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Coordination in urban water supply networks
using distributed model predictive control

S. Leirens, C. Zamora, R.R. Negenborn, and B. De Schutter

Abstract— Urban water supply networks are large-scale sys- impeller is injected into the water, resulting in an inceeas
tems that transport potable water over vast geographical ares in pressure [3]. Valves are actuators that vary resistance t
to millions of consumers. A safe and efficient operation of change the water flow and that can be operated manually or

these networks is crucial, as without it living in today’s cities ¢ tically. Val be cl ified .
would be impossible. To achieve an adequate operation, these automatically. Valves can be classified as pressure regucin

networks are equipped with actuators like pumps and valves, Valves, pressure sustaining valves, and flow control valves
which are used to maintain water pressures and flows within Pressure reducing valves throttle automatically to preven
safe margins. Currently, these actuators are controlled in a the downstream hydraulic grade from exceeding a set-point.
decentralized way using local controllers that only use local Pressure sustaining valves throttle the flow automatidally

information and that do not take into account the presence of tth t hvdrauli de f d ina bel
other controllers. As a result, water supply networks regularly prevent the upstream hydrauliCc grade from dropping below a

experience pressure drops and interruptions of water Supp|y Set—pOIn'[. Flow control valves throttle automat|ca|ly ik
when there is an unexpected increase in water demand. To the flow rate passing through the valve to a maximum value
improve performance the actions of the local controllers should [2]. In the system under study in this paper each of these
be coordinated. Implementing a centralized control scheme is types of valves is present.

not tractable due to the large-scale nature of these networks.
Therefore, this paper proposes the application of a distributed
control scheme for control of urban water supply networks.
The scheme is based on local model predictive control (MPC)  In water supply networks the primary control objective is

strategies and a parallel coordination scheme that implements to guarantee the delivery of the right amount of water at the
cooperation among the local MPC controllers. A simulation right place at the right time. Hereby, pressure at particula

study based on a part of the urban water supply network of . . . .
Bogota, the capital of Colombia, illustrates the potential of the locations in the network and flows through particular pipes o

B. Control of water supply networks

approach. the network have to stay within acceptable limits. A low flow
rate can lead to water quality problems due to the growth of
I. INTRODUCTION undesirable microorganisms and the accumulation of metals

A. Urban water supply networks and salts on the wall of the transmission and distribution

. ipes. Too large pressure values increase water losses (due
Urban water supply networks form the link betweerfo pipe waste) and incur a larger blow-out probability [2].

drinking water supply and drinking water consumers. These The control system of a water supply network has to

Li:g(r?;;?:n?:twgrﬁse;{ﬁ V;te?/leﬁogftheecgrl:;\gviil g;vuerlga?r;gfmdetermine the settings for the actuators in the network in
and for the cogntinuous g eration of factories and hgs itanUCh a way that the control objectives are achieved. Hereby,
P . Pl nstraints on the range of possible control signals have to
[1]. Water supply networks consist of so-called transmoissi b d h h d ch :
mains, distribution mains, and service lines. Transmissio € respected, even when there are unexpected ¢ anges in
mains’conve large amomjnts of water over I;alr e distance"%’ater demand. Model-based predictive control seems ideall
S y larg S : g . Suited for this as detailed below.
distribution mains provide intermediate steps towardvaeli
ing water to the end customers; and service lines transmit tit. Model predictive control
water from the distribution mains to the end customers. The

. o Model predictive control (MPC) is a control approach
transmission and distribution network can have a topologf P ( ) PP

which at discrete time steps actions are determined by

| i | work dval th " lving an optimization problem, taking into account the
N water supply NEworks pumps and valves are the contry, ;. objectives, predicted dynamics of the network over
ele_mer_1ts that enable the delivery of water to the CoNSUMELScertain prediction horizon, and operational constrgits
taking into account water flow and pressure constraints. T PC has been widely used in the process industry and is now
most freque.ntly used type Of. bump In water supply network aining increasing attention in other fields, including ttoh
is the centrifugal pump, which consists of a motor and a

: : . . . f water networks [5]-[8]. The main advantages of using
impeller. In this device, the mechanical energy of the nogat MPC are that multiple-input multiple-output systems can

S. Leirens and C. Zamora are with the Departamento de Inganierpe handled in an 'nteQraFEd Way’_ and that ConStr_amts' long
Eléctrica y Electrénica, Universidad de Los Andes, BogdRolom- time delays, and known information (e.g., regarding future
bia, {sleirens, cp.zanora71}@niandes.edu.co. RR. Ne- gjisturbances) can be taken into account in a straightfatwar
genborn and B. De Schutter are with the Delft Center for 3gste fashi Each of th d Iso b ken b fi
and Control, Delft University of Technology, Delft, The NMetlands, ashion. Each of these advantages can also be taxen benetfit
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that is looped, branched, or a combination of these two [2



Due to the complexity and the large size of water netwhere h,ss denotes the total head loss along the piping
works, control of such systems in general, however, canneéction andj is the gravitational acceleration. The total head
be done in a centralized way in which a single controlleloss is given by [13]:
operates the full network from a single location. Instead of
collecting measurements from the whole system and deter- Pioss(t) = Nioss , (t) + Mlossm(t), ©)

mining actions from a single location, gontrol is typica”Ywherehmssfp represents friction losses amgssm represents
spread over several local control agencies, each comgolli yinor |ocal losses. The friction losses are computed using
a particular part of the network. Since the 90s varioug)arey-Weisbach’s friction model [3]:

distributed MPC applications have been investigated for
water networks. E.g., in [9], [10] a decentralized adaptive (o
hloss ,(8) = | 525 | Q).

(4)

control approach for a 40-kilometer long canal in France is DpA,%Zg

considered; in [11] a decentralized unconstrained priedict

controller for water delivery canals is presented; and 2 [1 Where D;, is the inner diameter of the pipe[m], ang,

distributed MPC for irrigation canals is considered. is a roughness coefficient. This friction coefficient varies
In this paper we propose to employ distributed MPGlepending on the surface roughness of the pipe. Colebrook

for control of large-scale urban water supply networks, imnd White [3] suggest to use the following empirical equation

particular for the water supply network of Bogota, Colombiato determine this friction coefficient:

D. Outline 1 €¢/Dp 251
. . . . —— =-4log,, + 5 (5)
This paper is organized as follows. In Section Il models for VT, 371 2,/2ciNgr

the components of water supply networks are given and thehere ¢[m] is the roughness of the pipe arfdk is its

water supply network of Bogota, which we use as a syste . ) '
PRy 9 y eynolds number. This equation can be solved using standard

for case studies, is presented. In Section Il the details . , . :
the distributed MPC scheme proposed for control of Water}umencal methods to find roots of nonlinear algebraic equa-

supply networks are given. Section IV discusses a simmiati&'ons’ such as bisection or Newton-Raphson methods [13].

experiment in which the distributed MPC scheme is applied The minor local losseSiessm [M] are caused by contrac-

for control of a part of the water supply network of Bogotéf'ons’ f|t_t|ngs, expansions, bends, valves, and changesiin ﬂ.
Section V concludes this paper. in the pipeline. Minor head losses are expressed as a fanctio

of the water velocity in the pipe and dependk, the head

[l. WATER SUPPLY NETWORK MODELING loss coefficient, as follows:
A water supply system consists of a large number of K
interconnected hydraulic elements, which can be classified hiossm(t) = ( 25 ) Qx()- (6)
either being active or passive elements [13]. Active eldsien A9

(e.g., pumps and valves) can alter the flow rate of water ie Nod
specific parts of the system. Passive elements (e.g., pipes, ) ) S )
tanks, and reservoirs) do not directly alter the flow rates. The following conservation of mass principle is considered

The behavior of these elements is formalized below. at nodes:

A Pumps a)-c- S0 -
Pumps add mechanical energy transformed into additional . . ) ) .

head to the hydraulic system [2], [13]. The hdgdm] varies whereQ; is th_e total inflow |dnto nodé[m?3/s],C; is th_e water

nonlinearly with the speedli [rpm] and the flowQ, [m?/s]. used at nodé [m3/s], andEs represents change in storage

The headh, of n variable-speed pumps running in parallel[mg/sl- The conservation of mass equation is applied at all
is at timet given by: junction nodes and tanks in a network [14].

es

0, @)

B Co 4

h(t) :AON(t)2+FON(t)Qp(t)—ﬁQf,(t), 1) D. Water supply network of Bogota
, , Bogota, the capital of Colombia, is located on a high
whereA(_), Bo, Co are suitable constants for a particular pumpplateau mountain in the Andes Region, elevated 2630 m
as provided by the manufacturer. above sea level. Bogota has a population of over 7 mil-
B. Pipes lion inhabitants, who have to be supplied with water via

Pipes convey flow as water moves from one junction t5090ta’s water supply network, see Figure 1. This water
another. Let a pipe section have lenggfm], cross sectional su.pply network recelve'siwater from four treatment plants:
areaA, [m?], and head difference between the two ends of thWiesner, El Dorado, Tibitoc, and Tibitoc Alto. In each of

pipe Ah, [m]. The evolution of the flowQy(t) [m3/s] through these plants the water undergoes several processing steps i
the pipe is given by: order to ensure water that is safe for human consumption.

q After these processing steps, the water is distributedhaa t
Qe(®) = % (Ahp(t)_hloss(t))7 (2) transmission and distribution mains of the supply network
dt lp to the metropolitan area. The water supply network of




Bogota includes 33 pumping stations, 55 storage tanks, a~~
approximatively 500 km of 12 inch or larger piges

In this paper we consider control of a particular regior
of the complete network (as indicated in Figure 1) as a firs
step towards control of the complete water supply networ}
To obtain a dynamic model for this system, parameters ¢
pipes (diameters, nodes, lengths, and roughness), jasctic
(elevation, demands, and consumption patterns), as well
topographic altitudes of reservoirs, valves, and pump® ha
been collected. This information has then been used
develop an overall state space representation of the fimlgpw
form:

X(t) = £ (x(t), u(t),d(®)) , 8)

wherex is the state (the flow through pipes and the head i
nodes),u is the control input (loss coefficient of valves and
pressure injection of pumpg),is the exogenous disturbance
input (the consumption pattern), arids the nonlinear state
transition function.

The actuators in the network should be set in such a we
that the control objectives are achieved. Due to the largkesc
of the network, centralized control is not tractable. Beloes
present how distributed MPC can be used to coordinate tl
actions taken locally throughout the network instead.

IIl. DISTRIBUTED MODEL PREDICTIVE CONTROL

Using distributed MPC, the control of the system (8) is
divided over multiple controllers. An individual contretl
on the one hand obtains measurements from and determir
actions for its part of the network, and on the other han
communicates with other controllers in order to obtain co
ordination and to improve the overall network performance.

To determine which actions to take, each controller uses &¢- 1.  Water supply network of Bogota and the selected part f
MPC strategy application of distributed control (inside the rectanglB)ue circles are

consumption nodes, red and yellow symbols are storage tayds symbols
L are reservoirs, black lines are pipes.
A. Model predictive control

In this paper, it is assumed that the dynamics of the ) _
prediction model of subnetworkare represented by a time- the influence of inputv; cannot be neglected without a
invariant linear (or linearized) model described in a diser significant decrease in performance and robustness of the

time state-space framework: control system.
Consider that subnetwork has to be operated under

Xi(K+1) =Aixi(K) +Byui(k) + B2,di(K) +B3;vi(K) (9) (linear) constraints on input, state and output:
Yi(K) = CiXi(K) + Dy,iui(k) + D2, di(K) + D3vi(k),
Eixi(K) +Fiui(K) +Gjy;(K) +h; <0, Vk (10)

where xj € R™ is the statey; € R™ is the control input,
yi € R™ is the outputd; € R™: is the exogenous disturbanceWhereEi, Fi, Gi, andh; are assumed to be constant.
input (assumed to measured or estimated), and R™ For the gompletgness of the paper, the principles of MPC
represents the influence of the neighboring subnetworks &ke now briefly reviewed [4]. MPC is a model-based control
subnetworki. In the above equatiorise N is the (discrete) mMethod in which a model of the system to control is used to
time instant, where discrete tinkecorresponds to continuous predict its behavior over a finite tlme.horlzon in the futdre.
time kT, whereT is the sample time of the discrete-time2 state-space framework, thg following steps are cons_idere
model (9). From a control point of view, note that input(l) at current control sample instant, the state of the ayste
v; has to be obtained via communication between locdn€asured (or estimated); (2) an optimization routine isluse
controllers, leading to a distributed control scheme, orlwa 10 find_ an _optimal sequence of Contro_l inputs in the_ future
simply ignored or assumed constant, leading to deceraahlizthat minimize an objective function subject to constrgi(@$

control. Obviously, if the network is strongly interconte, the first control input from the optimal sequence is appled t
the system, and steps (1)—(3) are repeated at the next ktontro

thttp: //web. acueduct 0. com co/ . sample instant, and so on. The fact that a new measurement



of the state is used at each time instant gives a feedbask-called interconnecting input and output variables st
policy. networki shares with a neighboring subnetwgrkActually,

Let Xi(k+1) = [rXiT(k+ 1) - X/ (k+ N)]T, Gi(k) = [uiT(k) interconnecting constraints

- ul(k+eN=1)] andyi(k) = [y (K) --- y(k+N-1)]" be ) Wini(K) = Wouij(K) (16)
the predicted state, input, and output sequences resplgctiv
Here, the superscript T denotes transposeNuslthe length Woutji(K) = Winjj(K) (17)
of the prediction horizon. In this paper, the predictionihon
and the control horizon have the same lenigth

The following notations are used in the foIIowin|gz||(2? £

should be added to the local control problem of controller
i, Vje N and fork=0, ... ,N-1. However, adding such
constraints leads to a nonseparable local optimizatiob-pro

T . A _ _ . H H

Elgi di\U(cI)%; rig(t)rixuo(fk whli)c,hiﬂg oﬁ:‘go?él blc;ckpg)ﬁrlez f‘ lem, since it cannot be solved using only local variables. To
1 N)g For subsvster consider thge followin ob'ect?ve deal with constraints (16), a separable augmented Lagrange
fdﬁéfi(;n' ' ystem 9 0ol formulation is used [15]. Constraints (16) are added to the

local objective function of controller in the form of linear
Jocali (f(-(k+1),l]-(k) yi(k)) _terms in the_Lagrar!ge multipliers and quadratic terms in the
= Rk D)= KirerB, + | ATGHR)2 interconnecting variables [15].
= [Ixi( 1refllQy "Y1Qag Then each local MPC controller computes optimal se-

+Hl]i(k)—ui_ref”éﬁi +||yi(k)_yi_’ref||(2?yi, (11) quences as before, but now taking also the interconnecting

variables in the sequences of variables to be optimized

where Qy, = diag(QXi, ey Qxi) is positive definite, and now using fixed values for the Lagrange multipliers.

and the sequences of the sequence of set-pois = This way, each local controller is able to communicate

[XIref"'XIref]T' are considered constant during the predicto its neighbors the optimal values, according to its local
tion. The same holds fa®g; and Qy,, and U rer andyi rer. viewpoint, of the interconnecting variables. Convergeisce

Now, consider the local optimization probleRiocay;: obtained by updating the Lagrange multipliers using the
solution of the optimizations and then repeating the opami

Jiocali (f(i(k+ 1)7Gi(k),yi(k)) (12) tions until the Lagrange multipliers do not change anymore
(with respect to small numerical tolerance) from one iferat

subject to the dynamics (9) of subnetwarkocal constraints to the next. Under convexity assumptions on the objective

(10) on x;(K), ui(k), and yi(k) and let us for nowignore function and linearity of the subnetwork model constragints

min
Xi(k+1),0i (k),¥i (k)

the inputv;(k+ j), for J = . N-1. Defmevlocall(k) = solving the distributed control problem in such a way leads

[%i(k+1)T @i (k)T yi(k)T] Then to the optimal solution of the centralized control problem
that considers the entire network.

Jocali (\7,06a|,i(k)) The coordination process is realized using a parallel co-

=T (K N (KT Ve (K) + (13 ordination scheme [15] in which at timk the following
ol (K) QocaliViocati (K) +Tiocal; Viocali(K) + Cocali (13) steps are performed: (1) all controllers compute theimoati
with - dia foo =TT fT T ... Sequencesin paral.lel, (2) contrgllerls communicate tmsz 0
a CO[%;’;‘]'I( andgv(v(ﬁgrgu ;ﬁé%, :)\E;Iourgt tor botL terlﬁs“m mal sequences of interconnecting input and output vasable

U; and AQ; in cost function (11) Similarly, the constraints :O lt_helr ne:jghbors, (3_) ci)ng]ollerts “tlfld?‘te therl]LLagrgr;gﬂ,x ml
in Piocati can be formulated as follows: ipliers and communicate them to their neighbors. Steps (1)

(4) are repeated until convergence (agreement) is reached.
AinjocaliViocal(K) < binjocali (14) For controlleri, let the Lagrange multipliers\i, ji(K) be
_ associated towi, ji(k). As before, a tilde over a variable

Aeglocali Viocal(K) Peglocali- (19) will denote a sequence over the prediction horidgrso let
Plocai has now been reformulated as a standard quadrati, x;(K) = ;\Liji_l(k) “+ Ainjji, (K| be the Lagrange mul-
programming (QP) problem. tipliers that will be received by controlléfrom |tsm ne|gh-

Up to now, the influence of the neighbors of subnetwiork
(vi) has been ignored. As explained before, this influence has
to be taken into account, and so communication between cone
trollers is required at each time instant. For this purptise, et Woutn;(K) = [ qutijis (K)o Wy, (k)} be the intercon-
distributed control scheme based on local MPC controllersecting output variables of they nelghborlng subsystems
as introduced in [15] is described next. that are interconnecting input variables of subsysteiret

Wouti(K) andwin A7 (K) be defined in the same way. Then we
B. Distributed control scheme have

boring controllers. Letwy;(k) = {Wm“.(k) W ml(k)
e the interconnecting mput varlables of controlleand

Let Ni={ji1, -~ Jim} be the set of indices of neighbors ¥i(K) = Piin i (K) (18)
of subnetwork, i.e., the subnetworks by which the dynamics ~ T T e T
of subnetworki are influenced. Lewin j andwoyji be the Wouri(K) = Ki [%i(K)' Gi(K)' yi(k)'] . (19)



whereP; andK; are matrices that contain zeros everywhere
except for a single 1 per row.

Consider the augmented local optimization problem fo g
controller i that has to be solved at each iteration of thes
coordination process:

min Jiocali (Xi(K), G (K), yi (K
5,00.01005:00, Iocal,l( i(K) |(~) yi( )2
Wln.l(k)uwautl(k) + \]inteni (Win‘i(k),wougi(k)) (20) 0 5 10 15 20 2

Time (H)

15

1k

Flow Rat

subject to the dynamics (9) of subnetworkand local Fig. 2. A typical water demand profile.
constraints (10) orx;(k), uij(k), and yij(k), and equalities
(18)—(19), fork=0, ..., N-1. This augmented formulation

includes a new termdne:; that is defined as follows: It is worth mentioning that hard constraints (26) can be

softened by introducing an additional positive slack valga
Jinteri (Win,i (K), Woui (K)) e in V(K) so that (26) become&,V;(k) < bi, +el wherel
-7 ~ T ~ is a unit column vector, and by adding an extra termin
= Ain,i (KWin,i (K) = i sz (K)Wouti (k) the objective function}; of (25). The parametes allows to
+% (IIWin,i(k)—Wouu\fi(k—l)Hz penalize the maximum amount of constraint violation.

+||WOuLi(k)_Win,/\/'i(k_l)nz)a (21) IV. SIMULATION EXPERIMENT

) ) o We next consider an experiment on the northern part water
where the linear terms involve the Lagrange multiplierg,nnly network of Bogota (as indicated in Figure 1). This
Aini(K) @nd Ainn;(K), and the quadratic terms with tuning part of the network is modeled with 37 head and flow-

parametery; penalize the deviation olini(k) andWoui(K)  rate state variables, 7 control inputs (valves and pumping

from the interconnecting variables iterates that were COMations), and 18 disturbance inputs (water demand). The

puted at the last iteratiomiou,x; (k—1) andwin x;(k-1). system is divided into three subnetworks indicated by fitte

~ The Lagrange multipliers of controllérare updated, at A B and C, the state dimensions of which are 10, 10, and 17

iterations, as follows: respectively. The interconnecting variables that intenswt

(k)—\iv(s) (k)) 22) the subr_letworks con_sist (_)f the head differences_between the
OULN; A/ ends of interconnecting pipes. Each subnetwork is coettoll

wherenyq is a parameter that allows to tune the convergenday a local MPC controller that uses a discrete-time linestiz

of the iterative coordination process. lterations stop nheprediction model. The control sampling is 1h, equaling

controllers fulfill the following local stopping conditioat the average time-constant of the system. The controllers

~(stl) NG ~
Aini (€)= X () + g (W)

inji

time instantk, e.g., for controlleri: use Matlab’s quadprog function to perform the optimization
- (s+1) -9 required at each control time step.
[ Aini () = Xini ()] oo < Ve (23)  The disturbance scenario considered in this experiment

reflects typical water demand profiles, such as the one
illustrated in Figure 2. The demand profile consists of flow
rates specified for particular locations in the network aicivh
consumers are connected over a time span of 24 h.

where ~, serves as a numerical tolerance. Nkieri(k) =
(Wi i (K) wgum(k)]? For the local costlocaj, the so called
interconnecting cost (21) can be reformulated as:
Jinter,i (\N/inter,i(k))
= Vi-l;ner_i (k)Qinter,iVimer.,i (k) +f;|r-ner7ivinter,i (k) * Cinter, (24)

such that the augmented local optimization problem c
controlleri is now: Y

®
o

o
o

Head A (m)
»
o

min J; (\7|(k)) = \~/iT(k)QiVi(k) +fiT\~/i(k) (25)
Vi(k)

£
subject to g
AiniVi(K) < binj (26)
Aequi(k) = beqh (27) ;g
v v v T 3
where  Vi(K) = [ViiK V%ter%(k)], Q = E: e
diag(cha.‘i,Qimem) andfiz[fﬁcau f%terﬁi] . The matrices in 2 4 6 8 10 12 14 16 18 20 22 24

26) are computed frominjocali @nd binjocati and include rme ®
(26) P in,localj in,local Fig. 3. Evolution of most important heads for each subnetwwek a full

equalities (18)_(19)_' This is a standard QP problem that myiation without coordination. The horizontal lines icatie the allowed
solved by controllei. limits.
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The distributed control scheme presented in Section Il hags)
been applied to the three interconnected subnetworks. When
facing a change in water demand, completely decentralized
MPC controllers do not choose the best actions to apply tg7]
the network, as they do not take into account the actions of
other controllers. This results in poor performance and eco
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However, when using the proposed distributed MPC ap-
proach to achieve coordination, the coordination betweerp]

controllers allows to maintain the heads between the limits
while using the actuators optimally, as illustrated in Fegu [10]
4,

The results presented in Figure 4 have been obtained with
the following choice of coordination parametefs= 10" in
Eqg. (21) andyq =1 in (22). The parametey, which appears [11]
in the stopping condition (23) is used to set a minimum level
of coordination for the distributed scheme and is taken kequa
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V. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have proposed the application of dié—ls]
tributed model predictive control (MPC) for coordinating[14]
the actuators in large-scale water supply networks. We have
introduced the characteristics of water supply network§15]
described how to model these systems, and discussed their
control objectives. For control of such systems we have
proposed the use of a distributed MPC scheme based on
linearized models. A simulation study on a part of the water
supply network of Bogotd, the capital of Colombia, shows
the potential of the approach proposed.

Future research will further assess the performance of
the proposed approach and implement the distributed MPC
approach for the complete water network of Bogota. Scala-
bility issues, convergence properties, and robustnesasiga
uncertainty will then in particular be studied. Furthermor
the distributed MPC approach will be extended to nonlinear
instead of linearized models.
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