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Chapter 3

Prevention of Emergency Voltage Collapses in

Electric Power Networks using Hybrid

Predictive Control

S. Leirens and R.R. Negenborn

Abstract The reliable operation of electricity transport and distribution networks

plays a crucial role in modern societies. However, too often, when a fault oc-

curs in electricity networks, such as a transmission line drop, loss of generation,

or any other important failure, voltages start to decay, potentially leading to com-

plete blackouts with dramatic consequences. Thus, techniques are required that

improve the power grid operation in case of emergencies. In this chapter, to achieve

this aim, an approach is presented that uses an adaptive predictive control scheme.

Electric power transmission networks are hereby considered as large-scale intercon-

nected dynamical systems. First, voltage instability issues are illustrated on a 9-bus

benchmark system. Then, the details of the proposed approach are discussed: the

power network modeling and the construction of a hybrid prediction model (i.e.,

including both continuous and discrete dynamics), and the formulation and the res-

olution of the adaptive predictive control problem. In simulation studies on the

9-bus benchmark system the performance of the proposed approach is illustrated in

various emergency voltage control cases.
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3.1 Introduction

The human and economic consequences of power outages have shown that the re-

liable operation of electricity transport and distribution networks plays a crucial

role in modern societies, as illustrated by recent problems in the United States and

Canada, Europe, and Latin America [52–54]. The safe operation of the electricity

network has to be carried out both under regular operating conditions, and also when

the system is operating close to its limits. A great part of current research efforts

is devoted to explore new ways to improve the power grid operation in terms of

efficiency, reliability, and robustness, while satisfying constraints on economy and

environment.

This is necessary, since electric power networks are experiencing rapid and im-

portant changes, in particular in the way they are operated and managed:

• The environmental opposition against the expansion of the physical power

transportation infrastructure is now stronger than before, and the consumption

of electricity increases in areas that are already heavily loaded [16];

• The development of interconnections between countries (e.g., in Europe) leads

to very complex large-scale dynamical systems [24];

• New economic regulations due to the growth of energy markets induce unpre-

dicted power flows and demand for a relaxation of security margins [10].

• The number of actors in the network increases as the amount of distributed

or embedded generation increases, e.g., as industrial suppliers and households

start to feed electricity into the network [20].

Due to the increased complexity arising from these aspects, the consequences of

failures, such as transmission line drops, losses of generation, or any other important

failures in the system, become more significant. The conventional control schemes

of the network operators have to be revised, renewed, or even replaced by control

schemes that can manage the electric power network of the future.

3.1.1 Power systems issues

In general, a power system is a strongly nonlinear system that have to be controlled

over a wide range of operating conditions, possibly far from equilibrium points, in

particular in emergency situations such as voltage instability [55]. The behavior of

power systems is characterized by so-called hybrid behavior [2], i.e., behavior re-

sulting from the interaction between continuous and discrete dynamics. Continuous

dynamics of power systems are mainly driven by components such as generators

and loads, and are usually represented by systems of differential-algebraic equa-

tions (DAEs). The discrete behavior arises from the nature of connected elements,

such as capacitor banks, line breakers, and limiters in voltage regulators, or the way

in which such elements are controlled, e.g., via discrete shedding of load, on or off

switching of generation units, and on-load tap changing of ratio control in trans-

formers. Moreover, power networks typically span a wide range of time scales and
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large geographical areas. As a consequence, electric power networks are modeled

as large-scale nonlinear hybrid systems.

Such complex systems are generally controlled in a hierarchical way and con-

trol takes place at different layers with a decomposition based on space and time

divisions [5]. At the lowest layer, the controllers act directly on the actuators of

the physical system with fast and localized control, e.g., single-input single-output

controlled systems, such as automatic voltage regulators of synchronous machines.

At the higher layers, supervisory controllers determine set-points for lower control

layers in order to obtain coordination. Model-based approaches and global control

for power systems become conceivable at these layers, since wide-area and pha-

sor measurements are available [51], and utilities increasingly demand wide-area

control, protection, and optimization systems [22].

Emergency voltage control deals with the problem of voltage instability lead-

ing to so-called collapses after disturbances [49, 50, 55]. The current protection

schemes against voltage collapses are generally rule-based and consist of load shed-

ding and reactive power compensation associated with strong operator training.

However, the nonlinear behavior of power systems makes these rules strongly de-

pendent on the operating conditions. After a disturbance such as breaking of a

transmission line, the generation and transmission system may not have sufficient

capacity to provide the loads with power. Voltage instability may then occur, in the

worst case leading to total network blackouts. Voltage collapses are not only asso-

ciated with weak systems such as power networks with low transfer capability, but

are also a source of concern in highly developed networks that are heavily loaded.

An illustration of this phenomenon is presented in Section 3.2.

The principal objective of the control system of an electricity network is to min-

imize the effects of the possible disturbances on the quality of the supplied energy

[55], i.e.,

• voltages must remain within an acceptable range, e.g., within 5–10 % of the

nominal value;

• requirements on physical limitations of interconnected elements must be satis-

fied,

while minimizing power losses, and achieving economic objectives, e.g., by min-

imizing the use of load shedding, since customers are then disconnected from the

system, suffering great economical losses.

In the current power network operation, emergency voltage control is typically

performed by human operators that are in the loop. The operators monitor the grid

(typically power flows, voltage magnitudes, and angles) and take decisions follow-

ing pre-established procedures. Decisions, such as on the on or off switching of

equipment and the provision of set-points to lower control layers are based on offline

studies, extensive experience, system conditions observed via telemetry, heuristics,

knowledge bases, and state-estimator outputs. The control problem is then inher-

ently complex and in general there is no possibility to rapidly change the operat-

ing conditions in an online and coordinated manner since the grid operation relies
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mainly on the operators (dispatchers). New online control systems become increas-

ingly necessary to face the recent changes in electricity networks and to achieve

improved performance.

3.1.2 Power network modeling and control

Power networks are large-scale interconnected dynamical systems and their physical

modeling relies on analytic models of individual components and knowledge of the

network structure. General models at component level can be expressed in terms

of the nonlinear dynamics of the local states, and input and output variables. These

input and output variables are subject to algebraic constraints defined by Kirchhoff’s

laws. Hence, the combination of the dynamic models of the individual components

and these algebraic constraints takes the form of a system of nonlinear DAEs [19].

Electric power systems consist of two types of fundamental components: single-

port equipment components and two-port transmission components. Single-port

equipment components are components such as synchronous machines and loads,

including their primary controllers (governors, exciters, switched-shunt capacitors,

and reactors). Two-port transmission components are components such as high-

voltage transmission lines that connect buses (nodes in the network) and their pri-

mary controllers (series capacitors, phase-shifting transformers, and on-load tap

changers) [19]. Single-port components are connected to other single-port com-

ponents via two-port components. Each of these components is hereby described

by its constitutive relations, the complexity degree of which can be very high. E.g.,

obtaining dynamic models of synchronous machines is an extremely laborious pro-

cess [19, 25]. The equations of the component models can be nonlinear, hybrid,

differential, and non-smooth. Simplifications are generally made with respect to the

phenomena of interest, e.g., in the case of quasi-static models for voltage stability

studies, for which fast dynamics, such as electromechanical dynamics, are neglected

and frequency is assumed to be constant [55].

Despite the fact that models consisting of systems of DAEs attract much interest,

due to their importance as models for a large class of dynamical processes (e.g.,

in mechanics, robotics, and chemical engineering), such models present intrinsic

numerical difficulties. Systems of DAEs are more difficult to solve than systems of

ordinary differential equations because of issues related to their index [17] and the

determination of consistent initial conditions [8, 45].

To deal with control and optimization of systems modeled by DAEs, several

strategies have been proposed, such as simultaneous strategies [6, 9, 21], multiple

shooting strategies [11, 12], and direct search methods [43]. The particular structure

of power network models (see Section 3.3.4) can especially be used advantageously

to set up tractable models for model-based control approaches, such as model pre-

dictive control (MPC) [31]. MPC is a control methodology that has been success-

fully applied to a wide range of control problems, including problems in industrial

processes [40], steam networks [32], residential energy resources [42], greenhouse

systems [47], drug delivery systems [7], and water systems [44].
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In MPC, a control action is obtained at discrete control sample steps by solving

an optimization problem that minimizes an objective function over a finite receding

horizon subject to the equations of a prediction model and operational constraints.

The main advantages of MPC are:

• the explicit way of integrating present and future soft as well as hard constraints,

such as operational constraints on bus voltages, line currents, generator excita-

tions, and bounded control inputs and states, such as transformer ratios and

reactive compensation units;

• the ease of integrating forecasts to anticipate events in the infrastructure, in the

case that an event is known in advance to occur, such as an overloaded line dis-

connection, loss of generation, consumption changes, and maintenance actions;

• the ability to update online the prediction model to manage fast changing con-

ditions in an adaptive way;

• the straightforward design procedure (see Section 3.4).

Given a model of the system to be controlled, hard constraints can be incorporated

directly as inequalities and soft constraints can also be accounted for in the ob-

jective function by using penalties for violations. Fundamental trade-offs between

efficiency and priorities are handled through the minimization of a cost function to

fulfill economic objectives and minimize power losses.

As stated above, power systems belong to the class of hybrid systems. Con-

ventional methods, i.e., either purely continuous or purely discrete methods, cannot

be used for control of systems with both continuous and discrete dynamics. The

control approach that is presented in this chapter is called a hybrid approach in the

sense that it deal with both continuous and discrete dynamics at the same time in an

integrated way.

MPC has first been applied to a voltage control problem in [26], in which a

coordinated system protection scheme against voltage collapse using search and

predictive control is presented. To be tractable, this approach uses a single-step

linearized prediction model, that is, a constant control input is assumed over the

entire prediction interval. This approach cannot handle discrete behavior. It is a

small signal approach, in which all control variables are discretized leading to a

purely combinatorial optimization problem.

In [18], the mixed-logical dynamical framework [4] is used to model the hy-

brid behavior of a 4-bus power system. In this approach the continuous state-input

space is divided into several polytopes; a different affine model may be used for

each combination of the values of the discrete variables. The gridding of the con-

tinuous state-input space has to be tight enough for good accuracy and leads to a

great number of affine models. A trade-off has to be made between combinatorial

complexity and required accuracy of the model. Using mixed-logical dynamical

prediction models for MPC results in solving at each control step a mixed-integer

programming problem [27, 30, 37].

The approach that is presented below is based on an adaptive hybrid MPC

scheme. The power network equations are symbolically linearized and the hybrid
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prediction model is updated online at the current operating point. Since the con-

troller implements a model that is adapted to the operating point, the MPC-based

hybrid strategy involves a reduced combinatorial complexity to the one induced by

the discrete variables only, without partitioning the state-input space. A simple and

suitable mixed optimization algorithm is proposed to solve the hybrid predictive

control problem.

3.1.3 Outline

In Section 3.2 an illustration of the voltage instability phenomenon is presented us-

ing a 9-bus benchmark system, and current operating schemes are discussed. Sec-

tion 3.3 presents the steps to build an accurate prediction model which captures the

dynamics involved in voltage instability issues. The basic concepts of predictive

control and the special features of the hybrid approach that is presented here as

well as the solution of the hybrid MPC problem are presented in Section 3.4. In

Section 3.5, the results of this approach applied to the 9-bus benchmark system are

presented. Section 3.6 gives concluding remarks and directions for future research.

3.2 Power network operation

This section starts with illustrating voltage instability of power networks using a

voltage collapse in a 9-bus benchmark system. This example shows that despite a

set of corrective actions, the voltages collapse, mainly due to lack of coordination

in the operation of the network. Then, operating schemes that could stabilize the

network are presented.

3.2.1 Emergency scenario

A major source of power outages is voltage instability. This dynamic phenomenon

arises when the individual controllers of the loads attempt to restore the consumed

power beyond the capacity (physical limit) of the production-transport system [55].

This may occur following the outage of one or more components in the system, such

that the load demand cannot be satisfied with a physically sustainable profile of the

voltage plan, typically caused by voltage levels becoming very low. The reduced

capacity of the network together with the requested load consumption requires co-

ordinated corrective actions to avoid that involved dynamics drive the system into

undesired or unacceptable states.

Consider the power system shown in Figure 3.1. This system represents a trans-

mission network in which each generator is a simplified representation of an ad-

jacent subnetwork. This benchmark system reproduces most of the phenomena of

interest in power network dynamics, including in particular voltage instability and

collapses. It is composed of the following elements and control devices:
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Figure 3.1: Overview of the 9-bus power network benchmark system.

• Generator g
∞

represents a large surrounding network and forces the voltage at

bus 8 to stay constant.

• Generators g1 and g2 represent simplified models of adjacent subnetworks

and are equipped with automatic voltage regulators and overexcitation lim-

iters; they accept as control input the voltage references V ref
g1

∈ [0.9,1.1] and

V ref
g2

∈ [0.9,1.1], respectively, for the automatic voltage regulators;

• Nine transmission lines, l1–l9, interconnect the components of the network.

Three of them, l7, l8, and l9, are equipped with controllable line breakers; these

controllable lines have as control inputs sl7 , sl8 , and sl9 , respectively, that can

take on the values 1 (connected) or 0 (disconnected).

• A flexible AC transmission system c1 is present for reactive power control; it is

modeled as a continuously controlled capacitor with as control input the amount

sf ∈ [0,2] of reactive power injected into the network.

• A capacitor bank c2 is present for additional reactive power compensation, using

several separate units that can be connected or disconnected, with as control

input the number sc ∈ {0,1,2,3} of capacitor units connected to the network.

• The transformers tr1 and tr2 transform voltage magnitudes at fixed ratios.

• The transformer tr3 is a transformer equipped with an on-load tap changer,

which has as control input the voltage reference V ref
t ∈ [0.8,1.2].

• The loads ld1, ld2, and ld3 are dynamic loads representing groups of consumers

with a voltage dependent behavior, i.e., active and reactive power recovery [23].

The loads can be shed, i.e., disconnected, using the control inputs sld1, sld2, and

sld3, respectively, that take on the value 0 (no power shedding) or 1 (5% power

shedding).
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Figure 3.2: Voltage collapse after the loss of transmission line l2.

The equations describing the elements of this network take on the form of a

system of hybrid DAEs, in which the continuous dynamics arise from the loads (cf.

Section 3.3.1.2), and discrete events occur when:

• a generator, g1 or g2, reaches the excitation limit (cf. Section 3.3.1);

• a line is connected or disconnected (l7–l9);

• a unit of capacitor banks c2 is connected or disconnected;

• consumers are connected or disconnected from the grid (load shedding);

• the on-load tap changer of the transformer tr3 changes the ratio tap by tap.

An event can be controllable or not. Line, capacitor and load switching events are

controllable by inputs, whereas reaching the excitation limit or changing taps are

uncontrollable events. A complete description of the parameters of the different

models and numerical values can be found in [28].

Now consider a fault in line l2 at t = 30 s. The breakers at both sides of the

transmission line open and cause the transmission line to be disconnected. Figure

3.2 shows the evolution of the voltages when no control is employed. As can be

seen, directly after the fault, voltages start to drop. Nothing is done to correct the

evolution and the bus voltages collapse quickly.

3.2.2 Stabilizing operation

The purpose of emergency voltage control is to supply a set of corrective actions

to apply to the system following an outage while fulfilling physical and operational

constraints. Usually, the control objectives are specified as follows:

• to achieve a steady-state point of operation allowing the voltage plane to stay

between 0.9 and 1.1 p.u, that is close to the nominal values, to fulfill require-

ments of safety and quality of energy;

• to optimize the use of control means to fulfill economic objectives, i.e., the use

of reactive power compensation has to be preferred to load shedding, which is

the ultimate control action since it disconnects consumers from the grid.
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Figure 3.3: Voltage collapse under manual control after the loss of transmission line l2.
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Figure 3.4: Stabilization of voltages after the loss of transmission line l2.

The effects of corrective actions are illustrated with various cases. Consider the

same fault as before, i.e., on line l2. The breakers at both sides of the transmission

line l2 open at t = 30 s. At time t = 60 s, which is only 30 s after the disturbance, load

shedding of 10% of all the consumption and maximum reactive power compensation

(FACTS c1 and capacitor bank c2) are employed via manual control. As shown in

Figure 3.3, this manual control is not sufficient to prevent a voltage collapse. The

bus voltages start to collapse at the moment that the power consumption reaches the

maximum transfer capability of the system (at t ≈ 100 s).

Figures 3.4 and 3.5 illustrate the stabilization of the network dynamics in two

different emergency situations. In Figure 3.4, 30 s after the loss of transmission line

l2, the topology of the network is modified with the connection of lines l7 and l8.

The distribution of power flows is modified by the new configuration of the network

and stability is recovered, but some buses have an unacceptably low voltage (V7 is

around 0.8 p.u.). Figure 3.5 shows the stabilization of the network dynamics after

the loss of generator g2. In this case, stability is recovered by using reactive power

compensation (c1 and c2), modification of the reference voltage of the on-load tap

changer of tr3 and load shedding (ld2 and ld3).
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Figure 3.5: Stabilization of voltages after the loss of generator g2.

In Section 3.3 and 3.4, an MPC-based method is proposed to determine the opti-

mal corrective autonomously and automatically.

3.3 Hybrid dynamical models of power networks

The need for more accurate operation techniques as well as the available computa-

tion capabilities of modern computers call for new control methods and algorithms.

The dynamics of the network hereby have to be taken into account as well as pos-

sible. This section presents the nonlinear and hybrid modeling aspects of electric

power networks in the context of emergency voltage control.

3.3.1 Generation and consumption

The dynamics involved in voltage stability issues are said to be slow (the time con-

stants are about 30–60 s) compared with electromechanical dynamics involved in

frequency issues (transients lasting for a few seconds). Therefore, quasi-static or

quasi-steady state models are commonly used in voltage stability studies [55]. In

quasi-steady state models it is assumed that the frequency of the power network is

constant, that is, fast dynamics are neglected and replaced with equilibrium equa-

tions. The in practice present three phases are assumed to be balanced reducing the

models to equivalent one-line diagrams. Since the frequency is assumed to be con-

stant, voltage, current, and state variables can be represented by so-called phasors

[25], i.e., complex numbers that represent sinusoids.

In the remaining of this chapter, the following notations are used:

• Phasors are shown as capital letters with an overline, e.g., V̄ = vx + jvy, Ī = ix + jiy.

• The magnitude of a phasor is shown by the capital letter of that phasor without

the overline, e.g., V =
√

v2
x + v2

y , I =
√

i2x + i2y .

• Lowercase bold letters, e.g., x,y, correspond to column vectors. Superscript T

denotes transpose. Therefore row vectors are denoted by xT,yT.
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• A collection of phasors in a column vector is represented by a capital bold letter

with an overline, e.g., Ī.

• Matrices are denoted by bold capital letters, e.g., A.

• Time derivatives of variables are indicated with a dot, e.g., ẋ.

3.3.1.1 Generators

Generators are modeled using synchronous machine equations [25, 55]. Almost all

variables and parameters are expressed in the per unit (p.u.) system [25], that is with

respect to base quantities, i.e., the per unit system used for the stator is based on the

three-phase nominal power and the voltage values of the machine.

In the following, indices d and q refer to direct and quadrature machine axis,

respectively, and arrise from the Park transformation [25]. This transformation con-

sists of replacing the three armature windings in a generator by three fictitious wind-

ings labelled d, q, and o, where the d and the q axis rotate together with the machine

rotor. In balanced conditions, the o winding does not play any role and therefore it

will not be considered here. Notice that also magnetic saturation is neglected.

Under the above mentioned assumptions, the generator is described by the dif-

ferential equations [25, 55]:

δ̇ = ω −ω0 (3.1)

ω̇ = −

D

2H
ω +

ω0

2H

(

Pm − Pg

)

(3.2)

Ė ′

q =
−E ′

q + Ef −

(

Xd − X ′

d

)(

ixg sinδ − iyg cosδ
)

T ′

do

, (3.3)

where for this generator, δ is the rotor angle (in rad), ω is the angular frequency (in

rad/s), E ′

q is the electromotive force (emf) behind the transient reactance (in p.u.), ω0

is the nominal angular frequency (in rad/s), D is the damping coefficient (in p.u.),

H is the inertia constant (in s), Pm is mechanical power (in p.u.) provided to the

generator, and Pg is the active power produced by the generator (in p.u.), Ef is the

exciter (or field) voltage (in p.u.), Xd is the direct-axis synchronous reactance (in

p.u.), X ′

d is the direct-axis transient reactance (in p.u.), Īg = ixg + jiyg is the armature

current phasor (in p.u.), and T ′

do is the open-circuit transient time constant (in p.u.).

The active power produced by the generator is given by:

Pg = vxgixg + vygiyg, (3.4)

where V̄g = vxg + jvyg is the armature voltage phasor (in p.u.), and where the real and

imaginary parts of the armature current are:

ixg =
sin2δ

2

(

1

Xq

−

1

X ′

d

)

(

vxg − E ′

q cosδ
)
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−

(

cos2 δ

Xq

+

sin2 δ

X ′

d

)

(

vyg − E ′

q sinδ
)

(3.5)

iyg =

(

sin2 δ

Xq

+

cos2 δ

X ′

d

)

(

vxg − E ′

q cosδ
)

+

sin2δ

2

(

1

X ′

d

−

1

Xq

)

(

vyg − E ′

q sinδ
)

, (3.6)

where Xq is the quadrature-axis synchronous reactance (in p.u.). The automatic volt-

age regulator that is considered is a proportional controller and the overexcitation

limiter is modeled as a saturation element:

Ef = min
(

G
(

V ref
g −Vg

)

,E lim
f

)

, (3.7)

where G is the steady-state open-loop gain of the automatic voltage regulator (in

p.u./p.u.), V ref
g is the reference voltage of the automatic voltage regulator (in p.u.),

and E lim
f is the excitation limit of the overexcitation limiter (in p.u.).

The work presented in this chapter focuses on load dynamics since they are the

driving force of voltage instability. Therefore a steady-state approximation of the

generator equations (3.1)–(3.3) is used together with the algebraic equations (3.4)–

(3.7).

Then the set of generator models of the network is grouped into the following

nonlinear algebraic equation:

h(V̄g, Īg,V
ref
g ) = 0, (3.8)

where V̄g and Īg are vectors of the voltage and the injected current phasors at the

buses that connect the generators to the grid, respectively, and Vref
g is a vector with

reference voltages for the automatic voltage regulators.

3.3.1.2 Loads

Load is a common term for aggregates of many different devices that are mainly

voltage dependent. Load dynamics are considered from the point of view of power

recovery, i.e., after a voltage drop, the internal control systems of the load attempt to

recover the consumed power at its nominal level [23]. Load dynamics are described

by a smooth nonlinear differential equation:

TP ẋP + xP = Ps(Vld) + Pt(Vld) (3.9)

Pld = (1 − sld σ) (xP + Pt(Vld)) , (3.10)

where xP is a continuous state variable, Vld is the load voltage magnitude, Ps(Vld) =

P0V
αs
ld and Pt(Vld) = P0V

αt
ld are the steady-state and transient voltage dependencies,

respectively, Pld is the active power which is consumed by the load and TP is the

active power recovery time constant. A similar model is used for the reactive load
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power considering the following variables: xQ, Qs(Vld) = Q0V
βs

ld , Qt(Vld) = Q0V
βt

ld ,

Qld and TQ. Constant σ represents a constant load shedding step, and sld is a discrete

control variable that takes its values in a bounded discrete set. The internal state of

the load is defined as xld =
[

xP xQ

]T

. The set of load models of the network is

grouped into the following nonlinear state-space equations:

ẋ = f(x, V̄ld) (3.11)

Īld = g(x, V̄ld,sld), (3.12)

where x is the vector of internal states, V̄ld and Īld are the vectors of voltage and

absorbed current phasors at the buses that connect the loads to the grid, respectively,

and sld is the vector of load shedding inputs.

3.3.2 Transmission system

The transmission system interconnects the generators to the loads and is composed

of transformers, compensation devices such as capacitor banks and FACTS, and

transmission lines. The respective models are detailed below.

3.3.2.1 Transformers

Transformers are modeled using a complex impedance Z̄t in series with an ideal

transformer whose ratio is denoted by nt. Variables V̄t1 and V̄t refer to the primary

and secondary voltage transformer phasor, respectively. Similar notations are used

for the current phasors Īt1 and Īt. The transformer is described by linear equations

with respect to voltage and current phasors:

V̄t = ntVt1 − n2
t Z̄t Īt (3.13)

Īt1 = ntĪt. (3.14)

The presence of an on-load tap changer allows the ratio nt to vary tap by tap

within bounds. The sequential behavior of the on-load tap changer can be described

by a discrete-time dynamic model:

nt(k + 1) = nt(k) − nstep ξ(∆V (k)), (3.15)

where nt(k) is the bounded transformer ratio at time step k, ∆V (k) = Vt(k) −V ref
t (k)

is the error between the secondary voltage magnitude Vt, i.e., at the output of the

transformer, and the bounded reference voltage V ref
t of the on-load tap changer,

and nstep is the ratio step corresponding to one tap change. A function ξ (being a

simplification of the function used in [48]) is used to determine when a tap change

is made as follows:
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Figure 3.6: Finite-state machine for the on-load tap changer.

ξ(∆V ) =



















1 if ∆V > γ for (Td + Tm) s

−1 if ∆V < −γ for (Td + Tm) s

0 otherwise,

(3.16)

where γ is the semi-deadband (or tolerance band) centered around V ref
t , Td is the

time delay before a tap change is made, and Tm is the time necessary to perform

the actual tap change. Depending on the type of on-load tap changer, Td can be a

constant or depend on ∆V . Since the size of a tap step is quite small (usually in

the range of 0.5%–1.5% of the nominal ratio), to simplify the control design, nt is

considered as a bounded continuous variable.

The on-load tap changer used in the simulations presented in Section 3.5.2 is

implemented using a finite state machine with three discrete states. Consider the

logical variables (i.e., taking on values from the domain {true,false})

Vinf ≡
[

Vt < V ref
t −γ

]

(3.17)

Vsup ≡
[

Vt > V ref
t +γ

]

(3.18)

Vexc ≡Vinf ∨Vsup (3.19)

and

ninf ≡
[

nt ≤ nmin
t

]

(3.20)

nsup ≡
[

nt ≥ nmax
t

]

, (3.21)

where the symbol ∨ denotes the logical operator OR. The finite-state machine rep-

resenting the tap changer is shown in Figure 3.6, where t refers to the internal timer

variable and symbols ¬ and ∧ refer to logical operators NOT and AND respectively.

As long as the output voltage of the transformer stays inside the limits defined by

the deadband or as long as a tap change is not possible, the on-load tap changer

stays in the state Wait. When the voltage exceeds the deadband limits, the on-load

tap changer enters in the state Count. If the voltage returns inside of the deadband

limits before the timer reaches Td +Tm, the state returns to Wait. If the internal timer
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reaches Td + Tm, the state becomes Action, a tap change is performed, and the state

returns to Wait. More details about on-load tap changer dynamics can be found in

[48] and [28]. The integration of the on-load tap changer dynamics in the prediction

model is addressed in Section 3.3.4.

3.3.2.2 Reactive power compensation devices

Two kinds of reactive power compensation devices are considered: capacitor banks

and FACTSs. A Capacitor bank is described by the following linear equation with

respect to voltage and current phasors:

Īc = jpcscV̄c, (3.22)

where a capacitor unit (susceptance) is represented by pc and the number of con-

nected units sc can only take its values in a bounded discrete set.

A FACTS is considered here as a continuously varying capacitor and is described

by the following linear equation with respect to voltage and current phasors:

Īf = jpfsfV̄f, (3.23)

where the total susceptance pf is adjusted by a variable sf that takes its value in a

bounded continuous set.

3.3.2.3 Transmission lines

A transmission line is modeled using a complex impedance Z̄l:

∆V̄l = slZ̄l Īl, (3.24)

where ∆V̄l is the voltage across the line, i.e., the difference between two bus volt-

ages, and Īl is the current through the line. If a line can be connected or disconnected

in order to modify the network topology, a boolean control variable sl is used to rep-

resent the state of the line: connected (1) or disconnected (0).

3.3.2.4 Complete transmission system

The transformer, compensation devices, and transmission line equations are linear

with respect to voltage and current phasors. The complete transmission system

model therefore consists of a system of linear algebraic equations:

w̄out = Mw̄in, (3.25)

where w̄out and w̄in are generator and load voltages and currents phasors V̄g, ld and

Īg, ld, respectively. Notice that the elements of matrix M depend on the variables nt,

sc, sf and sl.
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3.3.3 Interconnected network

The hybrid nature of power systems is particularly characterized by the presence of

two kinds of control inputs: discrete inputs arising from loads (sld), capacitor banks

(sc) and transmission lines (sl), and continuous inputs arising from transformers (nt)

and FACTS devices (s f ). In the sequel, the discrete control vector is denoted by

ud = [sT
ld sT

c sT
l ]T and the continuous control vector is denoted by uc = [nT

t sT
f ]T.

Discrete disturbances, such as transmission line drop and generator loss, together

with the state of the generators (maximum excitation limitation) and the discrete

control inputs define the discrete operating mode i of the network. The general

power network model, defined by (3.8), (3.11)–(3.12), and (3.25), takes the form of

a system of nonlinear and hybrid DAEs in each mode i:

ẋ =ϕi (x,y,uc) (3.26)

0 =ψi (x,y,uc) , (3.27)

where x is the load state vector and the output vector y typically includes bus voltage

magnitudes. This model is useful for performing simulations, as will be illustrated

in Section 3.5. Nevertheless, simulating such a model requires dedicated algorithms,

such as DASSL for solving the system of hybrid DAEs [8, 45], and particular spe-

cial attention to the way in which the interactions between continuous and discrete

dynamics are dealt with [13, 15].

3.3.4 Symbolic off-equilibrium linearization

Power systems are strongly nonlinear and to predict the system evolution, a feasible

approach is to use locally a linear or, more generally, affine model. To obtain an

accurate prediction model, (3.26)–(3.27) are symbolically linearized with respect

to the continuous variables, i.e., the load state vector x and the continuous control

input vector uc. Note that

• the operating point (x0,uc0) is not necessarily an equilibrium point. This kind

of linearization is said to be off-equilibrium;

• the operating point (x0,uc0) and the discrete mode i are symbolic parameters of

the linearized model.

The evolution of the network can be predicted with accuracy using the linearized

model, since the model that is used to compute the prediction is adapted based on

the current operating point. Moreover, this modeling framework allows to handle

the hybrid aspects explicitly. In the sequel, the operating point is assumed to be

available or estimated. In practice, the operating point data are not available directly.

All the measurement data are computed by an estimator and research efforts are

made to improve methods and algorithms to estimate the network state online [39].

For small-scale power system such symbolic linearization may work well. How-

ever, almost all power systems are large-scale systems. The symbolic computation
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Figure 3.7: Decomposition of the power network into a linear and a nonlinear part.

required to directly linearize equations (3.26)–(3.27) becomes more and more com-

plex with increasing network size. This complexity can be reduced by exploiting

the particular structure of the equations. The generation and consumption part of the

network (i.e., the generators and the loads) are modeled with a system of nonlinear

equations, whereas the transmission part (i.e., the transmission lines, the compensa-

tion devices, and the transformers) are modeled with a system of linear equations.

The model of the whole network can therefore be divided into two interconnected

subsystems, as illustrated in Figure 3.7. The nonlinear subsystem is represented

by (3.8) and (3.11)–(3.12). The linear subsystem is represented by (3.25). Note

that by setting ẋ = 0 in (3.11), a purely static problem that is similar to a load-flow

calculation is obtained.

The linearized model is computed in two steps:

1. Equations (3.8) and (3.11)–(3.12) are symbolically linearized considering the

symbolic parameters x0, uc0, and i. The computations are performed offline

using the software package Mathematica [56] and lead to a set of Jacobian ma-

trices parameterized by x0, uc0, and i.

2. The obtained symbolic model is updated online at each control step with the

current values of the operating point (x0,uc0) and the discrete mode i. This

update realizes the adaptation of the prediction model to the current operating

conditions.

Time is discretized into discrete time steps k = 0,1, . . ., where discrete time step

k corresponds to continuous time kTs s, with Ts the sample period (s). Using the

backward-Euler method to approximate the derivative, the following discrete-time

affine model of the power network is obtained:

x (k + 1) = Aix (k) + Biuc (k) + ai (3.28)
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Figure 3.8: Overview of the computations of the predictions.

y (k) = Cix (k) + Diuc (k) + ci, (3.29)

where the matrices Ai, Bi, Ci, Di, and the vectors ai and ci depend on the dis-

crete mode i(k) and operating point (x0(k),uc0(k)), e.g., Ai = A(x0(k),uc0(k), i(k)).

Furthermore, uc (k) is the vector of continuous valued control inputs applied to the

system from instant k to instant k+1, assumed to be constant over the sample period.

Due to the presence of generator excitation limiters, it is relevant to take into

account the state of the generators in the prediction computation by adding to the

model (3.28)–(3.29) the constraints:

Fix(k) + Giuc(k) ≤ fi. (3.30)

These constraints in the continuous state-input space describe the state of the gener-

ators with respect to the discrete mode i. The resulting model has now a piecewise

affine form and allows to predict the evolution of the state of the generators as well.

The linearization procedure is summarized in Figure 3.8. Note that the compu-

tational effort required by this approach is driven more by the number of connected

generators and loads, than by the number of buses, since the computational effort

depends strongly on the vector dimensions. The variables involved in these vectors

are the voltage and current phasors that interconnect the generators and loads to the

transmission system as defined in Section 3.3.2.

Special attention must be paid to the integration of the dynamics of on-load tap

changers in the model. A good prediction requires that tap changes are synchronized

with the control time steps, i.e., executed at the same time as control actions. A basic

approach is to choose a sample time equal to the tap change delay and to introduce

the following equation in the model (3.28)–(3.29):

nt(k + 1) = nt(k) +∆nt(k), (3.31)
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where nt is now a state variable and the tap change ∆nt is a discrete control input

with ∆nt ∈ {−nstep,0,nstep}. To control the on-load tap changer, a bang-bang control

strategy is implemented locally:

V ref
t (t) =



















V
ref,min
t if ∆nt = −nstep ,

V
ref,max
t if ∆nt = nstep ,

Vt(t) if ∆nt = 0 ,

(3.32)

where V ref
t is the on-load tap changer reference voltage, Vt is the secondary volt-

age of the transformer, V
ref,min

t and V
ref,max

t are the lower and upper bounds on V ref
t ,

respectively, and nstep corresponds to one tap change of the transformer. The trans-

former ratio nt between times k and k + 1 is then consistent with the optimal value

of ∆nt computed by the controller at time k. An extension to the case in which the

sample time and tap change delay differ is proposed in [28].

A controller designed for the resulting piece-wise affine model is expected to

control the behavior of the hybrid nonlinear system efficiently. At each time step,

the model update requires a few computations and the controller only acts in a re-

gion close the operating point at which the system was linearized. In the next section

a predictive control strategy for controlling power systems using the discussed mod-

eling framework is presented.

3.4 Model predictive control

Model predictive control is based on solving online a finite time optimal control

problem using a receding horizon approach, as summarized in the following steps

[31]:

• At time step k and for the current state x(k), an open-loop optimal control prob-

lem over a future time interval is solved online, taking into account the current

and future constraints on input, output, and state variables. This results in a

sequence of actions over that future time interval that gives the best predicted

performance.

• The first action in the optimal control sequence so obtained is applied to the

system.

• The procedure is repeated at time k + 1 using the newly obtained state x(k + 1).

The solution is converted into a closed-loop strategy by using the measured or es-

timated value of x(k) as the current state. The stability of the resulting feedback

system can be established by using the fact that the cost function can act as a Lya-

punov function for the closed-loop system [36].
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3.4.1 Formulation of the control problem

Let UN be the sequence of control inputs over the prediction horizon with a length

of N time steps:

UN = [uT(0) uT(1) · · · uT(N − 1)]T, (3.33)

where u(k) = [uT
c (k) uT

d (k)]T, and given the following cost function or performance

index:

JN(x(0),UN) = F(x(N)) +

N−1
∑

k=0

L(x(k),u(k)). (3.34)

In practice, the cost function to be optimized usually includes a term based on the

state x(k) and a reference xr(k), and a term based on the control inputs u(k):

L(x(k),u(k)) = ‖x(k + 1) − xr(k)‖Qx
+‖u(k)‖Qu , (3.35)

and a term based on the final state x(N):

F(x(N)) = ‖x(N) − xr(N)‖Qf
, (3.36)

where ‖w‖Q denotes the 2-norm of a vector w with weighting matrix Q. The weight-

ing matrices are such that Qx ≥ 0, Qu > 0 (by taking into account the constraints on

u, typically actuator constraints, it is sufficient for the matrix Qu to be semi-positive

definite) and Qf ≥ 0.

At each time step, the following optimization problem PN has to be solved, where

the superscript o here refers to optimality:

PN(x(0)) : Jo
N(x(0)) = min

UN

JN(x(0),UN), (3.37)

while satisfying the power network model constraints (3.28)–(3.30) over the predic-

tion horizon1 Additional constraints may allow to include some knowledge about

the system that is not captured by the model, such as actuator limitations and physi-

cal limits on state variables. On the one hand, input constraints take into account ac-

tuator limits over the prediction horizon and thus are considered as hard constraints.

On the other hand, output limits are generally not considered as hard constraints,

since the optimization problem PN could then become infeasible. The constraints

on the outputs are therefore usually softened by adding slack variables s that repre-

sent the amount of constraint violation, and that are constrained as

yinf − s(k) ≤ y(k) ≤ ysup + s(k), (3.38)

1 Note that the PWA model is time invariant over the prediction horizon, but not over several time

steps: at each time step the matrices have to be updated to the current operating point.
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and for which the penalty term ‖s(k)‖Qs
is added to (3.35). Thus, an optimal so-

lution of the MPC optimization problem (3.37) can be found while minimizing the

constraint violations. A final state constraint x(N) = xf can be added to guarantee the

stability of the closed-loop system [36], but attention has to be paid to the feasibility

of the optimization problem (3.37).

An important characteristic of the optimization problem (3.37) is its mixed na-

ture. The presence of both the continuous inputs (uc) and the discrete inputs (ud)

causes having to find the control sequence UN as the sequence of both the continu-

ous inputs UcN and the discrete inputs UdN over the prediction horizon with length

N. Hence:

Jo
N(x(0)) = min

UdN

(

min
UcN

JN(x(0), (UcN ,UdN))

)

, (3.39)

subject to the model constraints, for k = 0,1, · · · ,N − 1:

x(k + 1) = Aix(k) + Biuc(k) + ai (3.40)

y(k) = Cix(k) + Diuc(k) + ci (3.41)

Fix(k) + Giuc(k) ≤ fi, (3.42)

where i(k) is a function of x(k), uc(k) and ud(k).

Let IN =
[

i(0) i(1) · · · i(N − 1)
]T

∈ I be a sequence of modes over the horizon

N, where I is the set of admissible sequences. A sequence IN defines UdN and N

sets of constraints (3.40)–(3.42) for k = 0,1, · · · N − 1. The problem PN can now be

reformulated as:

Jo
N(x(0)) = min

IN

(

min
UcN

JN(x(0), (UcN ,IN))

)

. (3.43)

Then, for a given sequence of modes IN , the cost

J∗N(x(0),IN) = min
UcN

JN(x(0), (UcN ,IN)) (3.44)

is the optimal cost that is found by solving a continuous constrained optimization

subproblem. This subproblem can easily be reformulated as a standard quadratic

programming (QP) problem. The superscript ∗ here refers to optimality with respect

to a given sequence of modes IN . However, the constrained optimization subprob-

lem (3.44) is not necessarily feasible, i.e., for a given sequence IN it could be the

case that no solution satisfies the model constraints (3.40)–(3.42) over the prediction

horizon.

Due to the presence of the discrete variables, PN is categorized as an NP-hard

problem. In addition, since PN also involves continuous variables, it is a so-called

mixed-integer problem. A branch-and-bound algorithm will be used to solve the

problem PN efficiently. This algorithm basically consists of a best-first descent

strategy to reach suboptimal solutions and a branch-cutting strategy to profit from



76 S. Leirens and R.R. Negenborn

partial-horizon cost evaluation and infeasible subproblems. Below the details of this

algorithm are discussed.

3.4.2 Mixed-integer optimization

The optimization problem associated with the predictive control of a piece-wise

affine prediction model has been formulated above. This section is dedicated to

the presentation of a simple, yet suitable mixed-integer optimization algorithm for

hybrid MPC problems.

3.4.2.1 Exhaustive enumeration

The easiest way to find the optimal solution of the mixed-integer optimization prob-

lem consists of first enumerating all the possible sequences of modes over the pre-

diction horizon and then solving the QP subproblems associated with each of these

mode sequences. For a given sequence of modes, two situations with respect to a

QP subproblem can occur: either the subproblem has no solution that satisfies the

constraints (infeasibility), or the QP subproblem is feasible. For each feasible se-

quence IN (defining a discrete control sequence UdN) an optimal continuous control

sequence U∗

cN and a corresponding cost J∗N(x(0),IN) can be obtained. The optimal

solution is then given by the sequence of modes that minimizes (3.44):

Jo
N(x(k)) = min

IN

(

J∗N(x(k),IN)
)

. (3.45)

This method, which is referred to as exhaustive enumeration, quickly becomes use-

less when the number of modes, or the length of the prediction horizon increases,

since the control problem to be solved is NP hard. The number of possible mode

sequences to enumerate over grows exponentially with the number of modes and

the length of the prediction horizon. Let p be the number of possible modes of the

system. The exhaustive enumeration of all mode sequences requires pN QP sub-

problems to be solved.

Figure 3.9 depicts as a tree the various possibilities of mode sequences. The

depth of the tree of possibilities grows with the length of the horizon. For a given

depth, the width of the tree is fixed by the number of possible modes of the system.

Each leaf is a QP subproblem to be solved and one of them yields the optimum

searched for. The dimension of the decision vector of all the QP subproblems is

identical, i.e., dim(Uc) = dim(uc)×N. All leaves of the tree for which the asso-

ciated QP subproblem is feasible are suboptimal solutions, except for that feasible

subproblem that yields the solution with the lowest cost of all. This is the optimal

solution.
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Figure 3.9: Illustration of exhaustive enumeration.

3.4.2.2 Partial enumeration

Exhaustive enumeration involves completely searching through the tree of possibil-

ities. It is possible, however, to exploit the structure of the optimization problem

associated with the hybrid predictive control scheme: the cost function of the op-

timization problem is additive, and has only positive terms. The key idea of the

proposed partial enumeration algorithm is: given a suboptimal solution of (3.39)–

(3.42), evaluate partial costs in order to prune the tree, i.e., cut branches that cannot

lead to the optimum. This idea results in a branch-and-bound algorithm.

For a partial horizon P (P < N), i.e., at a depth P in the tree, the partial cost is

defined as:

JP(x(0),UP) =

P−1
∑

k=0

L(x(k),u(k)). (3.46)

The proposed approach is a recursive algorithm that consists of a descent strategy

and a branch-cutting criterion. The algorithm explores the tree according to the

descent strategy, starting with a one step prediction horizon and increasing it step

by step. The branch-cutting criterion allows to reduce the number of branches to

consider and then to not explore the whole tree.

Descent strategy

Assume that the algorithm is at a depth P (with P < N) in the tree of possibilities,

i.e., P time steps in the future. The proposed descent strategy is a best-first strategy:

• Compute the optimal costs JP+1 associated with the feasible subproblems for

the possible choices of mode i.

• Choose the branch, i.e., the mode, that gives the minimal cost over the predic-

tion horizon P + 1 to continue the exploration.
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Branch cutting

Assume that a first suboptimal solution is available, i.e., an upper bound on the

optimal cost is available. Prune the tree by cutting the branches for which

• either the optimal cost on a partial horizon is greater than the cost of the subop-

timum,

• or the subproblem is infeasible.

Cutting a particular branch means eliminating all branches originating from that

particular branch. The best suboptimum so far is updated each time a leaf is eval-

uated and determined to have a cost that is lower than the cost of the previous best

suboptimum.

3.4.2.3 Justification and illustration

Now some details are given to justify that the partial enumeration algorithm guar-

antees to find the optimum. Let a sequence of N modes IN (the associated QP

subproblem is assumed to be feasible) and a horizon P with P < N be given. Below,

the following notations are used:

• I
(N)
P is the sequence of the P first modes extracted from the sequence IN ;

• U
(N)
cP is the continuous control sequence of length P extracted from the sequence

UcN .

Recall that the superscript ∗ refers to optimality with respect to a given sequence of

modes, i.e., the sequence U∗

cN is optimal with respect to a given sequence of modes

IN . However, the extracted sequence U
∗(N)
cP is not necessarily optimal over the partial

horizon P.

Given a sequence of modes IN , for all P < N, the optimal cost that is obtained

for the sequence IN is greater than the optimal cost that is obtained for an extracted

sequence I
(N)
P :

∀P < N, J∗N
(

x(0),IN

)

≥ J∗P
(

x(0),I
(N)
P

)

. (3.47)

For a detailed proof of this statement, see [29].

Assume the algorithm to be arrived at a depth P < N and that the associated cost

JP is greater than a prevously computed suboptimum. With respect to (3.47), the

corresponding branch and all the following ones can be cut. An example of the

execution of the proposed algorithm is illustrated in Figure 3.10.

The partial-enumeration algorithm is a branch-and-bound algorithm that leads to

the optimal solution by taking advantage of the particular structure of the optimiza-

tion problem associated with predictive control. General mixed-integer program-

ming does not exploit this feature.

The proposed descent strategy is a heuristic that is likely to reach a first subopti-

mum close to the optimum. In fact, the suboptimal character comes from the choice

of the sequence of modes (the best-first strategy at one prediction step), but the sub-

optimum is obtained by solving a QP subproblem over the full horizon with length

N. In this partial enumeration approach, the dimension of the solution vector of the
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Figure 3.10: Illustration of execution of partial enumeration. Numbers indicate the route

followed in the tree, i.e., the way in which the tree has been explored. Bold lines indicate the

path to the first suboptimum (best-first strategy). The presence of a cross is the result of a

branch cutting action: the cost were greater than the cost of the known suboptimum, or the

subproblem was infeasible. The optimum search for is marked out by a triangle.

QP subproblems to be solved starts with dim(uc) at the top of the tree (one time step

prediction) to grow with the horizon until reaching dim(uc)×N at the bottom of the

tree (using a horizon with length N).

3.5 Simulation studies

In this section, first the object-oriented concepts for modeling and simulation of the

electricity network introduced in Section 3.2 are briefly presented. Then, simulation

results of the proposed control approach are presented and discussed.

3.5.1 Simulation tools

To face the difficulty of developing complex power network models, object-oriented

approaches for analysis and simulation of power systems have received increasing

attention [33]. In object-oriented modeling, models are mapped as closely as pos-

sible to the corresponding physical subsystems that make up the overall system.

Models are described in a declarative way, i.e., only local equations of the objects

and the connections between the objects are defined. Inheritance and composition

concepts enable proper structuring of models and generally lead to more flexible,
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modular, and reusable models. Extended models can be constructed by inheriting

dynamics and properties of more basic models.

As stated above the dynamics of power networks involve continuous and discrete

dynamics and are therefore hybrid. Each of the objects of a power network can

therefore be modeled with a mixture of differential equations, algebraic equations,

and discrete-event logic, e.g., in the form of if-then-else rules. The model of the

overall system then consists of the models for the objects and in addition algebraic

equations interconnecting the individual objects.

Several object-oriented approaches have been developed over the years, e.g.,

[3, 13, 35, 38, 46]. These approaches typically support both high-level modeling

by composition and detailed component modeling using equations. Models of sys-

tem components are typically organized in model libraries. A component model

may be a composite model to support hierarchical modeling and specify the system

topology in terms of components and connections between them. Using a graphical

model editor, e.g., Dymola [13], a model can be defined by drawing a composition

diagram by positioning icons that represent the models of the components, drawing

connections, and giving parameter values in dialog boxes.

Some of the object-oriented simulation software packages, such as Simulink,

assume that a system can be decomposed into sub-models with fixed causal inter-

actions [1]. This means that the models can be expressed as the interconnection of

sub-models with an explicit state-space form. Often a significant effort in terms of

analysis and analytical transformations is required to obtain a model in this form

[13]. In general, causality is not assigned in power networks. Setting the causality

of an element of the power network, e.g., a transmission line, involves representing

the model equations in an explicit input-output form. In a voltage-current formu-

lation this means that currents are expressed as function of voltages, or vice versa.

Non-causal modeling permits to relax the causality constraint and allows to focus

on the elements and the way these elements are connected to each other, i.e., the

system’s topology. For an example of the use of a non-causal and object-oriented

approach for power system modeling, see [41].

An environment that allows non-causal modeling, and that was used in this work,

is Dymola [13], which implements the object-oriented modeling language Modelica

[38]. Figure 3.11 and 3.12 illustrate the implementation of the 9-bus benchmark

system in the Dymola environment. The Dymola-Simulink Interface [14] allows

to easily use a simulation model (implemented in Dymola) in the Matlab-Simulink

environment.

3.5.2 Simulation results

The hybrid predictive control algorithm presented in Section 3.4 has been imple-

mented in Matlab and applied to the 9-bus power network introduced in Section 3.2

(cf. Figure 3.1).

This benchmark system has a strong combinatorial nature since almost all the

control variables take on discrete values. The major difficulty in the mixed opti-
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Figure 3.11: Illustration of the 9-bus network implemented in Dymola.

mization problem associated to the hybrid MPC formulation for this system is the

number of discrete variables. Notice that an increase in the number of continuous

variables does not significantly increase the complexity of the control problem.

To simulate the power system, a full nonlinear model has been implemented in

Dymola [13] and simulations have been performed using the software package Mat-

lab [34]. The sample period is Ts = 30 s and the prediction horizon is N = 3, such

that the settling time of the load dynamics (TP,Q = 60 s) is exceeded. The controller

has been tuned using weighting matrices according to the formulation presented in

Section 3.4. The use of reactive power compensation devices and transformer ratio

changes is slightly penalized. On the contrary, line reconfiguration and load shed-

ding is more penalized, since the economic cost of these actions is much higher.

Voltage deviations of the buses to which consumers (loads) are connected are pe-

nalized most. A full description of the numeric values of the tuning parameters can

be found in [28].

Below the results of transmission-line drop and generator-loss contingencies are

discussed.
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Figure 3.12: Illustration of the 9-bus network implemented in Dymola (equation side).

3.5.2.1 Scenario 1: Transmission line drop

In this scenario, transmission line l2 is lost, i.e., unintentionally disconnected, at t =

30 s. Figures 3.13–3.14 show the results obtained when using the adaptive predictive

control approach. In Figure 3.13, voltage stability is recovered 30 s after the fault

has occurred, and all the voltages remain above 0.9 p.u. A new steady-state point

of operation has been reached without using load shedding. Figure 3.14 shows

the evolution of the control inputs over time. As can be observed, the solution

determined by the controller mainly consists of injecting all the remaining reserve

of reactive power (c1 and c2) and to connect transmission line l9 at time t = 60 s.

The controller acts in a coordinated manner on the other devices too, such as the

generators and FACTS c1 to keep the variables in acceptable ranges.

3.5.2.2 Scenario 2: Transmission line drop with parameter uncertainty

The same line drop scenario as above is considered, but now now the actual con-

sumption of the loads at buses 5, 6 and 9 have been increased by 10%. The predictive

controller is not aware of this, and, hence, uses values that not correct. In this way,

the robustness of the controlled system to parametric uncertainty is illustrated.



3 Prevention of Emergency Voltage Collapses using Hybrid Predictive Control 83

0 50 100 150 200 250 300
0.6

0.7

0.8

0.9

1

1.1

Time (s)

B
u
s
 v

o
lt
a
g
e
s
 V

i (
p
.u

.)

 

 

i=5

i=6

i=7

i=9

Figure 3.13: Bus voltage magnitudes (loss of transmission line l2, nominal model).
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Figure 3.14: Control inputs (loss of transmission line l2, nominal model).

Figures 3.15–3.16 indicate that for this scenario, the stability of the system is

recovered, although the bus voltages cannot be maintained above 0.9 p.u. without

using load shedding. If the actual load is more than 10% of the load assumed by the

controller, the collapse is too fast for the controller to take adequate actions. In that

case, the sample time Ts of the controller should be decreased if the systems has to

stabilized.

3.5.2.3 Scenario 3: Generator loss

In this scenario, generator g2 is lost, i.e., it is isolated from the grid. Figures 3.17–

3.18 show the evolution of the network variables after the loss of the generator.

To manage the loss of this generator, the controller uses load shedding of ld2 and

transmission line l9 is connected at time t = 60 s. At the next time step, i.e., t =

90 s, the controller disconnects 5% of load ld3. All the reactive compensation is

used and the maximum excitation limit is reached for generator g1. The network is

stabilized at a new operating point, although some of the bus voltages are low, e.g.,

V5 < 0.9 p.u.
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Figure 3.15: Bus voltage magnitudes (loss of transmission line l2, 10 % consumption in-

crease).
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Figure 3.16: Control inputs (loss of transmission line l2, 10 % consumption increase).

3.6 Conclusions and future research

This chapter has discussed the concepts of voltage stability of electric power net-

works and the possibly dramatic consequences of such instabilities, such as com-

plete blackouts. Power networks are large-scale, nonlinear, and hybrid systems.

An adaptive, model predictive control (MPC) approach for solving the emergency

voltage control problem in such systems has been proposed. This approach uses

a symbolically off-equilibrium linearized prediction model to deal efficiently with

the hybrid and nonlinear characteristics of the dynamics involved. The symbolic

linearization is based on a decomposition of the network into two interconnected

subsystems and is performed offline to minimize the computational efforts required

to update the hybrid prediction model at each time step online. Simulation stud-

ies on a 9-bus benchmark system have illustrated the performance of the proposed

approach in line and generator loss case studies.

The proposed approach is not restricted to control of power networks alone. Also

in other types of infrastructure systems, such as water networks and road traffic net-
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Figure 3.17: Bus voltage magnitudes (loss of generator g2, nominal model).
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Figure 3.18: Control inputs (loss of generator g2, nominal model).

works, the combination of discrete and continuous dynamics is found, and, hence,

hybrid MPC problems have to be solved. The approach proposed here has the po-

tential to do that.

Future research will focus on distributed predictive control, as the increase of

the interconnections among countries leads to very large power networks with lim-

ited exchange of information. For industrial politics and security reasons, only par-

tial knowledge of a subnetwork may be available to the others subnetworks, e.g.,

simplified subnetwork structures and dynamics. Control systems will have to deal

efficiently with unpredictable disturbances, including unpredicted power flows and

power outages in other subnetworks. Techniques from distributed optimization will

be integrated in the approach proposed here to obtain an efficient distributed predic-

tive control approach for hybrid systems.
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