yT(kc), . . . ,y
T(kc + Nc − 1)

]T
.

The sewer system model built with City Drain does not contain
algebraic loops nor implicit differential equations, and therefore
without loss of generality, we can assume that the prediction
model is given by the mapping

ỹ(kc) = P (xc(t0),xd(t0), ũ(kc)) , (5)
whereP maps the initial continuous statexc(t0) and discrete
statexd(t0) at time t0, and theNc inputs collected iñu(kc)
to theNc outputs collected iñy(kc). The prediction modelP
involves continuous-time dynamics in the form of nonlineardif-
ferential equations in combination with discrete-event dynam-



ics in the form of discrete logic and if-then-else rules. Therefore
the sewer system model is a nonlinear and nonsmooth dynam-
ical system and consequently, computing numerical solutions,
i.e., predictions, is a costly process.

3. PREDICTIVE CONTROL OF SEWER SYSTEMS

In model predictive control, the control actions are obtained
at each control sample stepkc by solving an optimization
problem that minimizes an objective function over a finite
prediction horizon, subject to the evolution of the prediction
model specified by the mappingP and operational constraints,
e.g., on control inputs. The objective function and constraints
for the case study are defined below.

3.1 Objectives and constraints

The following objectives are considered:

• Assure the use of the wastewater treatment plant at its full
capacity while minimizing overflows that occur when the
sum of the pump flows is larger than the maximum capac-
ity of the treatment plant. This is done by minimizing for
each prediction stepi (for i = 0, . . . , Nc − 1):

JTP

(

y(kc + i)
)

=

wTP





npump
∑

j=1

qpump,j(kc + i) − qmax
TP





2

,
(6)

whereqpump,j is the output flow rate of thejth pump,
npump is the number of pumps,qmax

TP is the maximal
treatment capacity of the wastewater treatment plant, and
wTP is a positive scalar weight.

• Reduce or avoid overflows of the watersheds (resp. stor-
age tanks) of the sewer system by minimizing for each
prediction stepi (for i = 0, . . . , Nc − 1) the term3 :

Joverflow

(

y(kc + i)
)

=
∥

∥qoverflow(kc + i)
∥

∥

2

Woverflow
, (7)

where qoverflow is the vector of overflow rates and
Woverflow is a weight matrix. Thejth component of
qoverflow is the overflow of thejth watershed (resp. stor-
age tank), defined as:

qoverflow,j(kc + i) =
{

0 if vj(kc + i) ≤ vmax
j

qin,j(kc + i) − qout,j(kc + i) otherwise,

(8)

where vj is the volume stored in the watershed (resp.
storage tank),vmax

j is the maximum volume that can be
stored before overflow,qin,j is the inflow rate, andqout,j

is the outflow rate.
• Minimize the economic cost when using the pumping

stations since they can be used before rainfalls and/or after
it has stopped falling, i.e., minimize for each prediction
stepi (for i = 0, . . . , Nc − 1):

Jpump

(

y(kc + i)
)

=

npump
∑

j=1

cjxpump,j(kc + i), (9)

wherexpump,j is the discrete state of thejth pump, i.e.,
xpump,j = 1 when the pump is working (stateon) and
xpump,j = 0 otherwise (stateoff). The constantcj is

3 ‖x‖W is the weighted 2-norm ofx, i.e.,xTWx with positive-semidefinite
matrixW.

positive and represents the economic cost of using thejth

pump.

The combined control objectives over the prediction horizon
are now defined as:

J
(

ũ(kc), ỹ(kc)
)

=

Nc−1
∑

i=0

(

JTP

(

y(kc + i)
)

+ Joverflow

(

y(kc + i)
)

+ Jpump

(

y(kc + i)
)

)

.

(10)

The bounds on the control inputsu, e.g., minimum and maxi-
mum thresholdsvmin

pump andvmax
pump for the local controller of the

pumps, and minimum and maximum output flow ratesqmin
out and

qmax
out of the storage tanks, are taken into account in the form of

inequality constraints:

ulower ≤ u(kc + i) ≤ uupper, (11)

for i = 0, . . . , Nc − 1.

3.2 MPC optimization problem

The MPC problem can now be formulated as an optimization
problem that has to be solved at each control step, given current
statesxc(t0), xd(t0), andu(kc − 1) at t0:

min
ũ(kc),ỹ(kc)

J
(

ũ(kc), ỹ(kc)
)

(12)

subject to

ỹ(kc) = P
(

xc(t0),xd(t0), ũc(kc)
)

(13)

ulower ≤ u(kc) ≤ uupper (14)
...

ulower ≤ u(kc + Nc − 1) ≤ uupper. (15)

By substituting the prediction model (13) into the objective
function (12) an optimization problem with a nonlinear, non-
differentiable objective function and simple box constraints is
obtained.

4. PATTERN SEARCH METHODS FOR NONLINEAR
OPTIMIZATION

In the MPC problem defined above (after the substitution of the
prediction model) evaluating the objective function is expensive
due to the due to the evaluation of the prediction model which
involves a Simulink simulation. In practice, the computation
time is limited and within the available computation time a
solution that is as good as possible has to be determined. Many
nonlinear optimization methods rely on gradient and Hessian
information (Nocedal and Wright, 1999). Solvers that use this
first-order or second-order information will therefore perform
numerical approximation of the gradient and/or Hessian, in-
volving numerous objective function evaluations. In addition,
due to the non-smoothness of the problem there are many local
minima in which this type of solvers typically quickly can get
stuck.

Instead of using gradient or Hessian-based solvers, we propose
to use a so-called direct-search optimization method, which
does not explicitly require gradient and Hessian information
(Wright, 1996). The only property that this method requiresis
that the values of the objective function can be ranked. This
feature together with the feature that direct-search methods are
suitable for non-smooth problems, make that such a method is
suitable for solving the control problem at hand.



In particular, we propose to use the direct-search method pat-
tern search (Lewis et al., 2000) due to its straightforward im-
plementation and its ability to yield good solutions, even for
objective functions with many local minima.

Pattern search works in an iterative way in which a solution
xs at iterations is replaced by a new solutionx+ only if
f(x+) < f(xs). In addition, the new solutionx+ is selected
from a finite set of candidate solutionsMs that is updated at
each iteration. An iteration of pattern search is summarized in
the following steps (Lewis et al., 2000):

• A meshMs around the current solutionxs is constructed,
consisting of a discrete set of candidate solutions inR

n

in which the algorithm searches for a new solution. The
coarseness of the mesh is determined by the mesh size
∆s ∈ R

+.
• The meshMs is explored in one or two phases:

· In the search phaseany strategy can be used to find
a solutionx+ ∈ Ms for which f(x+) < f(xs), as
long as a finite number of points is considered. If a
solutionx+ is found, the search was successful and
the next phase is not invoked.

· In the polling phasea new solutionx+ for which
f(x+) < f(xs) is searched for in a subset of solutions
in Ms, consisting of those solutions that are in the
direct neighborhood of the current solutionxs. This
neighborhood is defined through a set of vectors
called a pattern and the current solution. If a solution
x+ is found in this neighborhood then the polling
phase was successful.

• If either of the phases was successful, thenxs+1 := x+,
the coarseness of the mesh is set to∆s+1 = ǫ∆s, with
expansion factorǫ > 1, and the next iteration starts. If
x+ was not found, thenxs+1 := xs, the coarseness of the
mesh is set to∆s+1 = γ∆s, with a contraction factor
γ ∈ (0, 1), and the next iteration starts.

The iterations continue until a stopping condition is satisfied,
e.g., the mesh size is less than a given tolerance, the total num-
ber of objective function evaluations reaches a given maximum,
or the distance between the point found at one successful poll
and the point at the next successful poll is less than a given
tolerance.

In our simulations in the next section we use the pattern
search implementation as included in the Genetic Algorithm
and Direct Search Toolbox of Matlab v. 2.3 (R2008a) (The
Matworks, 2008).

5. SIMULATION RESULTS

This section presents the simulation results obtained withthe
Bogotá case study introduced in Section 2.1. The City Drain
model is used both for representing the system to be controlled
and as a prediction model in the model predictive controller.
The dimension of the continuous statexc is 59 (31 volumes and
25 flow rates). The dimension of the discrete state is 3 (pump
states) and the dimension of the control input is 6 (maximum
threshold of local controller of the pumps and output flow rate
of the storage tanks).

Rainfall and sewage flow rates are considered as measured
disturbances (3 stormwater and 3 sewage input flow rates).
Typically, rainfall and sewage predictions until up to 5 h into
the future are considered accurate. The average settling-time of
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Fig. 4. Maximum thresholds of the local controller of the
pumps (top) and the output flow rates of the storage tanks
(bottom) with corresponding bounds (dotted lines).

the system is around 1 h. Consequently, the control stepTc is
selected equal to 1 h. The prediction horizon is 5 h, i.e.,Nc = 5
and the simulation time is 24 h, starting at midnight.

Hereafter, a scenario in which a strong rainfall event occurs in
the morning is used to illustrate the operation of the proposed
approach. This scenario arises from statistical studies based on
historical data collected between 2006 and 2008, and illustrates
a typical case (Rodrı́guez et al., 2008). Figure 3 shows the total
stormwater and sewage flow rate profiles used over the 24 h
simulation time.

The MPC controller is tuned with the following values:wTP =
103, Woverflow is a diagonal matrix with all diagonal elements
equal to103, andc1 = c2 = c3 = 1. The control inputs should

stay within the following bounds:ulower =
[

0 0 0 0 0 0
]T

and

uupper =
[

30 30 30 0.02 0.02 0.02
]T

.

Figure 4 shows the maximum thresholdsvmax
pump of the local

controller of the 3 pumps and the output flow ratesqout of the
storage tanks with respect to time, as well as corresponding
bounds. Figure 5 shows the evolution of the stored volumes
in the tanks over the simulation. Figure 6 shows the summed
overflows over the simulation, both when the proposed scheme
is used and when operating in manual control (in which the
maximum threshold value of the local controller of each pump
is equal to the maximum capacity of the storage tank and stor-
age tank of collectors have the maximum output flow rate). It
is observed that the summed overflow under the proposed MPC
scheme is reduced by 40 % with respect to the summed over-
flow in manual operation. Moreover the maximum treatment
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capacity of the water treatment plant (0.0056m3/s) is respected
with the MPC scheme.

These results illustrate how the proposed MPC scheme is able
to successfully prevent overflows of untreated wastewater.

6. CONCLUSIONS AND FUTURE WORK

This paper presents a model predictive control (MPC) strategy
based on a pattern search method for sewer system operation.
The MPC controller uses an internal model of the system to
predict its future behavior and to choose adequately the best
actions to apply to minimize the consequences of strong rain-
fall events, i.e., overflows, and to improve the operation. The
prediction model has been built with the City Drain blockset
of Matlab-Simulink. The prediction model is non-differentiable
and a pattern search algorithm is used to solve the underlying
optimization problem that arises from the MPC strategy. The
results show the capabilities of the proposed approach applied
to the operation of a sewer system.

Future research will focus on further assessing the performance
of the proposed scheme in particular, taking into account prac-
tical time constraints. Moreover, robustness of the schemewill
also be investigated by explicitly considering uncertainty in the
disturbance profiles (rainfall and sewage). Furthermore, dis-
tributed implementations of the scheme will be considered in
a distributed MPC setup in which the different parts of the city
will have dedicated MPC controllers, which via coordination
locally choose actions that are system-wide optimal.
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