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Abstract—In this paper, a model-predictive control based 

framework is proposed for modeling and optimization of the 
health state of power system equipment. In the framework, a 
predictive health model is proposed that predicts the health state 
of the equipment based on its usage and maintenance actions.  
Based on the health state, the failure rate of the equipment can be 
estimated. We propose to use this predictive health model to 
predict the effects of different maintenance actions. The effects of 
maintenance actions over a future time window are evaluated by 
a cost function. The maintenance actions are optimized using this 
cost function. The proposed framework is applied in the 
optimization of the loading of transformers based on the thermal 
degradation of the paper insulation. 
 

Index Terms—Power System Maintenance, Maintenance 
Optimization, Predictive Health Management, Model-Predictive 
Optimization, Power Transformer. 

I. INTRODUCTION 
N the power grid, a significant portion of the electrical 
infrastructures will reach the end of their operational age 

within the coming few decades. On the one hand, the 
impending replacement wave of these infrastructures will 
require extensive investments in the near future. On the other 
hand, the aging infrastructures are degrading the reliability of 
the system. So, there is a greater need for reducing the threat 
of the aging related failures and at the same time deferring the 
new investments by extending the life of the aging 
infrastructures. The extension of the life of the aging 
infrastructures should be done while keeping the reliability 
above an acceptable threshold. The performance, risk, and 
expenditures in the electrical infrastructure should thus be 
optimally managed to achieve quality of service in the most 
cost effective manner [1]. 

Maintenance is important for maintaining reliability of the 
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equipment and extending the life of the equipment. 
Maintenance strategies implemented in electrical equipment 
can be categorized into three classes [1], [2]: 

1. Corrective Maintenance: Maintenance is performed 
only after breakdown of equipment. 

2. Time-Based Maintenance: Maintenance is performed at 
predefined/fixed time steps. 

3. Condition-Based Maintenance: Maintenance is based 
on the condition of the equipment. 

Condition-based maintenance is becoming popular in 
electrical infrastructures over the traditional time-based 
maintenance [2]. Condition-based maintenance reduces the 
cost by performing maintenance only when it is needed. 
Currently, condition-based maintenance strategies are often 
based on heuristics. Knowledge rules and standards are used 
for the condition assessment and the maintenance is based on 
this condition assessment [3]. The rules and standards are 
developed based on expert knowledge and/or the analysis of 
the performance history of a set of identical equipment. 

A model of the effects of maintenance actions on the health 
state of the equipment and its performance (i.e., reliability) is 
required to evaluate maintenance strategies [4]. Such a model 
emulates the evolution of the stresses in the equipment based 
on the physical principles of the aging mechanisms of the 
equipment. This model can be used to predict the effects of 
different planned maintenance strategies. These effects can be 
evaluated by associating cost functions to the health state and 
the performance of the equipment. An optimal maintenance 
strategy can then be devised by determining the effectiveness 
of different maintenance strategies using simulation and 
selecting the best strategy based on the cost associated with 
this strategy. 

A framework of a predictive health model and the 
optimization of maintenance action are proposed in this paper. 
The framework is based on model predictive control in which 
the health model is used to predict the effect of the 
maintenance (control) actions. The framework is implemented 
in a case study of optimization of the loading of transformers. 

The outline of this paper is as follows. In Section II, the 
proposed framework for the model-based optimization is 
presented. Section III gives a description of the aging of the 
paper insulation in transformers. An application of the 
framework for the case study and results are presented in 
Section IV. Conclusions and future work are included in 
Section V. 
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II. PROPOSED FRAMEWORK FOR MODEL-BASED 
OPTIMIZATION 

The framework for model-based optimization that we 
propose here uses a predictive health model. Using the 
predictive health model, the future health state of equipment 
used in the electricity grid can be predicted given possible 
actions and usage of the equipment. The framework also 
defines the cost function for the optimization. 

A. Predictive Health Model 
The predictive health model consists of the dynamic stress 

model, the failure model, and the estimation of cumulative 
stresses as illustrated in Fig. 1. As equipment ages, various 
stresses, such as electrical, thermal, mechanical, and 
environmental stresses, weaken the strength of the equipment. 
The cumulative stresses of the equipment are affected by the 
usage pattern (e.g., loading) and maintenance actions (e.g. 
replacement of parts) performed on the equipment. The health 
state of the equipment is represented by the cumulative 
stresses. Their dynamics can be described by a dynamic stress 
model which is implemented as a discrete-time state-space 
model. This model can predict future cumulative stresses 

( )ˆ 1k +x  based on planned usage of the equipment ( )d ku , 

planned maintenance actions ( )a ku , and current cumulative 

stresses ( )ˆ kx , where k is the current discrete time step. The 
dynamic stress model represents the aging of the equipment in 
which the cumulative stresses x̂  represent the health state of 
the equipment. The dynamic stress model is described as 
follows: 

( ) ( ) ( )( )ˆ ˆ1 , ,k k k+ =x f x u  (1) 

where ( ) ( ) ( ) T
a dk k k= ⎡ ⎤⎣ ⎦u u u . 

As the cumulative stresses increase over time, the 
probability of failure of the equipment also increases. The 
relationship between the cumulative stresses and the failure 
rate of the equipment is described in a failure model. The 
failure model uses the predicted cumulative stresses ( )ˆ kx  to 

predict the failure rate ( )ŷ k  of the equipment. The failure 
model directly maps the cumulative stresses to the failure rate 
as follows: 

( ) ( )( )ˆ ˆy k g k= x . (2) 

The cumulative stresses are indicated by condition 
parameters of the equipment, such as the partial discharge, 
temperature measurements, etc. Different online and offline 
monitoring systems can detect the condition parameters. In 
practice, only few condition parameters (e.g., electrical and 
thermal stresses) are measured by the monitoring systems. 
Estimates of the monitored cumulative stresses ( )eˆ kx  can be 

made based on measurements ( )kc  of the monitoring systems 
as follows: 

( ) ( )( )e xˆ k k=x h c . (3) 

The estimated cumulative stresses ex̂  can be used in the 
dynamic stress model to update the corresponding cumulative 
stresses. The remaining unmonitored cumulative stresses are 
predicted by the dynamic stress model. 

The framework of the predictive health model can be used 
to predict the health state and the failure rate of the equipment 
by considering the usage and the maintenance actions. The 
measurements of the monitoring systems can be used to 
update the cumulative stresses of the equipment.  

B. Optimization of Maintenance 
Typically, maintenance improves the health state of the 

equipment, which, in turn, reduces its failure rate. The optimal 
maintenance action balances the economical cost of the 
maintenance, the improvement of the health state, and the 
reduction in the failure rate of the equipment.  

The process of model-based optimization is illustrated in 
Fig. 2. The total cost of the maintenance actions consists of 
three cost functions. The cost function of the planned usage 
and the maintenance actions Ja incorporates the economical 
cost of the maintenance. The cost function of the failure rate Jf 
takes into account the cost associated with the failure of the 
equipment. The cost function of the cumulative stresses Jcs 
incorporates the cost of deterioration of the equipment. The 
costs can be represented in monetary terms or can be 
normalized to the cost of the equipment. The summation of 
these three different costs gives the total cost of a particular 
maintenance action in a particular state. The optimization of 
the maintenance actions is considered over a given time 
horizon in the future (N) so that the future maintenance actions 
can be optimized. The total cost over the time horizon is 
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Fig. 1. Predictive Health Model. 
  



 

considered for the optimization. The optimization problem is 
formulated as follows:  
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subject to 
 ( ) ( ) ( )( )ˆ ˆ1 ,k l k l k l+ + = + +x f x u  

 ( ) ( )( )ˆ ˆ ,y k l g k l+ = +x  for 0, , 1l N= − . 

The predictive health model is used to predict the 
cumulative stresses and the failure rates for the planned usage 
pattern and different future maintenance actions. The total cost 
is calculated for different future usage and maintenance 
actions over the time horizon. Optimal maintenance actions 
minimizing the total cost over the time horizon are searched.  

III. DESCRIPTION OF THE TRANSFORMER MODEL 
The proposed framework has been implemented on a case 

study of transformer insulation systems. Such a transformer 
insulation system consists of cellulose paper impregnated with 
mineral oil of the transformer. In this particular case, the use 
of the framework is illustrated by considering the health state 
of paper insulation only. A model of the degradation of the 
paper insulation is used to determine the optimal loading of 
the transformer. The loading is taken as a planned usage of the 
equipment. 

A. Aging Model of the Insulation System of a Transformer 
A transformer consists of various sub-components, such as 

windings, cellulose paper insulation, a core, tap changers, etc. 
The health of a transformer depends on the health state of its 
sub-components. One of the important sub-components is the 
cellulose paper insulation. Degradation of the cellulose paper 
insulation, due to thermal stress, oxidation, and hydrolytic 
processes reduces its dielectric and mechanical strength. This 
cellulose degradation determines the ultimate life of the 
insulation system [5]. 

The degradation process depends mainly on the 
temperature. Different models have been proposed to 
investigate the effects of the temperature on the aging of 
cellulose paper. The International Electrotechnical 
Commission Loading Guide [6] uses the hottest spot winding 
temperature to predict the life of the insulation system. Emsley 
et al. [5] have proposed kinetics of degradation of the cellulose 
paper based on its degree of polymerization. The degree of 
polymerization is the average chain length of the polymer in 
the cellulose. A decrease in the degree of polymerization 
signifies degradation of the paper. 

According to the degradation model from Emsley et al. [5], 
the degree of polymerization of cellulose paper can be 
estimated by the following equation: 

( )0

1 1 exp 24 365 ,
273t

EA t
DP DP R T

⎛ ⎞
− = − × × ×⎜ ⎟⎜ ⎟+⎝ ⎠

 (5) 

where DPt and DP0 are the value of the degree of 
polymerization at time t and 0, respectively, A is a pre-
exponential constant, E is the activation energy, R (= 8.314 kJ 
mole-1 K-1) is the gas constant, T is the temperature of the 
cellulose paper in Celsius, and t is the elapsed time in years. 

For dry Kraft paper in oil, which is commonly used in 
transformers, the activation energy E can be taken as 111 kJ 
mole-1 and the pre-exponential constant A can be taken as 
1.07×108 [5]. 

The degree of polymerization of new paper insulation may 
vary from 1300 to 900. The paper is considered to be at the 
end of its life if its degree of polymerization reaches between 
150 and 250 [5]. For the model used in this paper, an initial 
value of 1000 and a final value of 200 are used [1], [7]. 

The degradation model (5) will be used to estimate the 
effect of the temperature on the condition of the paper. 

B. Relationship between Temperature and Loading 
The temperature of the insulation depends upon the ambient 

temperature and the heat generated due to the power losses in 
the transformer. The power losses consist of iron losses and 
copper losses. The iron losses are almost constant for the 
normal operation whereas the copper losses increase with the 
increase in the current (loading) of the transformer. The 
loading of the transformer can vary on a daily, weekly, and 
seasonal basis. 

Different models have been proposed to estimate the hottest 
spot winding temperature in transformers. The temperature 
can be estimated by the thermal model based on heat transfer 
[8], [9]. Various measurements, such as the top-oil 
temperature and the bottom-oil temperature, are also used for 
the estimation [10]. The steady state hottest spot winding 
temperature T can be calculated as follow [8]: 
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where θA is the ambient temperature, KU is per unit load, 
ΔθTO,R and ΔθH,R are the rated top oil rise over the ambient 
temperature and the rated hottest spot winding temperature 
rise over the top oil temperature, respectively, R is the ratio of 
the load loss at the rated load to the no-load loss, n and m are 
empirical values which depend on the type of cooling of the 
transformer. 

For a 187 MVA transformer described in Annex C of [8], 
ΔθTO,R and ΔθH,R are considered as 36 °C and 28.6 °C 
respectively. R is calculated as 4.87 and θA is assumed as 30 
°C. The values of both n and m are considered as 1 for the 
directed forced-oil cooling of the transformer. The steady state 
hottest spot winding temperature with respect to loading is 
calculated by (6), which is shown in Fig. 3. 

IV. APPLICATION OF THE TRANSFORMER MODEL TO THE 
MODEL-BASED OPTIMIZATION FRAMEWORK 

A. A Predictive Health Model of Cellulose Paper Insulation 
In the predictive health model of the cellulose paper 

insulation, the degree of polymerization DPx̂  is taken as the 
cumulative stress. The temperature of the transformer uT 
depends upon the loading and thus can be considered as a 
planned usage of the equipment. This way, the model predicts 
the effect of the loading of the transformer on the degree of 
polymerization of the paper insulation. The kinetics of 
degradation of the degree of polymerization described in (5) 
are discretized to obtain the dynamic stress model, as 
described in (1). The dynamic stress model, discretized for a 
time step of 1 year, is then as follows: 

( ) ( )

( )( )

DP DP

T

1 1
ˆ ˆ1

exp 24 365 ,
273

x k x k

EA h
R u k

=
+

⎛ ⎞
⎜ ⎟+ − × × ×
⎜ ⎟+⎝ ⎠

 (7) 

where ( )DPx̂ k  and uT(k) represent the degree of 
polymerization and the temperature of the insulation system in 
the kth year, respectively, and h is the time step (1 year) of the 
discrete-time model. 

The failure model for transformers due to the insulation 
degradation is not considered in this paper. The contribution to 
the failure rate due to the insulation degradation is relatively 
low compared to the failure rate due to other components, 
such as tap changers [11]. However, the degradation of the 
insulation system leads to the end of the operating life of the 
transformer and thus has a major impact in terms of the 
investment of the equipment [12]. Thus, only the dynamic 
stress model is considered for the optimization. 

B. Cost functions 
The cost function of the cumulative stresses (i.e., the degree 

of polymerization) Jcs and the cost function of the usage (i.e., 

the temperature) Ja have been developed for the optimization. 
Jcs accounts for the cost of aging of the equipment. A linear 
depreciation of the cost of the equipment with respect to the 
operating time is commonly used. The cost of the degree of 
polymerization is considered as 1 (normalized) when the 
degree of polymerization is reduced to the minimum 
acceptable value (i.e., DPfinal = 200). The initial degree of 
polymerization of the new paper insulation DPinitial is 
considered to be 1000. The cost function for the degree of 
polymerization is as follows: 

( ) ( )( ) ( ) ( )cs
DP DP

1 1ˆ ˆ, ,
ˆ ˆ

J k k N
x k N x k

α
⎛ ⎞

+ = −⎜ ⎟⎜ ⎟+⎝ ⎠
x x  (8) 

where 
final initial

1 250
1 1DP DP

α = =
−

. 

The cost function of the temperature Ja describes the cost of 
the loading of the transformer (see Fig. 3). A linear function is 
assumed for the cost function. A linear coefficient β represents 
the cost due to the decrement of the temperature (i.e., the 
benefit due to the increment of the temperature). A reference 
temperature Tref is considered and the cost is calculated with 
respect to this reference temperature. Thus the cost is a 
relative cost with respect to the reference temperature. The 
cost function is given as: 

( )( ) ( )( )a T refTJ u k u k Tβ= − − . (9) 

C. Optimization 
The predictive health optimization problem is obtained by 

substituting Jcs and Ja from (8) and (9), respectively, in (4). Jf 
is not included as the failure model is not considered. The 
constraints of the optimization are obtained from the 
predictive health model, described by (7). The resulting 
optimization problem is: 

( ) ( )
( )( )

( ) ( )

T T

1

T ref, , 1 0

DP DP

min

1 1 ,
ˆ ˆ

N

u k u k N l
u k l T

x k N x k
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+ − =
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⎣ ⎦
⎛ ⎞

+ −⎜ ⎟⎜ ⎟+⎝ ⎠

∑
 (10) 

subject to 
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Fig. 3. Relation of the loading to the steady state hottest spot winding 
temperature. 
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 for 0, , 1l N= − . 

The optimization is performed over a prediction horizon of 
N years. In the optimization, the replacement of the 
transformer in the case of its end of life (degree of 
polymerization less than 200) is not considered. Thus the 
prediction horizon, N, has to be less than the minimum 
expected life within the given range of parameters. For 
instance, in the case of the maximum temperature of 95 °C, 
the minimum expected life is approximately 25 years (see Fig. 
4). Thus N is chosen as 20 years. The reference temperature 
Tref is taken as the mid-range value (87.5 °C) of the 
investigated temperature range of 80 °C to 95 °C. The 
selection of the reference temperature Tref does not affect the 
optimal solution. The solution to the optimization problem 
gives the optimal temperature that yields the minimum total 
cost. 

The optimization problem (10) consists of a non-linear cost 
function and non-linear constraints. The optimization therefore 
is solved by a non-linear solver, SNOPT [13]. The solver is 
used through the Tomlab v6.1 [14] interface in Matlab v7.5. 

D. Results 
For a transformer, as the temperature increases, the 

insulation is stressed further, resulting in faster aging. An 
increase in temperature implies an increase in the loading of 
the transformer. Thus as the loading of the transformer is 
increased, the rate of aging is also increased and vice versa. 
The optimal solution is found when the cost of aging and the 
benefit of the increase in the loading are matched. The optimal 
solution depends upon how important or unimportant the 
increase in the loading is compared to the loss of life of the 
insulation system. The criticality of the loading depends upon 
various factors including the importance of the transformer, 
the criticality of the transformer location, and the loading 
profile of the transformer. 

The benefit of the increase in the loading (or the increase in 
the temperature) is quantified by the benefit due to the 
increment of the temperature β in (10). Fig. 5 illustrates the 
total cost with respect to the temperature uT for three different 
values of β. As observed in the figure, the optimal temperature 
varies as β is changed. 

The optimal temperature for different values of β is plotted 
in Fig. 6. A constant temperature over the prediction horizon 
is considered since the purpose is to obtain the optimal 
temperature. As illustrated in the figure, if the benefit due to 
the increment of the temperature is lower, a lower temperature 
is optimal and vice versa. 

The results of the optimization can be used for the loading 
of the transformer. As the temperature is related to the loading 
of the transformer (see Fig. 3), the optimal loading varies as 

the value of β changes. The value of β can be chosen 
according to the importance of the transformer and the 
priorities of the utility. The recommendation of the future 
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loading of the transformer, which is a part of the maintenance 
planning, can be made based the optimization result.  

V. CONCLUSIONS AND FUTURE WORK 
A framework for predictive health modeling of power 

system equipment has been proposed and a model-based 
optimization has been implemented for the optimization of 
maintenance. The framework is applicable to most of the 
power system equipments. A case study of optimization of the 
loading of transformers based on the framework has been 
proposed in this paper. 

The presented framework combines a prediction model 
based on the aging mechanisms as well as an estimation of the 
health state based on online and offline monitoring systems. 
The business values, such as the performance of the 
equipment and the investment cost in maintenance, have been 
translated into the cost functions of the optimization. 

The framework will be extended to include the hottest spot 
winding temperature estimation. For the estimation, the time 
step of the model will be decreased to match the dynamics of 
the temperature. The framework will also be extended for the 
system-wide optimization of maintenance over a network. 
Distributed problem solving and optimization schemes will be 
applied for the system-wide optimization. Furthermore, the 
model presented can be extended to include a multi-
component model that considers aging due to other 
components, such as the oil condition. 
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