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Model-Based Predictive Control Applied to
Multi-Carrier Energy Systems

Michele Arnold, Sudent Member, IEEE, Rudy R. Negenborn,
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Abstract— The optimal operation of an integrated electricity as interface between the loads and the transmission infcast
and natural gas infrastructure is investigated. The couplings tyres of both types of systems. The above mentioned two-

between the electricity system and the gas system are modeledyy ey system is then modeled as a number of interconnected
by so-called energy hubs, which represent the interface between energy hubs

the loads on the one hand and the transmission infrastructures . . - L
on the other. To increase reliability and efficiency, storage devices ~Because of the increasing number of facilities for distieiou

are present in the multi-carrier energy system. In order to generation with fluctuating energy infeed (generation s
optimally incorporate these storage devices in the operation of the issue of storing energy becomes more important. Etectri
the infrastructure, the capacity constraints and dynamics of tlese energy storage devices are expensive and their operation

have to be taken into account explicitly. Therefore, we propose | | der to still ble th lectri
a model predictive control approach for controlling the system. causes energy losses. In order to stll enable tne electric

This controller takes into account the present constraints and €nergy supply in time, the operation of gCHP device in
dynamics, and in addition adapts to expected changes of loadscombination with a heat storage is studied. Since the rdtio o
and/or energy prices. Simulations in which the proposed scheme produced heat and electricity ofte&CHP device is predefined,
is applied to a three-hub benchmark system are presented. its operation always has to be aligned with the electric and
Index Terms— Optimal power flow, optimization, model pre- thermal loads. By means of the heat storageiGelP device
dictive control, electric power systems, natural gas systems can be operated with focus on following the electric load
while storing the thereby produced heat. The operationscost
are presented when comparing the operation of jiG#HP
device with and without heat storage support. Furthermore,
OWADAYS, conventional infrastructures, such as eledhe costs are compared with the decoupled operation mode,
tricity, hydrogen, natural gas, and local district heatinge. when the electricity and natural gas system are opbrate
systems, are mostly planned and operated independentlyinsfependently of each other, i.e. when pGHP devices are
each other. In practice, however, these individual systaras in usage.
coupled, as, e.g., small-scale combined heat and powetsplan For determining the optimal operation of the integrated
(1CHP) and other distributed generation plants (so-called cglectricity and natural gas system an optimal power flow
and trigeneration [1]) are used more and more. It is thegefgproblem is solved. An optimization problem for the entire
expected that by pursuing the integrated control of sevemistem is solved by a central controller, which determines
of such systems, improved efficiency and performance cHie optimal operational set-points of the system, i.e. & th
be achieved. The various energy carriers available and #Rergy generation units, converters and storage devices. |
conversion possible between them significantly affect ho¢h [3], a steady-state optimization has been solved, in which
technical and the economical operation of energy systertie interconnected energy hub system is modeled with static
In particular, consumers get flexibility in supply and coulgteady-state models. In this paper, storage devices with dy
therefore decide in favor of, e.g., cost, reliability, st namic behavior are present in the multi-carrier systemcein
emissions, availability, or a combination of these. they cause a dependency between consecutive time steps
Currently, research effort is addressing the integratetrob Optimization over multiple time steps is required. Therefo
of combined electricity and natural gas systems [2], [3]. Ifer the optimal operation of the system, actions have to be
[2], the impact of natural gas infrastructures continges@n determined taking the expected future behavior of the syste
the operation of electric power systems has been analymedinto account. For optimizing the operation over multipieei
[3], the electricity and gas systems are coupled by using th&€ps, we propose to use model predictive control (MPC) [3],
concept of so-called energy hubs [4]. The energy hubs sef®d MPC is widely used in different application areas since
system dynamics, data forecasts and operational cortstrain
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I. INTRODUCTION



as well as to expected changes in the load profiles. central controller

This paper is organized as follows. In Section Il the math-
ematical model of the considered two-carrier system isrgive
MPC is proposed in Section Il for the optimal operation of
the system. The control problem for the network is presented
taking future system behavior into account. Simulations in
which the proposed method is applied to a three-hub bench-
mark system are presented in Section IV. Section V concludes
this paper and outlines directions for future research.

Il. MODELING

The studied multi-carrier energy systems consist of sev-
eral interconnected energy hubs. As example we consider a
system consisting of three hubs that are interconnected by
an electricity and natural gas transmission system (Fig. 1)

The COUpImgS between the eIeCtr|C|ty and the gas system ?‘lre 1. System setup of three interconnected energy hubsveApower

modeled by means of energy hubs. In principle, an energ)gbrovided by generator§;, G2, Gs. Hubs H; and Hy have access to
hub is a generalization or extension of a network node thatjacent natural gas networkg, N». Central controller measures all system

includes conversion, conditioning, and storage of muetiplariables (dashed arrows).

energy carriers. It represents the interface between tarygn

sources and transmission lines on the one hand and the power . . Lo . .
consumers on the other hand. The energy hub is a modelff§e Provides the possibility for optimizing the input egies,
concept with no restrictions to the size of the modeled syste€-9-» USing criteria such as cost, availability, emissiets [4].
Single power plants or industrial buildings as well as bathd In the following equations, time is d|scrgt|zed into digere
geographical areas such as entire towns can be modeled'™®§ Stepsk = 0,1,..., where a discrete time stejp corre-

energy hubs. Below we formalize the model of this system?pon‘.i'S rt]o the continuous tinid", with 7" being the sampling
ime in hours.

A. System setup

In the system under study, each energy hub representB.aPower conversion

general consumer, e.g., a household, that uses both elgrctri For each of the three energy hubs, the electric lbag(k)

and gas. Each of the hubs has its own local electrical eNergNy the heat load., .(k) at a time stepk are related to the
production (3;, with electric power productioPS;, for i € "

e, electricity P! (k) and gas hub inpuPlL (k) as follows:
{1,2,3}). Hub H; is connected to a large gas netwadrk, y Fei(k) d puFyi (k)
with gas infeedPy, . In addition, hubH, can obtain gas from Lei(k)
a smaller local gas tank, modeled as gas inféggl. Each hub [ Lh;‘(k) ] =

consumes electric powdt!’, and gasP!!

»,i» and supplies energy

to its electric load. ; and its heat load,;, ;. The hubs contain Li(k)

converter and storage devices in order to fulfill their egerg {1 Vg.i(k)ng, } |:P§i(k):| 1)
load requirements. For energy conversion, the hubs coatain | 0 vgi(k)nSh + (1 — vgi(k)ng ., Pg%-(/f) ’
#CHP device and a furnace. TheCHP device couples the R Pak)

two energy systems as it simultaneously produces eldgtrici

and heat from natural gas. All hubs addltlonally Compri%here ng'é”; and ng;”? denote the gas_e|ectric and gas-heat
a hot water storage device. Compressas;(for (i,j) € efficiencies of theuCHP devicé and where;f,, , denotes the
{(1,2),(1,3)}) are present in the gas network within thesficiency of the furnace. The variable ;(k) (0 < v, (k) <
pipelines originating from huldf,. The compressors provide1) represents a dispatch factor that determines how the gas
a pressure decay and enable the gas flow from the large gasjivided between thexCHP and the furnace. The term
network to the surrounding gas sinks.  vgu(k)PI(k) defines the gas input power fed into th€HP
Depending on the prices and load profiles, #H@HP device gz the bar(l — vy,i(k)) P (k) defines the gas input power
is utilized differently. At high electricity prices, thaCHP  ing into the furnace. In general, the conversion betwhen t
device is mainly operated according to the electric loace Trihput and output powers, collected in vect®g k) andL; (k),
thereby producgd heat is then either usgd to supply the m?f%spectively, is expressed by a coupling matEiyk). As the
load or stored in the heat storage device. At low e|eCt”C'W|spatch factor, ;(k) is variable, different input vectom®; (k)
prices, the electric load is preferably supplied directy boan pe found to fulfill the output loadk; (k). This offers

the electricity network and the gas is used for supplying th@ygitional degrees of freedom in supply.
thermal load via the furnace. Hence, there are several ways i

which electric and thermal load demands can be fulfilledsThi 1, yhis paper the efficiencies are assumed to be constant. wéautBey
redundancy increases the reliability of supply and at timeesacan also be dependent on, e.g., the converted power level.



C. Power storage

The storage device is modeled as an ideal storage in com-
bination with a storage interface. In the considered sédtop,
water storage devices are implemented. The relation betwc?:e 5 Model of e " (©) and pigelF)

. 19. 2. oael of a gas pipeline wi compressor an | .
the heat power eX,Chanthﬂi(k_j) and_ the effect|vely Sto_red Cgmpressor demand ig mo?igled as additiona? power €W, . P
energy Ey ;(k) at time stepk is defined by the following

equation:
o 1 dBn, | AEn, by the volta-ge magnitudes (k) and angled(k) and the line
My (k) = o o dr A o At parameters:
! _ 360 (k) 00 (k)
= L (Buh) - Busk - )+ ), @) Srn8) = Ynn VnB)2 ™ ¥ (Vm B
€hsi ~Va(k)e ™) — b Vi (k)2 (6)
with where the superscrigt denotes the conjugate complex of the
e, if My;(k) >0 (charging/ standby) value. The line is modeled as-equivalent with the shunt
€h,i = 1/’6_ clse (discharging) admittancey,,,,, and the shunt susceptanc®, .
h,i ging 3) b) Pipeline network: Figure 2 shows the model of a gas

ipeline composed of a compressor and a pipeline element.

wheree; , e are the charging and discharging efficienc off_ . . i
“h.ir “hi ging ging y he volume flow balance at node at time stepk is defined

the heat storage device, including the efficiency of theagfer
interface, converting the energy carrier exchanged with tRS

system into the carrier stored internall,, ;(k) denotes the Qum (k) — Z Qun(k) = 0, @)
storage energy at time step Eﬁ“j represents the standby neN .,

energy losses of the heat storage device per peﬁ]@@ & 0).
For each hub hot water storage devices are implemen
Equation (1) is therefore completed with additional stera
power flows, which are collected in a vectd;(k):

tg\@_ereQm(kz) is the volume flow injected at node, Q. (k)
go|enotes the line flow between nodes and n, and N,
denotes the set of neighboring nodes of ngde.e., the nodes
connected to node: through a pipeline. The line flo@,,.,, (k)
{ Le.i(k) is defined as

Lini(k) + M (F) Qun (k) = Fronmn /5mm G EZ =27, (©)

Li(k)+M;(k)
1 (J\nCHP H wherep,, (k) andp, (k) denote the upstream and downstream
Vgﬂ( )ng,e,i Pc z(k) (4) ivel id ifi he i
0 vgs (B)nSHP + (1 — v s (k) PH-(k) . pressures, respectively, ang, identifies the line constant.
> s ’ s iy The variables,,,, indicates the direction of the gas flow as
Ci(k) P;(k)

X :{ 1 p(k) > pa(k)

The storage power flowdI;(k) define how the storage —1 otherwise. ©)
energies affect the output flows, i.e., describe how theageor
energy derivatives are mapped into equivalent output-si

flows.

70 maintain a certain pressure level a compressor is needed.
ere, the compressor is driven by a gas turbine which is
modeled as additional gas flow

D. Transmission network Qcom(k) = kcoQOn(k) (pm(k) - pl(k))a (10)

For the transmission networks of both the electricity ne¥herep(k) denotes the pressure at the compressor input side
work and the gas pipeline network, power flow models bas@fdkcom IS @ compressor constant. The resulting gas flow into
on nodal power balances are implemented. Analogous to the PipelineQ,, (k) is therefore determined by
hub equations, the nodal power balances are defined per time -

Stepk as well. an(k) - an(k) Qcom( )
a) AC electricity network: Electric power flows are The pressure at the compressor outppt(k) is determined
formulated as nodal power balances of the complex powes
according to the normal power flow equations [7]. At node
m, the complex power balance at time stejs stated as Pm (k) = pinc(k)pi(K), (12)

11)

. wherepi,.(k) defines the pressure amplification of the com-
Sim (F) Z Smn(k) =0 ) pressor. Depending on the required line flQW,,, (k), pinc(k)
is adjusted accordingly. For the purpose of this study,ehes
where S,,(k) is the complex power injected at node. simplified compressor models provide sufficient accuracy.
Smn (k) denotes the power flow to all adjacent nodesf node More advanced compressor equations taking into account
m, summarized in the seV,,. The line flows are expressedchanging fluid properties are given in [8].

nEN,



E. Combined energy hub transmission network modeling control system measurements
>
The combined electricity and gas network is obtained Bynputs
combining the power flow models stated above. For each time
step k an algebraic state vectar(k) and a dynamic state
vectorx(k) are defined. The algebraic state vector includes the MPC controller
variables for which no dynamics are explicitly defined. The
dynamic state vector includes variables for which dynamics control | optimization
are included. Hence, aCt'OnSQ -
o objective,
x(k) = [En(k)]" (13) model fprediction constraints
z(k) = [V* (k) 07 (k) p" (k) pire (k)
(PH)T(k) (PH)T(k)}T (14) Fig. 3. IIIudstrationI(IJf model predictive control, showingenactions between
e g system and controller.
where
S V() = [Va(k).Va(k),Va(k)]T and O(k) =

H1ere are local controllers which ensure that the obtaimtd s
points are met. We propose that the central controller uses a
MPC approach.
The goal of the control scheme is to determine values for
= ue(k) = [pimes (k). pmea(k)]T denotes the pressurethe c_or_ltrol variab_lesu(k) in such a way that thel costs for
amplification of the compressors, electricity generation and natural gas usage are mininozed

)L T2 st s 1 G1srd st orce s contt o
inputs of the hubs, and g9 p y

. pH i pH H o T that the control objectives are achieved, while satisfytimg
Py (k) = [Pg1(k), Pyp(k), Py (k)] denotes the gas system constraints First, we explain the basic idea of MPC.
inputs of the hubs and Then, the control problem for the considered hub system is
- Eyn(k) = [En1(k), Ena(k), Ens(k)]T denotes the en- ’ P : ub system |

ergy contents of the heat storage devices. formulated.

At each time stegk, the control variables(k) are defined o
to include the active power generation of all generators, th- Model predictive control
natural gas imports of all gas networks and the dispatclofact Since storage devices are included in the optimization, op-
of all hubs, i.e., timization for multiple periods is required. As controlategy
we propose to use MPC. MPC [5], [6] is an optimization-
u(k) = [(PS)T(k) (PS)T(M Vg(k)f’ (15) baserz)d (E)ontrol strategy. An optimiga]tio[n]problem Fi)s solvad,
which an internal model is used to find those actions that give
the best predicted behavior of the system over a predefined
prediction horizon with lengthV. In this optimization opera-
T defines the natural gastional constraints are al_so taken into gccognt. MPC is duite
for control of multi-carrier systems, since it can adeqglyate
. . take into account the dynamics of energy storage devices and
- vg(k) = [Vg’l(k)’ngz(k)’.’/gﬁ(@]T describes the dis- yo characteristics of the electricity and gas networks CMP
patch factors at the gas input junctions. operates in a receding horizon fashion, meaning that at each
Now, the model that we use to represent the combingghe step new measurements of the system and new predictions
electricity and gas network, including the hub equationthwijnto the future are made and new control actions are computed
the dynamics, can be written in compact form as By using MPC, actions can be determined that anticipate
future events, such as increasing or decreasing energgspric

[01(k),02(k), 03(k)]T denote the voltage magnitudes an
angles of the electric buses, respectively,

- p(k) = [p1(k),pa(k),p3(k)]T denotes the nodal pres-
sures of all gas buses,

where
- PG(k) = [PS(k), PS,(k), PS5(k)]™ denotes the active
power generation of all generators
- PP(k) = [Pg(k), Peh(k)]
imports and

x(k+1) = £(x(k), z(k), u(k)) (16) In Fig. 3 MPC is illustrated schematically. At each control
0 = g(x(k),z(k), u(k)). 17 step k, an MPC controller first measures the current state
of the systemx(k). Then, it determines using (numerical)
[1l. CONTROL PROBLEM optimization which control inputa(k) to provide by deter-

In this section we discuss the control of the system intrg> N9 the actions that over a prediction horizon /gftime

duced above. The goal is to implement a supervisory, cent?t?ps give the best predicted performance according toem giv

. . : objective function. The control variables computed for filgt
controller that defines the set-points of the energy geiograt - :
units of the hubs. This central controller measures alladeis prediction step are then applied to the system. The system th

in the network and determines all actions for all actuatortsEanS'tIons to a new states(k + 1), after which the cycle is

In Fig. 1 the central controller is indicated. The dasheddin répeated.
indicate the information exchange between the individusish 21, aqgition to the stated objectives, it is straightforwasdalso include
and the central controller. It is assumed that within theshubvoltage regulation and power flow limitations as control chijes.



B. Control problem formulation

In the MPC formulation the central controller determi 1
the inputsu(k) for the network. The control objective is 1
minimize the energy costs, represented by the followingo© I 11 ﬂ l | | .
tive function, where costs of the individual energy cagiare o E e step K- e
modeled as quadratic functions of the corresponding po & ey

bibbbbkE

+ @ (k+0)(PS(k+1)%,  (18) ; - ! [ AT AT AR Mﬂ

5 20 25
whereG includes all generation units, i.e., the three generatoFr_s 4 Dai fle for electricityL. (k) and heat loadsy ;(k) (

A I i . ig. 4. aily profile for electricityL. ; and heat loaddy, ; upper
and_the two natural ga; Imports. The prices for electrlcum-g plot) and prices for eIectricity;ZG(k:) and natural gas consumptio;j\](k)
eration of all generatorsand for the natural gas consumptiorjower plot).
of the two gas networks for time stépare denoted by" (k)

andq (k), respectively. These prices can vary throughout the
day. The central control problem formulation is now stated @jectricity prices are varying during the day, showing akpea

P S
L —

Loads [p.u.]

W
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J= 303 (@Ek DES G+ D))

=0 i€eG

N
S
T
I

=
)
T

Prices [m.u./pﬁ]

=
=

o

0 . 1!
Time step k

min J(x(k + 1),z(k), a(k)) (19) around noon. Furthermore, electricity generation at hidbs
a(k) ’ ' andHj is chosen twice as expensive as at filib The reason
subject to for choosing different electricity prices is to obtain tareubs

%(k+1) = f(fc(k), 7 (k), a(k)) (20) with different setups. (Hulbl hqs a chea_p access to.el.ectricity
o ~ ~ and gas, hulil; has an expensive electricity and a limited gas
gj(x(k)vz(k)’u(k)) =0 (1) access and huH3 has an expensive electricity access and no
h(x(k),z(k),a(k)) <0, (22) gas access.) Gas prices remain constant throughout the day
ﬁmd are the same for all hubs. The loads are given in p.u.
(Eer unit) values and the price coefficients are described in
m.u./p.u?, where m.u. refers to monetary units.

where the tilde over a variable represents a vector with t
values of this variable over a prediction horizon §f steps,

e.g.,u(k) = [u"® . uT+N-1 T The inequality con- Regarding the electrici K bus 1 i deled lack
straints (22) comprise limits on the voltage magnitudesyac egar mg.t e electricity network, bus 1 is mode edas sac
CRRCH having the voltage angle and voltage magnitueel fix

and reactive power flows, pressures, changes in compre#%

settings and dispatch factors. Furthermore, power liiitat P‘G(ﬁ) - 14f0° p'hu_‘)r'] T:e other t\.NO buses aredmr(])deletlj as
on the hub inputs and on gas and electricity generation ace al L.JSZS’ or whic .f.tde :let ac.tlr\:_e prtl)wer and the kv%tagi
incorporated into (22). Regarding the storage devicesjtslimma‘gn'tu e are specified. Also within the gas network bus

on the storage contents and the storage flows are impose&erveS as slack bus, having a fixed pressure value of 1 p.u.

The optimization problem (19)—(22) is a nonlinear pro'_rhe coefficients and simulation parameters used are listed i

gramming problem [9], which can be solved using solver-gablﬁ . Slncte hkulH2ﬂ IS as?umed E{O _hz:vef (;nly access o ad
for nonlinear programming, such as sequential quadrate mea er gas tank, a flow raté constraint of 2 p.u. IS Impose

G . ) : .
gramming [9]. In general, the solution space is non-conv Pg5(k). The network is mainly supplied via the large gas

o O : .
and therefore finding a global optimum cannot be guarante%@.twork Pg’lf(kr)]’ delivering the gas to the neighboring buses
Only a local optimum is returned by numerical optimization:. y means of the two compressors.

TABLE |

IV. CASE STUDY
PARAMETERS OF THE THREEHUB SYSTEM IN RU.

Simulations are presented, in which the proposed MPC

scheme is applied to the three-hub benchmark system depicte | coefficients
in Fig. 1. We use thesnopt solver through the Tomlab HCHP ngh, = 03,5 = 0.4
interface [10] in Matlab. F Mg hi = 075

ES® ES® =02
A. Smulation setup €h,i eri =ep; =09

At each hub, the daily profiles of the load demands and the | limits

energy prices are known in advance. Here, we assume that Vi 09< V<11
these load and price forecasts are perfect. However, iity;eal Pg; 0< R <10
there are always forecast errors. As a first study, we assume pi 08<p <12
perfect forecasts and it is believed that the following Hssu Pinc,i 1.2< pinci <18
are representative also for small forecast errors. Thengive Vi 0<wvi<1
profiles are typical profiles for a household. The electyiaitd Py 0< Py £20,0< Py <2
heat loads are assumed to be the same for all hubs and are Ei 05<E; <3
depicted in the upper plot in Fig 4. Regarding the prices, the M, i 3 My <3
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Fig. 5. Active power generatiof, (k) and natural gas impodPgGl(k) of ] ] ) ] ) o
hub H; over entire simulation horizon, for a prediction horizonfwiength  Fig. 6. Storage evolution over simulation horizon. Comparieb different

N =5. lengths of prediction horizo&v = 3, N =5, N = 24.
TABLE I
Based on the profiles, the total generation costs are mini- COMPARISON OF OPERATION COSTSN = 5

mized for a simulation ofVy,, = 24 time steps, where one
time step corresponds to 1 hour. To analyze the performance
of the central controller, we vary the length of the prediati
horizon N betweenN = 1, i.e. no prediction (optimizing just

for the actual time step), anty = 24, i.e. predicting for all

24 time steps at once.

| uCHP | storage| costs [m.u]| increase|
Vv 2.73-10* | base
X 2.98 - 104 9.2%
Vv 2.94-10% | 7.7%
X 3.07 - 104 12.5%

x| x| <<

B. Prediction horizon with length N = 5 the heat load peaks and charged when no heat is required.

The behavior of the system is illustrated for a predictiohlowever, the heat storage devices are not only important for
horizon with length N = 5. We consider this length of the heat supply but indirectly also for electricity genemat
prediction horizon as adequate for practical applicatams it since theyCHP devices can be operated according to the
represents a proper trade-off between control performanceelectricity load requirements due to the heat storage dsvic
the one side and obtainable forecasts and computatiomat effAt high electricity prices, electricity generation vigCHP is
on the other side. An optimization for 5 time steps is run, aheaper than via the generators, thus, g@HP devices are
each time stef implementing only the control variables forpreferably used for supplying the electricity demand while
the current time step and then starting the procedure again atoring all excessive produced heat. This is also the reason
time stepk + 1 using updated system measurements. Runnimdny the contents of storagé$ andE rise again at the end
this procedure over the entire simulation period [0, 24falto of the simulation. During the heat load peaks almost all gas i
operation costs of.73-10* m.u are obtained. Figure 5 showdirected into the furnaces because the thermal efficierafies
the respective evolution of the active power generation aftte ©CHPs are not sufficient in order to supply the heat loads,
natural gas import at huli;. The electricity generation mainly not even by means of the heat storages. During these time pe-
corresponds to the electricity load pattern and the nagyaal riods, the operational costs increase correspondinglyuss
import evolves similar to the heat loads. However, natuea gthe nCHPs can not be used for supplying the electricity loads.
is also used during time periods, in which no heat is required In the following the operation costs are compared for
During these periods gas is converted by f@HP device for different system setups regarding th€HPs and the storage
supporting the electricity generation. The thereby preducdevices. As base case serves the configuration w@hPs
heat is stored and used later for the heat supply. At fibs and storage devices. In Table Il the increase in costs for the
andHs;, the active power generation shows a similar evolutionifferent cases are presented, in each case with a predictio
but with a level roughly half as high as at htilh, since their horizon length ofNV = 5. In the first two cases, theCHPs are
generation is twice as expensive as at i At hub Hy, utilized and the performance with and without heat storages
where the gas access is limited, the maximum amount of gag@npared. Using theCHP devices without the heat storages,
imported during day times, i.e. when the prices for eleityric total operation costs 02.98 - 10* m.u. are obtained, corre-
generation are high. sponding to an increase of 92 This is due to the fact that

In Fig. 6, the storage contents for different lengths dhe CHP devices cannot be utilized during periods without
prediction horizons are presented. The horizontal lindate heat loads because the thereby produced heat cannot be used.
the storage limits@(.5 p.u. < E;(k) < 3 p.u.). First, we focus The second two cases present the costs obtained in decoupled
on the storage behavior for a prediction horizon of lengthperation mode, namely when the electricity and natural gas
N = 5, which is represented by the dashed line. All threeetworks are optimized independently of each other. No powe
storage devices are half full before the optimization staris converted by theuCHP devices in this mode. Running
In general, the storage devices are mainly discharged glurthe optimization withoutuCHP usage but including the heat



2 the most efficient behavior over the simulation horizon is
obtained. The control variables for all next 24 time steps
. are determined and applied at time stepBut optimizing

for all time steps at once is not applicable in practice since
the data for the whole next day is normally not known in
advance. Moreover, possibly occurring disturbances dammo
handled and computational effort becomes too high. Hence
in practice, applying MPC with a properly chosen length of
prediction horizon is the best choice. In general, depandin
on the specifications, a trade-off between control perfoicea
and computational effort has to be made. For the application
example presented in this paper, a prediction horizon kengt
of N 5 yields the best compromise. Moreover, issues
such as obtainable forecasts and size of possible distteban
also influence the choice of an adequate length of prediction

storages, total costs df.94 - 10* m.u. are obtained. Thus, horizon.
by decoupling both infrastructures instead of operatirgnth
at once, generation costs are increased by/7.Running the
simulation with either the¢CHP nor the storage devices yields In this paper we have proposed the application of model
total costs 0f3.07 - 10* m.u., corresponding to an increase opredictive control to interconnected hub systems. The dy-
12.5%. namics of storage devices, forecasts on energy prices and
demand profiles, and operational constraints are taken into
account adequately by the predictive control scheme, which
i T o ~is an effective control approach for this type of systems.
For showing the effect of prediction, prediction horizonghe performance of different prediction horizons of vagyin
with different lengthsV are compared. In order to obtain afairlength have been compared. With an increasing length of
comparison, the prediction horizon is reduced towards e e prediction horizon total operation costs decrease, but
of the simulation. Hence, in each case, the controller krtbes computational effort increases accordingly. Future netea
same data, i.e., the measurements of the same 24 time Si@@$. aqdress the incorporation of disturbances within the
Figure 7 shows the total operation costs defined in (18) fgfofiles instead of assuming perfect forecasts. Furthezmor
different lengths of the prediction horizaN. Generally, the 3 gjstributed implementation of the central controller| it
operation costs decrease with increasing prediction boriz developed. In addition, network operators, which influethee

But this is not always the case. Depending on the inpghergy exchanges between the hubs, are to be incorporated in
profiles, some prediction horizon lengths yield poorer t8SUihe interconnected hub system.

since the planned actions are suboptimal with respect to the

whole simulation horizon. As can be seen, a fast decay of the ACKNOWLEDGMENTS
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In Fig. 6, the storage contents for different lengths of
prediction horizons ¥ = 3, N =5, N = 24) are compared.
At a predlctlon hOI‘IZOI’.I with a Ie_ngth av =3 (daSh'dOtted alternative for energy savings&pplied Energy, vol. 76, no. 1-3, pp.
line), the storage devices are filled up too late or are even 219-277, 2003.
emptied before the heat load peaks (storage devigeand [2] T. W. M. Shahidehpour, Y. Fu, “Impact of natural gas infrasutre on
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Fig. 7. Total operation costs for different lengths of potidin horizonN.

V. CONCLUSIONS AND FUTURE RESEARCH
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