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Chapter 1
Intelligence in Transportation Infrastructures
via Model-Based Predictive Control

R.R. Negenborn and H. Hellendoorn

Abstract In this chapter we discuss similarities and differences between transporta-
tion infrastructures like power, road traffic, and water infrastructures, and present
such infrastructures in a generic framework. We discuss from a generic point of
view what type of control structures can be used to control such generic infrastruc-
tures, and explain what in particular makes intelligent infrastructures intelligent. We
hereby especially focus on the conceptual ideas of model predictive control, both in
centralized, single-agent control structures, and in distributed, multi-agent control
structures. The need for more intelligence in infrastructures is then illustrated for
three types of infrastructures: power, road, and water infrastructures.
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1.1 Transportation infrastructures

Transportation infrastructures, like power distribution networks [27], traffic and
transportation systems [12], water distribution networks [7], logistic operations net-
works [28], etc., (see Figures 1.1-1.3) are the corner stones of our modern society.
A smooth, efficient, reliable, and safe operation of these systems is of huge impor-
tance for the economic growth, the environment, and the quality of life, not only
when the systems are pressed to the limits of their performance, but also under reg-
ular operating conditions. Recent examples illustrate this. E.g., the problems in
the USA and Canada [44], Italy [42], Denmark and Sweden [16], The Netherlands,
Germany, Belgium, and France [43], and many other countries [36] due to power
outages have shown that as power network operation gets closer to its limits, small
disturbances in heavily loaded lines can lead to large black-outs causing not only
huge economic losses, but also mobility problems as trains and metros may not be
able to operate. Also, as road traffic operation gets closer to its limits, unexpected
situations in road traffic networks can lead to heavy congestion. Not only the huge
traffic congestion after incidents such as bomb alerts are examples of this, also the
almost daily road-traffic jams due to accidents illustrate this convincingly.

Expanding the physical infrastructure of these networks could help to relieve the
issues in transportation networks, although at extremely high costs. As alternative
to spending this money on building new infrastructure, it is worth spending effort
on investigating improved use of the existing infrastructure by employing intelligent
control techniques that combine state-of-the-art techniques from fields like systems
and control engineering [4], optimization [6], and multi-agent systems [47], with
domain-specific knowledge.

The examples of networks just mentioned are only some particular types of net-
works within the much larger class of transportation networks. Common to trans-
portation networks is that at a generic level they can be seen as a set of nodes, repre-
senting the components or elements of the network, and interconnections between
these nodes. In addition, transportation networks have some sort of commodity, that
is brought into the network at source nodes, that flows over links to sink nodes,
and that is influenced in its way of flowing over the network by elements inside
the network, as illustrated in Figure 1.4. Other characteristics that are common to
transportation networks are:

o they typically span a large geographical area;

e they have a modular structure consisting of many subsystems;

e they have many actuators and sensors;

o they have dynamics evolving over different time scales.
In addition to this, transportation networks often contain both continuous (e.g., flow
evolution) and discrete dynamics (e.g., on and off switching), and can therefore also

be referred to as hybrid systems [45]. This mixture of characteristics makes that
transportation networks can show extremely complex dynamics.
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Figure 1.2: (a) The national road network of The Netherlands; (b) The national train network
of The Netherlands.
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Figure 1.3: (a) The national electricity grid of The Netherlands (Illustration courtesy of
TenneT); (b) The national gas network of The Netherlands (Illustration courtesy of Gasunie).

'

Figure 1.4: Networks of a generic transportation infrastructure. Commodity enters the net-
work at sources (circles with an arrow pointing towards them), flows over links to other
elements in the network that alter the flows (at each circle), and leaves the network at sinks
(circles with an arrow pointing outward). Dotted lines represent connections with other parts
of the network.
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All the networks described in this book generically consist of sinks, sources,
transition nodes, and interconnections. The commodity that is being transported
over the network, however, determines how these components function. In a water
network, the water always flows downwards unless a pump is deployed, when two
waterways come together in a node the flow will increase, there may be intermediary
sinks, ultimately there is one sink, the sea. The source may be distant mountains or
rainfall, the amount of water can fairly precisely be predicted. In a traffic network,
the sources in the morning are residential areas, the sinks are business districts, in
the afternoon sources and sinks change roles. When two roads come together in a
node the traffic flow will slow down or stagnate. Traffic lights will give the network
a start-and-stop character. Highway and city traffic are very different in character.
Electricity networks are determined by Kirchhoff’s circuit laws that state that in any
node in an electrical circuit the sum of currents flowing into a node is equal to the
sum of the currents flowing out of that node. Electricity will always flow and can
hardly be stored or stopped, sinks are industries and families, sources are power
plants and increasingly often wind turbine parks and solar panels. Gas networks
are determined by pressure with usually one source and many sinks. In railway
networks it is hard to overtake, which gives these networks a strong sequential char-
acter, a chain which is very dependent on the weakest links.

Even though transportation networks differ in the details of commodity, sources,
sinks, etc., it is worth to consider them in a generic setting. On the one hand,
methods developed for generic transportation networks can be applied to a wide
range of specific domains, perhaps using additional fine-tuning and domain-specific
enhancements to improve the performance. On the other hand, approaches specifi-
cally developed for a particular domain can be applied to other domains after having
transferred them to the generic framework.

1.2 Towards intelligent transportation infrastructures

There are many users, controllers, players, actors, and operators involved in the
evolution of transportation networks. Each of these concepts refers to entities that
directly or indirectly change the way commodity is flowing. Different users may
have different objectives, and these objectives may be conflicting. Depending on
their objectives, the users choose different actions, resulting in a different operation
of the network.

1.2.1 The system versus its control structure

In order to formalize the operation of transportation networks, consider Figure 1.5.
The figure illustrates the overall picture of a system on the one hand and a control
structure on the other. The system is the entity that is under control, and the control
structure is the entity that controls the system. Hence, the control structure is the
concept used to indicate the structure that produces actuator settings. The control
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Figure 1.5: The relation between a general system and the control structure that controls the
system.

structure monitors the system by making measurements and based on these chooses
control actions that are implemented on the system. The system evolves subject to
these actions to a new state, which is again measured by the control structure. The
control structure consists of one or more components, called control agents. These
control agents try to determine settings for the actuators inside the system in such
a way that their own objectives are met as closely as possible and any constraints
are satisfied. In our case, the system consists of the transportation network, and the
components of the control structure consist of all the users, controllers, operators,
players, etc., from now on only referred to as the control agents.

1.2.2 Intelligent infrastructures

Traditionally, operators play an important role in infrastructural networks. They
monitor the system in large local or regional decision rooms, they open valves or
pumps, they start up generators or shift transformer taps, and they can remotely
close road lanes. More and more operators are replaced by ICT systems. In road
traffic and railway control this development is well developed, in waste and drinking
water networks this development has hardly begun. ICT solutions are in the begin-
ning focused on local optimization and do not regard the whole network. In the
case of, e.g., traffic lights this is not so much a problem, but in railway or electricity
networks local optimization is of minor importance.

In the beginning operators observe the ICT solutions in decision rooms, but when
confidence in the ICT system increases local control actions will be functioning fully
automatically. Simultaneously with the development of locally more optimal con-
trol, it becomes apparent that coordination with other parts of the network becomes
necessary. Green waves in road traffic networks are simple examples of this that
show well how far more complicated this larger system is in a city road network
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with many junctions and crossing lanes. Communication between local controllers
is necessary and intelligent systems have to be built that take into account all the
flows and that have the capability of forecasting the near future. As confidence in
these larger systems increases, coordination and negotiation between nodes will be
a regular practice and transportation infrastructures have become intelligent trans-
portation infrastructures.

1.2.3 Control structures

The control structure is a very general concept and can have many different shapes.
A first important distinguishing feature between control structures is the number of
control agents that constitute the control structure. E.g., the control structure can
consist of a single control agent or multiple control agents. Some other properties
in which control structures can differ are:

o the access that the control agents have to the sensors and actuators,

e the communication that the control agents have among one another,

e the way in which the control agents process sensor data to obtain actions,

o the authority relations between the control agents,

the beliefs, desires, and intentions of the control agents.

Defining different types of control structures is difficult due to the large amount
of properties that they can have. However, some general types of control structures
can be identified, that have increasing complexity, that are commonly encountered
in theory and practice, and that will also be of particular interest in the subsequent
chapters of this book:

e When it is assumed that there is only one control agent, that has access to all
actuators and sensors of the network and thus directly controls the physical
network, then this control structure is referred to as an single-agent control
structure, as illustrated in Figure 1.6(a). The control structure is in a sense ideal
structure, since in principle such a control structure can determine actions that
give optimal performance, although this may be at significant computational
costs.

e When there are multiple control agents, each of them considering only its own
part of the network and being able to access only sensors and actuators in that
particular part of the network, then the control structure is referred to as a multi-
agent single-layer control structure, as illustrated in Figure 1.6(b). If in addition
the agents in the control structure do not communicate with each other, the
control structure is decentralized. If the agents do communicate with each other,
the control structure is distributed.

e When there are multiple control agents, and some of these control agents have
authority over other control agents, in the sense that they can force or direct
other control agents, then the control structure is a multi-layer control structure,
as illustrated in Figure 1.6(c) A multi-layer control structure typically is present
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when one control agent determines set-points to a group of other control agents,
that work in a decentralized or distributed way. Due to the authority relationship
between agents or groups of agents, the multi-layer control structure can also be
referred to as a supervisory control structure, or a hierarchical control structure.

1.2.4 Control structure design

Suppose that a particular network is given and that any control structure can be
implemented on it. The question that then arises is the question of how it can be de-
termined what the best control structure is. Unfortunately, theories for determining
general control structures are lacking. However, motivations for preferring one type
of control structure over another can be given.

Advantages of single-agent control structures are in general that they can deliver
the best performance possible, and that they have been studied extensively in the lit-
erature, in particular for small-scale systems. However, there are several issues that
complicate the use of single-agent control structures for large-scale transportation
networks such as:

e undesirable properties with respect to robustness, reliability, scalability, and re-
sponsiveness;

e technical issues related to communication delays and computational require-
ments;

e commercial, legal, and political issues related to unavailability of information
and restricted control access.

These reasons motivate the use of multi-agent control structures [40, 41, 47],
which are expected to be able to deal or at least relieve these issues. Multi-agent
control structures can in principle:

e improve robustness and reliability, since if one control agents fails, another can
take over, and improve responsiveness, since the control agents typically use
only local measurements and therefore can react quicker to changing situations;

e reduce communication delays, since the control agents operate locally and
therefore solve problems that may be smaller, and since communication typ-
ically takes place among nearby control agents;

e deal with unavailability of information and restricted control access, since the
control agents only require information of their own part of the network and
since they determine actions only for their own part of the network.

However, multi-agent control structures typically have a lower performance than
the performance of ideal single-agent control structures; implementing schemes that
give desired performance is far from trivial.

An advantage of the decentralized over the distributed multi-agent single-layer
control structures is that there is no communication between the controllers, result-
ing in lower computational requirements and faster control. However, this advan-
tage will typically be at the price of decreased overall performance. The advantage
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(b) Multi-agent single-layer control structure. Multiple control
agents make measurements and provide actions to the network.
Communication between the control agents is optionally present

(dashed line).
control structure
control agent

R 4 e

i
! I
! I
! I I
| e I
! I I
e T R I
LI vy ¥ I

control agent control agent control agent
1 2 3
measurements measurements actions measurements actions measurements actions actions

(c) Multi-layer control structure. A higher-layer control agent can make measure-
ments and provide actions to the network and can in addition direct or steer a lower

control layer.

Figure 1.6: Some important types of control structures.
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of a distributed multi-agent single-layer control structure is therefore that improved
performance can be obtained, although at the price of increased computation time
due to cooperation, communication, and perhaps negotiation among control agents.
However, even though improved performance can be obtained, the performance will
still typically be lower than the performance of an ideal single-agent control struc-
ture.

The multi-agent multi-layer control structure provides the possibility to obtain
a trade-off between system performance and computational complexity. A higher
layer considers a larger part of the system and can therefore direct the lower control
layer to obtain coordination. Such a multi-layer control structure can thus combine
the advantages of the single-agent control structure with the multi-agent single-layer
control structure, i.e., overall system performance with tractability. It is noted, how-
ever, that communication in a multi-agent multi-layer control structure is typically
more complex than in a single-agent control structure and a multi-agent single-layer
control structure.

Note that in practice often a particular control structure is already in place, and
that the control structure cannot be redesigned from scratch. The question in this
case is not so much the question of what control structure is best, but of how the
currently existing control structure can be changed, such that the performance is
improved. Of course, here it has to be defined what the performance is, and in
a control structure with control agents with conflicting objectives it may not be
possible to reach consensus on this.

1.2.5 Assumptions for design and analysis

In this book control strategies for several control structures are developed. Due to
the complexity of transportation networks, the scope of control problems that is
considered is narrowed down. The focus will mostly be on the most fundamental of
transportation network control problems: the operational control of transportation
networks, in which amounts of commodity to be transported over the network are
given, and controllers have to ensure that transport over the network can take place
at acceptable service levels, while satisfying any constraints, both under normal and
emergency operating conditions.

In order to make the analysis and the design of the control structures more
tractable, assumptions have to be made, both on the network and the control struc-
ture. Assumptions relating to the network are made on the dynamics of the network,
i.e., the way in which the components in the network function. E.g., the dynamics
can be assumed to evolve over continuous time or in discrete-time, they can be
assumed to involve only continuous dynamics, or both continuous and discrete dy-
namics, and they can be assumed to be instantaneous or not. In each chapter we
explicitly point out which particular assumptions are made on the network. With
respect to the control structure, assumptions are made on the following:

e the control agents are already present (however, it is not known yet how they
should behave);
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e the control agents control fixed parts of the network, and they can access actu-
ators and sensors in these parts of the network;

e the control agents know what qualitative behavior is desired for the parts of the
network they control;

e the control agents strive for the best possible overall performance of the net-
work;

e the control agents can measure the state of the parts of the network that they
control.

Under such assumptions it remains to be decided how the agents in the control struc-
ture derive actuator settings from their measurements, i.e., what protocols, compu-
tations, and information exchanges take place inside the control structure. Assump-
tions on these are made in other chapters of this book. In the following section we
discuss a promising approach for use by the control agents in a multi-agent control
structure for transportation network control: model predictive control.

1.3 Model predictive control

To find the actions that meet the control objectives as well as possible, the control
agents have to make a trade-off between the different available actions. In order
to make the best decision and hence find the best actions, all relevant information
about the consequences of choosing actions should be taken into account. For power
networks, typical information that is available consists of forecasts on power con-
sumption and exchanges [20], capacity limits on transmission lines, dynamics of
components like generators, capacitor banks, transformers, and loads [27]. Further-
more, typically area-wide measurements of voltage magnitude and angles across the
network can be made to provide an up-to-date status of the situation of the network.
A particularly useful form of control for transportation network that in principle can
use all information available is model predictive control (MPC) [10, 29].

1.3.1 Single-agent MPC

Over the last decades MPC (also knowns as receding horizon control or moving
horizon control) has become an important methodology for finding control policies
for complex, dynamic systems. MPC in a single-agent control structure has shown
successful application in the process industry [29, 31], and is now gaining increas-
ing attention in fields like, amongst others, power networks [18, 35], road traffic
networks [21], railway networks [13], steam networks [30], multi-carrier systems
[3], greenhouse control [38], and drug delivery [8].

1.3.1.1 Concept

MPC is a control methodology that is typically used in a discrete-time control con-
text, i.e., control actions are determined in discrete control cycles of a particular
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Figure 1.7: Single-agent MPC.

duration which in itself is expressed in continuous time units. From the beginning
of one control cycle until the beginning of the next control cycle, the control actions
stay fixed, i.e., a zero-order hold strategy is employed.

In each control cycle the MPC control agent uses the following information, as
illustrated in Figure 1.7:

e an objective function expressing which system behavior and actions are desired;

e a prediction model describing the behavior of the system subject to actions;

e possibly constraints on the states, the inputs, and the outputs of the system
(where the inputs and the outputs of the system correspond to the actions and
the measurements of the control agent, respectively);

e possibly known information about future disturbances;

e a measurement of the state of the system at beginning of the current control
cycle.

The objective of the control agent is to determine those actions that optimize
the behavior of the system and minimize costs as specified through the objective
function. In order to find the actions that lead to the best performance, the control
agent uses the prediction model to predict the behavior of the system under various
actions over a certain prediction horizon, starting from the state at the beginning of
the control cycle. Once the control agent has determined the actions that optimize
the system performance over the prediction horizon, it implements the actions until
the beginning of the next control cycle, at which point the control agent determines
new actions over the prediction horizon starting at that point, using updated infor-
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mation. Hence, the control agent operates in a receding or rolling horizon fashion
to determine its actions.

In general it is preferable to have a longer prediction horizon, since by consid-
ering a longer prediction horizon, the control agent can better oversee the conse-
quences of its actions. At some length, however, increasing the length of the predic-
tion horizon may not improve the performance, if transients in the dynamics may
have become negligible. For computational reasons, determining the actions over a
very long horizon typically is not tractable, and in addition due to potential uncer-
tainty in the prediction model and in predictions of future disturbances, a smaller
prediction horizon is usually considered. Hence, in practice, the prediction horizon
should be long enough to cover the most important dynamics, i.e., those dynamics
dominating the performance, and short enough to give tractable computations. It
should hereby also be noted that if a prediction horizon is used that is too short,
the system could arrive in states from which it cannot continue due to the presence
of constraints, e.g., on the actions. The prediction horizon should thus have such a
length that arriving in such states can be avoided.

1.3.1.2 MPC Algorithm

Summarizing, a control agent in a single-agent control structure using MPC to de-
termine its actions performs at each control cycle the following:

1. Measure the current state of the system.
2. Determine which actions optimize the performance over the prediction horizon
by solving the following optimization problem:

minimize the objective function in terms of actions over the prediction horizon
subject to  the dynamics of the whole network over the prediction horizon,
the constraints on, e.g., ranges of actuator inputs and link capacities,
the measurement of the initial state of the network at the beginning

of the current control cycle.

3. Implement the actions until the next control cycle, and return to step 1.

1.3.1.3 Advantages and issues

Advantages of MPC are that in principle it can take into account all available infor-
mation and that it can therefore anticipate undesirable situations in the future at an
early stage. Additional advantages of MPC are [29]:

its explicit way of handling constraints on actions, states, and outputs;
its ability to operate without intervention for long periods;

its ability to adapt to slow changes in the system parameters;

its ability to control systems with multiple inputs and multiple outputs;
its relatively easy tuning procedure;
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e its built-in robustness properties.

However, there are also some issues that have to be addressed before a control
agent using an MPC methodology can be implemented successfully:

the control goals have to be specified;

the prediction model has to be constructed;

the measurement of the system state has to be available;

a solution approach (optimization method) has to be available that can solve the
MPC optimization problem:;

e the solution approach has to be tractable and efficient.

Basic issues, e.g., stability and robustness, have extensively been studied for
MPC in single-agent control structures [31], in particular for linear time-invariant
systems. For other classes of systems there are still many open issues. E.g., tractabil-
ity issues of MPC for nonlinear and discrete-event systems, and for systems in which
variables take on discrete values, still deserve attention. E.g., in [34] an approach
is proposed to make the MPC problem for a system modeled as a Markov decision
process more tractable and to deal with changing system dynamics by including ex-
perience using reinforcement learning. Another class of systems for which there are
still many open questions are hybrid systems, i.e., systems including both continu-
ous and discrete dynamics.

1.3.2 Multi-agent MPC

As mentioned in the previous section, in a multi-agent control structure, there are
multiple control agents, each of them controlling only its own subnetwork, i.e., a
part of the overall network. Multi-agent MPC issues have been investigated since
the 90s, such as in [1, 2, 5, 15, 17, 19, 22, 26, 37, 39], and more recently in [9, 11,
14, 24, 25, 33, 46] and [32].

In multi-agent MPC, multiple control agents in the control structure use MPC,
but now they first measure the subnetwork state, then they determine the best ac-
tions over the predicted subnetwork evolution, and then they implement actions.
Although this may seem like a straightforward extension of single-agent MPC at
first sight, when considering the details it is not.

The actions that an agent in a multi-agent control structure takes influence both
the evolution of the subnetwork it controls, and the evolution of the subnetworks
connected to its subnetwork. Since the agents in a multi-agent control structure
usually have no global overview and can only access a relatively small number
of sensors and actuators, predicting the evolution of a subnetwork over a horizon
involves even more uncertainty than when a single agent is employed. In addition,
when a control agent in a multi-layer control structure provides set-points to another
agent, this supervisory control changes the way in which the other agent chooses its
actions, and thus the higher-layer control agent changes the performance of the sys-
tem.
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Figure 1.8: Multi-agent single-layer MPC.

Under the assumption that the control agents strive for an optimal overall network
performance, the challenge in implementing such a multi-agent MPC methodology
comes from ensuring that the actions that the individual agents choose result in a
performance that is comparable to the situation when a hypothetical single-agent
control structure in which all information is available would be used.

1.3.2.1 Multi-agent single-layer MPC

In the multi-agent single-layer control structure each control agent only has infor-
mation gathering and action capabilities that are restricted to that part of the network
that a particular control agent controls, as illustrated in Figure 1.8. The challenge in
implementing multi-agent single-layer MPC comes from predicting the dynamics of
the subnetwork, since, as mentioned, its evolution is influenced by the other agents.
The underlying problem of MPC for multi-agent control structures can therefore be
seen as optimization over a distributed simulation.
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Issues

To make accurate predictions of the evolution of the subnetwork, a control agent
requires the current state of its subnetwork, a sequence of actions over the predic-
tion horizon, and predictions of the evolution of the interconnections with other
subnetworks. The predictions of the evolution of the interconnections with other
subnetworks are based on the information communicated with the neighboring con-
trol agents. One particular class of methods aims at achieving cooperation among
control agents in an iterative way in which in each control cycle control agents per-
form several iterations consisting of local problem solving and communication. In
each iteration agents obtain information about what the plans of neighboring agents
are. Ideally at the end of the iterations the agents have found actions that lead to
overall optimal performance.

As is the case with MPC for single-agent control structures, having both con-
tinuous and discrete dynamics causes computational problems. In transportation
networks this combination is commonly encountered, and it is therefore relevant to
study models that take this into account. A further complicating issue arises when
the subnetworks that the agents control are overlapping. Existing strategies assume
that the subnetworks that the control agents control are non-overlapping. However,
in some applications the subnetworks considered by the control agents are overlap-
ping. This has to be taken into account explicitly.

1.3.2.2 Multi-agent multi-layer MPC

In the multi-layer multi-agent MPC case there are multiple control layers in the
control structure, i.e., there are authority relationships between the agents in the
sense that some agents provide set-points or directions to other agents. The agents
at higher layers typically consider a larger region of the network and consider slower
time scales than agents in lower layers. Figure 1.9 illustrates this.

MPC can also be used by a control agent in a higher layer of the control structure.
This higher-layer control agent can then coordinate the lower layer, which may con-
sist of control agents using multi-agent single-layer MPC, or of control agents that
use alternative control strategies. The higher-layer control agent then coordinates
the lower control layer by enforcing penalty terms, providing additional constraints,
or providing set-points. The advantage of the higher-layer control agent is in partic-
ular clear when the control agents of the lower layer are working decentralized, i.e.,
not communicating with one another.

Issues

An important issue to be addressed when designing MPC for multi-agent multi-layer
control structures is the choice of the prediction model that the higher-layer control
agent uses. A higher-layer control agent has to be able to make relevant predictions
of the physical system, but since the physical system is under control of the lower-
control layer, the lower-control layer has to be taken into account by the higher-layer
control agent as well. In addition, the prediction model that the higher-layer control
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Figure 1.9: Multi-agent multi-layer MPC.

agent uses will typically involve both continuous and discrete elements, since it has
to consider a larger part of the network than lower-layer agents. This makes the
resulting MPC control problem more complex, and efficient ways have to be found
to solve it efficiently.

1.4 MPC for intelligent infrastructures

As stated before, the commodity to be transported in a network determines the
meaning of nodes and interconnections. Commodities are electrons in power net-
works, cars in road networks, water molecules in water networks, trains in railway
networks, gas molecules in gas networks, etc. It is important to understand the
origin and destination of commodities in networks and the operations that can be
performed on them. Recent technological developments, in particular in commu-
nication technology, have increased the number of possible operations in various
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networks considerably. Below, intelligent power, road, and water networks are de-
scribed as they are the main examples of intelligent infrastructures in this book.

1.4.1 Intelligent power infrastructures

Power networks [27] are large transportation networks consisting of a large number
of components. The generators produce power that is injected into the network on
the one side, while the loads consume power from the network on the other side.
The distribution of the power in the network is dictated by Kirchhoff’s laws and
influenced by the settings of the generators, loads, transformers, and potentially
also by capacitor banks and FACTS devices.

Conventionally, in power networks, power was generated in several large power
generators. This power was then transported through the transmission and distribu-
tion network to the location where it was consumed, e.g., households and industry.
The number of control agents was relatively low. Due to the ongoing deregulation
in the power generation and distribution sector in the U.S. and Europe, the num-
ber of players involved in the generation and distribution of power has increased
significantly. In the near future the number of source nodes of the power distribu-
tion network will even further increase as also large-scale industrial suppliers and
small-scale individual households will start to feed electricity into the network [23].

As a consequence, the structure of the power distribution network is changing
from a hierarchical top-down structure into a much more decentralized system with
many generating sources and distributing agencies. This multi-player structure thus
results in a system with many interactions and interdependencies. To still guarantee
basic requirements and service levels, such as voltage levels, frequency, bounds on
deviations, stability, elimination of transients, etc., and to meet the demands and
requirements of the users, new control techniques are being developed and imple-
mented resulting in an intelligent power infrastructure. The chapters in Part II of
this book focus on this.

1.4.2 Intelligent road infrastructures

Electric traffic lights have now existed for almost a hundred years and are the best
well-known control measures in road traffic networks. In the beginning, traffic lights
were fixed-time stand-alone systems, later on they evolved into intelligent control
systems using sensor information and communication with neighboring junctions.
In the last decades a large number of traffic control measures have been added: dy-
namic speed signs, dynamic route information panels, ramp metering, and parking
guidance systems. Furthermore, due to the increased possibilities of traffic mea-
suring traffic information has become available via radio, internet, and route navi-
gation systems. At the same time the amount of traffic has increased enormously,
congested inner cities and traffic jams have become a regular phenomenon that can-
not be solved by single operating traffic measures anymore. In traffic management
the combination of information, prohibition, limitation, and coordination is appar-
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ently needed. Model-based predictive control does already play a large role in road
networks, but the need for more intelligence and cooperation is huge. Future devel-
opments like intelligent (partly) autonomous vehicles in combination with roadside
control will open up new possibilities for traffic management and control. The chap-
ters of Part III of this book focus on this.

1.4.3 Intelligent water infrastructures

In the near future the importance of an efficient and reliable flood and water man-
agement system will keep on increasing, among others due to the effects of global
warming (higher sea levels, more heavy rain during the spring season, but possi-
bly also drier summers). Due to the large scale of water networks, control of such
networks in general cannot be done in a centralized way, in which from a single lo-
cation measurements from the whole system are collected and actions for the whole
system are determined. Instead, control is typically decentralized over several lo-
cal control bodies, each controlling a particular part of the network [41, 47]. Local
control actions include activation of pumps or locks, filling or draining of water
reservoirs, or controlled flooding of water meadows or of emergency water storage
areas. MPC and distributed MPC are suitable techniques for intelligently determin-
ing how these local control actions should be implemented. The chapters of Part IV
of this book focus on this.

1.5 Conclusions and future research

In this chapter we have discussed various infrastructures and have illustrated that
they are similar in structure with regard to their nodes and interconnections, which
is in particular visualized in Figures 1.1-1.3, but very different in character due to
the very different commodities that are transported over the network. It was made
apparent that transporting gas or water molecules is very different from transporting
cars and trains, and that this is again different from transporting power. Some com-
modities are passive, like gas and water, others are active, in particular cars, where
drivers play an important role and continuously interact with the control measures.
Furthermore, we have discussed several control constellations: single-agent and
multi-agent control structures, single-layer and multi-layer control structures, hi-
erarchical and distributed systems, centralized and decentralized systems, and com-
binations of all of these. We have discussed the pros and cons of each structure and
the role of computational power and optimality in each of them. The status quo, the
vulnerability of the network, and the technical possibilities determine which control
structure is most appropriate to meet the challenges in the networks and the user
demands.

We have introduced several kinds of Model Predictive Control (MPC) and ex-
plained why this methodology is useful for control of large networks. We have
illustrated how MPC and multi-agent techniques can be combined, how this com-
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bination can tackle problems in subnetworks and how agents in subnetworks can
cooperate and negotiate with each other to find an optimal solution for the whole
network.

Finally, we have introduced in somewhat more detail recent technological and
communications developments in power networks, road networks, and water net-
works.
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