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Model-Based Predictive Control Applied to
Multi-Carrier Energy Systems

Michèle Arnold,Student Member, IEEE, Rudy R. Negenborn,
Göran Andersson,Fellow, IEEE, Bart De Schutter,Member, IEEE

Abstract— The optimal operation of an integrated electricity
and natural gas infrastructure is investigated. The couplings
between the electricity system and the gas system are modeled
by so-called energy hubs, which represent the interface between
the loads on the one hand and the transmission infrastructures
on the other. To increase reliability and efficiency, storage devices
are present in the multi-carrier energy system. In order to
optimally incorporate these storage devices in the operation of
the infrastructure, the capacity constraints and dynamics of these
have to be taken into account explicitly. Therefore, we propose
a model predictive control approach for controlling the system.
This controller takes into account the present constraints and
dynamics, and in addition adapts to expected changes of loads
and/or energy prices. Simulations in which the proposed scheme
is applied to a three-hub benchmark system are presented.

Index Terms— Optimal power flow, optimization, model pre-
dictive control, electric power systems, natural gas systems

I. I NTRODUCTION

NOWADAYS, conventional infrastructures, such as elec-
tricity, hydrogen, natural gas, and local district heating

systems, are mostly planned and operated independently of
each other. In practice, however, these individual systemsare
coupled, as, e.g., small-scale combined heat and power plants
(µCHP) and other distributed generation plants (so-called co-
and trigeneration [1]) are used more and more. It is therefore
expected that by pursuing the integrated control of several
of such systems, improved efficiency and performance can
be achieved. The various energy carriers available and the
conversion possible between them significantly affect boththe
technical and the economical operation of energy systems.
In particular, consumers get flexibility in supply and could
therefore decide in favor of, e.g., cost, reliability, system
emissions, availability, or a combination of these.

Currently, research effort is addressing the integrated control
of combined electricity and natural gas systems [2], [3]. In
[2], the impact of natural gas infrastructures contingencies on
the operation of electric power systems has been analyzed. In
[3], the electricity and gas systems are coupled by using the
concept of so-called energy hubs [4]. The energy hubs serve
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as interface between the loads and the transmission infrastruc-
tures of both types of systems. The above mentioned two-
carrier system is then modeled as a number of interconnected
energy hubs.

Because of the increasing number of facilities for distributed
generation with fluctuating energy infeed (generation profiles),
the issue of storing energy becomes more important. Electric
energy storage devices are expensive and their operation
causes energy losses. In order to still enable the electric
energy supply in time, the operation of aµCHP device in
combination with a heat storage is studied. Since the ratio of
produced heat and electricity of aµCHP device is predefined,
its operation always has to be aligned with the electric and
thermal loads. By means of the heat storage, theµCHP device
can be operated with focus on following the electric load
while storing the thereby produced heat. The operation costs
are presented when comparing the operation of theµCHP
device with and without heat storage support. Furthermore,
the costs are compared with the decoupled operation mode,
i.e. when the electricity and natural gas system are operated
independently of each other, i.e. when noµCHP devices are
in usage.

For determining the optimal operation of the integrated
electricity and natural gas system an optimal power flow
problem is solved. An optimization problem for the entire
system is solved by a central controller, which determines
the optimal operational set-points of the system, i.e. of the
energy generation units, converters and storage devices. In
[3], a steady-state optimization has been solved, in which
the interconnected energy hub system is modeled with static,
steady-state models. In this paper, storage devices with dy-
namic behavior are present in the multi-carrier system. Since
they cause a dependency between consecutive time steps
optimization over multiple time steps is required. Therefore,
for the optimal operation of the system, actions have to be
determined taking the expected future behavior of the system
into account. For optimizing the operation over multiple time
steps, we propose to use model predictive control (MPC) [5],
[6]. MPC is widely used in different application areas since
system dynamics, data forecasts and operational constraints
can be taken into account explicitly. In our case, a supervi-
sory coordinator uses MPC to determine the actions for the
individual energy hubs that give the best predicted behavior,
based on characteristics of the transmission infrastructures,
the dynamics of the storage devices, and the load and price
profiles. By using this predictive approach, the energy usage
can be adapted to expected fluctuations in the energy prices,



as well as to expected changes in the load profiles.
This paper is organized as follows. In Section II the math-

ematical model of the considered two-carrier system is given.
MPC is proposed in Section III for the optimal operation of
the system. The control problem for the network is presented,
taking future system behavior into account. Simulations in
which the proposed method is applied to a three-hub bench-
mark system are presented in Section IV. Section V concludes
this paper and outlines directions for future research.

II. M ODELING

The studied multi-carrier energy systems consist of sev-
eral interconnected energy hubs. As example we consider a
system consisting of three hubs that are interconnected by
an electricity and natural gas transmission system (Fig. 1).
The couplings between the electricity and the gas system are
modeled by means of energy hubs. In principle, an energy
hub is a generalization or extension of a network node that
includes conversion, conditioning, and storage of multiple
energy carriers. It represents the interface between the energy
sources and transmission lines on the one hand and the power
consumers on the other hand. The energy hub is a modeling
concept with no restrictions to the size of the modeled system.
Single power plants or industrial buildings as well as bounded
geographical areas such as entire towns can be modeled as
energy hubs. Below we formalize the model of this system.

A. System setup

In the system under study, each energy hub represents a
general consumer, e.g., a household, that uses both electricity
and gas. Each of the hubs has its own local electrical energy
production (Gi, with electric power productionPG

e,i, for i ∈
{1, 2, 3}). Hub H1 is connected to a large gas networkN1,
with gas infeedPG

g,1. In addition, hubH2 can obtain gas from
a smaller local gas tank, modeled as gas infeedPG

g,2. Each hub
consumes electric powerPH

e,i and gasPH
g,i, and supplies energy

to its electric loadLe,i and its heat loadLh,i. The hubs contain
converter and storage devices in order to fulfill their energy
load requirements. For energy conversion, the hubs containa
µCHP device and a furnace. TheµCHP device couples the
two energy systems as it simultaneously produces electricity
and heat from natural gas. All hubs additionally comprise
a hot water storage device. Compressors (Cij , for (i, j) ∈
{(1, 2), (1, 3)}) are present in the gas network within the
pipelines originating from hubH1. The compressors provide
a pressure decay and enable the gas flow from the large gas
network to the surrounding gas sinks.

Depending on the prices and load profiles, theµCHP device
is utilized differently. At high electricity prices, theµCHP
device is mainly operated according to the electric load. The
thereby produced heat is then either used to supply the thermal
load or stored in the heat storage device. At low electricity
prices, the electric load is preferably supplied directly by
the electricity network and the gas is used for supplying the
thermal load via the furnace. Hence, there are several ways in
which electric and thermal load demands can be fulfilled. This
redundancy increases the reliability of supply and at the same

Fig. 1. System setup of three interconnected energy hubs. Active power
is provided by generatorsG1, G2, G3. Hubs H1 and H2 have access to
adjacent natural gas networksN1, N2. Central controller measures all system
variables (dashed arrows).

time provides the possibility for optimizing the input energies,
e.g., using criteria such as cost, availability, emissions, etc. [4].

In the following equations, time is discretized into discrete
time stepsk = 0, 1, . . ., where a discrete time stepk corre-
sponds to the continuous timekT , with T being the sampling
time in hours.

B. Power conversion

For each of the three energy hubs, the electric loadLe,i(k)
and the heat loadLh,i(k) at a time stepk are related to the
electricity PH

e,i(k) and gas hub inputPH
g,i(k) as follows:

[
Le,i(k)
Lh,i(k)

]

︸ ︷︷ ︸

Li(k)

=

[
1 νg,i(k)ηCHP

g,e,i

0 νg,i(k)ηCHP
g,h,i + (1 − νg,i(k))ηF

g,h,i

]

︸ ︷︷ ︸

Ci(k)

[
PH

e,i(k)
PH

g,i(k)

]

︸ ︷︷ ︸

Pi(k)

, (1)

where ηCHP
g,e,i and ηCHP

g,h,i denote the gas-electric and gas-heat
efficiencies of theµCHP device1 and whereηF

g,h,i denotes the
efficiency of the furnace. The variableνg,i(k) (0 ≤ νg,i(k) ≤
1) represents a dispatch factor that determines how the gas
is divided between theµCHP and the furnace. The term
νg,i(k)PH

g,i(k) defines the gas input power fed into theµCHP
and the part(1 − νg,i(k))PH

g,i(k) defines the gas input power
going into the furnace. In general, the conversion between the
input and output powers, collected in vectorsPi(k) andLi(k),
respectively, is expressed by a coupling matrixCi(k). As the
dispatch factorνg,i(k) is variable, different input vectorsPi(k)
can be found to fulfill the output loadsLi(k). This offers
additional degrees of freedom in supply.

1In this paper the efficiencies are assumed to be constant. However, they
can also be dependent on, e.g., the converted power level.



C. Power storage

The storage device is modeled as an ideal storage in com-
bination with a storage interface. In the considered setup,hot
water storage devices are implemented. The relation between
the heat power exchangeMh,i(k) and the effectively stored
energy Eh,i(k) at time stepk is defined by the following
equation:

Mh,i(k) =
Ėh

eh,i

=
1

eh,i

dEh,i

dt
≈

1

eh,i

∆Eh,i

∆t

=
1

eh,i

(
Eh,i(k) − Eh,i(k − 1) + Estb

h,i

)
, (2)

with

eh,i =

{

e+
h,i if Mh,i(k) ≥ 0 (charging/ standby)

1/e−h,i else (discharging)
(3)

wheree+
h,i, e−h,i are the charging and discharging efficiency of

the heat storage device, including the efficiency of the storage
interface, converting the energy carrier exchanged with the
system into the carrier stored internally.Eh,i(k) denotes the
storage energy at time stepk. Estb

h,i represents the standby
energy losses of the heat storage device per period (Estb

h,i ≥ 0).
For each hub hot water storage devices are implemented.
Equation (1) is therefore completed with additional storage
power flows, which are collected in a vectorMi(k):

[
Le,i(k)

Lh,i(k) + Mh,i(k)

]

︸ ︷︷ ︸

Li(k)+Mi(k)

=

[
1 νg,i(k)ηCHP

g,e,i

0 νg,i(k)ηCHP
g,h,i + (1 − νg,i(k))ηF

g,h,i

]

︸ ︷︷ ︸

Ci(k)

[
PH

e,i(k)
PH

g,i(k)

]

︸ ︷︷ ︸

Pi(k)

. (4)

The storage power flowsMi(k) define how the storage
energies affect the output flows, i.e., describe how the storage
energy derivatives are mapped into equivalent output-side
flows.

D. Transmission network

For the transmission networks of both the electricity net-
work and the gas pipeline network, power flow models based
on nodal power balances are implemented. Analogous to the
hub equations, the nodal power balances are defined per time
stepk as well.

a) AC electricity network: Electric power flows are
formulated as nodal power balances of the complex power,
according to the normal power flow equations [7]. At node
m, the complex power balance at time stepk is stated as

Sm(k) −
∑

n∈Nm

Smn(k) = 0 (5)

where Sm(k) is the complex power injected at nodem.
Smn(k) denotes the power flow to all adjacent nodesn of node
m, summarized in the setNm. The line flows are expressed

pm pnpl

Qmn −QnmQln

Qcom

C P

m nl

Fig. 2. Model of a gas pipeline with compressor (C) and pipeline (P).
Compressor demand is modeled as additional power flowQcom.

by the voltage magnitudesV (k) and anglesθ(k) and the line
parameters:

Smn(k) = y∗
mnVm(k)ejθm(k)(Vm(k)e−jθm(k)

−Vn(k)e−jθn(k)) − jbsh
mnVm(k)2 (6)

where the superscript∗ denotes the conjugate complex of the
value. The line is modeled asπ-equivalent with the shunt
admittanceymn and the shunt susceptancebsh

mn.
b) Pipeline network: Figure 2 shows the model of a gas

pipeline composed of a compressor and a pipeline element.
The volume flow balance at nodem at time stepk is defined
as

Qm(k) −
∑

n∈Nm

Qmn(k) = 0, (7)

whereQm(k) is the volume flow injected at nodem, Qmn(k)
denotes the line flow between nodesm and n, and Nm

denotes the set of neighboring nodes of nodem, i.e., the nodes
connected to nodem through a pipeline. The line flowQmn(k)
is defined as

Qmn(k) = kmnsmn

√

smn(pm(k)2 − pn(k)2), (8)

wherepm(k) andpn(k) denote the upstream and downstream
pressures, respectively, andkmn identifies the line constant.
The variablesmn indicates the direction of the gas flow as

smn =

{
+1 if pm(k) ≥ pn(k)
−1 otherwise.

(9)

To maintain a certain pressure level a compressor is needed.
Here, the compressor is driven by a gas turbine which is
modeled as additional gas flow

Qcom(k) = kcomQmn(k)(pm(k) − pl(k)), (10)

wherepl(k) denotes the pressure at the compressor input side
andkcom is a compressor constant. The resulting gas flow into
the pipelineQmn(k) is therefore determined by

Qmn(k) = Qln(k) − Qcom(k). (11)

The pressure at the compressor outputpm(k) is determined
by

pm(k) = pinc(k)pl(k), (12)

wherepinc(k) defines the pressure amplification of the com-
pressor. Depending on the required line flowQmn(k), pinc(k)
is adjusted accordingly. For the purpose of this study, these
simplified compressor models provide sufficient accuracy.
More advanced compressor equations taking into account
changing fluid properties are given in [8].



E. Combined energy hub transmission network modeling

The combined electricity and gas network is obtained by
combining the power flow models stated above. For each time
step k an algebraic state vectorz(k) and a dynamic state
vectorx(k) are defined. The algebraic state vector includes the
variables for which no dynamics are explicitly defined. The
dynamic state vector includes variables for which dynamics
are included. Hence,

x(k) =
[
Eh(k)

]T
(13)

z(k) = [VT(k) θ
T(k) pT(k) pT

inc(k)

(PH
e )T(k) (PH

g )T(k)]T (14)

where
- V(k) = [V1(k), V2(k), V3(k)]T and θ(k) =

[θ1(k), θ2(k), θ3(k)]T denote the voltage magnitudes and
angles of the electric buses, respectively,

- p(k) = [p1(k), p2(k), p3(k)]T denotes the nodal pres-
sures of all gas buses,

- pinc(k) = [pinc,1(k), pinc,2(k)]T denotes the pressure
amplification of the compressors,

- PH
e (k) = [PH

e,1(k), PH
e,2(k), PH

e,3(k)]T denotes the electric
inputs of the hubs, and

- PH
g (k) = [PH

g,1(k), PH
g,2(k), PH

g,3(k)]T denotes the gas
inputs of the hubs and

- Eh(k) = [Eh,1(k),Eh,2(k),Eh,3(k)]T denotes the en-
ergy contents of the heat storage devices.

At each time stepk, the control variablesu(k) are defined
to include the active power generation of all generators, the
natural gas imports of all gas networks and the dispatch factors
of all hubs, i.e.,

u(k) =
[
(PG

e )T(k) (PG
g )T(k) ν

T
g (k)

]T
, (15)

where

- PG
e (k) = [PG

e,1(k), PG
e,2(k), PG

e,3(k)]T denotes the active
power generation of all generators

- PG
g (k) = [PG

g,1(k), PG
g,2(k)]T defines the natural gas

imports and
- νg(k) = [νg,1(k), νg,2(k), νg,3(k)]T describes the dis-

patch factors at the gas input junctions.

Now, the model that we use to represent the combined
electricity and gas network, including the hub equations with
the dynamics, can be written in compact form as

x(k + 1) = f(x(k), z(k),u(k)) (16)

0 = g(x(k), z(k),u(k)). (17)

III. C ONTROL PROBLEM

In this section we discuss the control of the system intro-
duced above. The goal is to implement a supervisory, central
controller that defines the set-points of the energy generation
units of the hubs. This central controller measures all variables
in the network and determines all actions for all actuators.
In Fig. 1 the central controller is indicated. The dashed lines
indicate the information exchange between the individual hubs
and the central controller. It is assumed that within the hubs,

model

optimization

prediction

actions
control

objective,
constraints

system
inputs

control

MPC controller

measurements

Fig. 3. Illustration of model predictive control, showing interactions between
system and controller.

there are local controllers which ensure that the obtained set-
points are met. We propose that the central controller uses an
MPC approach.

The goal of the control scheme is to determine values for
the control variablesu(k) in such a way that the costs for
electricity generation and natural gas usage are minimizedover
the considered simulation period. Hence, the control problem
can be stated as determining the inputsu(k) in such a way
that the control objectives are achieved, while satisfyingthe
system constraints2. First, we explain the basic idea of MPC.
Then, the control problem for the considered hub system is
formulated.

A. Model predictive control

Since storage devices are included in the optimization, op-
timization for multiple periods is required. As control strategy
we propose to use MPC. MPC [5], [6] is an optimization-
based control strategy. An optimization problem is solved,in
which an internal model is used to find those actions that give
the best predicted behavior of the system over a predefined
prediction horizon with lengthN . In this optimization opera-
tional constraints are also taken into account. MPC is suited
for control of multi-carrier systems, since it can adequately
take into account the dynamics of energy storage devices and
the characteristics of the electricity and gas networks. MPC
operates in a receding horizon fashion, meaning that at each
time step new measurements of the system and new predictions
into the future are made and new control actions are computed.
By using MPC, actions can be determined that anticipate
future events, such as increasing or decreasing energy prices.

In Fig. 3 MPC is illustrated schematically. At each control
step k, an MPC controller first measures the current state
of the system,x(k). Then, it determines using (numerical)
optimization which control inputu(k) to provide by deter-
mining the actions that over a prediction horizon ofN time
steps give the best predicted performance according to a given
objective function. The control variables computed for thefirst
prediction step are then applied to the system. The system then
transitions to a new state,x(k + 1), after which the cycle is
repeated.

2In addition to the stated objectives, it is straightforwardto also include
voltage regulation and power flow limitations as control objectives.



B. Control problem formulation

In the MPC formulation the central controller determines
the inputsu(k) for the network. The control objective is to
minimize the energy costs, represented by the following objec-
tive function, where costs of the individual energy carriers are
modeled as quadratic functions of the corresponding powers:

J =

N−1∑

l=0

3∑

i∈G

(
qG
i (k + l)(PG

e,i(k + l))2
)

+ qN
i (k + l)(PG

g,i(k + l))2, (18)

whereG includes all generation units, i.e., the three generators
and the two natural gas imports. The prices for electricity gen-
eration of all generatorsi and for the natural gas consumption
of the two gas networks for time stepk are denoted byqG

i (k)
andqN

i (k), respectively. These prices can vary throughout the
day. The central control problem formulation is now stated as

min
ũ(k)

J(x̃(k + 1), z̃(k), ũ(k)) (19)

subject to

x̃(k + 1) = f̃(x̃(k), z̃(k), ũ(k)) (20)

g̃(x̃(k), z̃(k), ũ(k)) = 0 (21)

h̃(x̃(k), z̃(k), ũ(k)) ≤ 0, (22)

where the tilde over a variable represents a vector with the
values of this variable over a prediction horizon ofN steps,
e.g., ũ(k) = [ uT(k), . . . ,uT(k+N−1) ]T. The inequality con-
straints (22) comprise limits on the voltage magnitudes, active
and reactive power flows, pressures, changes in compressor
settings and dispatch factors. Furthermore, power limitations
on the hub inputs and on gas and electricity generation are also
incorporated into (22). Regarding the storage devices, limits
on the storage contents and the storage flows are imposed.

The optimization problem (19)–(22) is a nonlinear pro-
gramming problem [9], which can be solved using solvers
for nonlinear programming, such as sequential quadratic pro-
gramming [9]. In general, the solution space is non-convex
and therefore finding a global optimum cannot be guaranteed.
Only a local optimum is returned by numerical optimization.

IV. CASE STUDY

Simulations are presented, in which the proposed MPC
scheme is applied to the three-hub benchmark system depicted
in Fig. 1. We use thesnopt solver through the Tomlab
interface [10] in Matlab.

A. Simulation setup

At each hub, the daily profiles of the load demands and the
energy prices are known in advance. Here, we assume that
these load and price forecasts are perfect. However, in reality,
there are always forecast errors. As a first study, we assume
perfect forecasts and it is believed that the following results
are representative also for small forecast errors. The given
profiles are typical profiles for a household. The electricity and
heat loads are assumed to be the same for all hubs and are
depicted in the upper plot in Fig 4. Regarding the prices, the
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Fig. 4. Daily profile for electricityLe,i(k) and heat loadsLh,i(k) (upper
plot) and prices for electricityqG

i (k) and natural gas consumptionqN
i (k)

(lower plot).

electricity prices are varying during the day, showing a peak
around noon. Furthermore, electricity generation at hubsH2

andH3 is chosen twice as expensive as at hubH1. The reason
for choosing different electricity prices is to obtain three hubs
with different setups. (HubH1 has a cheap access to electricity
and gas, hubH2 has an expensive electricity and a limited gas
access and hubH3 has an expensive electricity access and no
gas access.) Gas prices remain constant throughout the day
and are the same for all hubs. The loads are given in p.u.
(per unit) values and the price coefficients are described in
m.u./p.u.2, where m.u. refers to monetary units.

Regarding the electricity network, bus 1 is modeled as slack
bus, i.e., having the voltage angle and voltage magnitude fixed
(V1(k) = 1∠0◦ p.u.). The other two buses are modeled as
PV buses, for which the net active power and the voltage
magnitude are specified. Also within the gas network bus 1
serves as slack bus, having a fixed pressure value of 1 p.u.
The coefficients and simulation parameters used are listed in
Table I. Since hubH2 is assumed to have only access to a
smaller gas tank, a flow rate constraint of 2 p.u. is imposed
on PG

g,2(k). The network is mainly supplied via the large gas
networkPG

g,1(k), delivering the gas to the neighboring buses
by means of the two compressors.

TABLE I

PARAMETERS OF THE THREE-HUB SYSTEM IN P.U.

coefficients

µCHP ηCHP
g,e,i = 0.3, ηCHP

g,h,i
= 0.4

F ηF
g,h,i

= 0.75

Estb
h,i

Estb
h,i

= 0.2

eh,i e+
h,i

= e−
h,i

= 0.9

limits

Vi 0.9 ≤ |Vi| ≤ 1.1

PG
e,i 0 ≤ PG

e,i ≤ 10

pi 0.8 ≤ pi ≤ 1.2

pinc,i 1.2 ≤ pinc,i ≤ 1.8

νi 0 ≤ νi ≤ 1

PG
g,i 0 ≤ PG

g,1 ≤ 20, 0≤ PG
g,2 ≤ 2

Ei 0.5 ≤ Ei ≤ 3

Mh,i -3 ≤ Mh,i ≤ 3
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e,1(k) and natural gas importPG

g,1(k) of
hub H1 over entire simulation horizon, for a prediction horizon with length
N = 5.

Based on the profiles, the total generation costs are mini-
mized for a simulation ofNsim = 24 time steps, where one
time step corresponds to 1 hour. To analyze the performance
of the central controller, we vary the length of the prediction
horizonN betweenN = 1, i.e. no prediction (optimizing just
for the actual time step), andN = 24, i.e. predicting for all
24 time steps at once.

B. Prediction horizon with length N = 5

The behavior of the system is illustrated for a prediction
horizon with lengthN = 5. We consider this length of
prediction horizon as adequate for practical applicationsand it
represents a proper trade-off between control performanceon
the one side and obtainable forecasts and computational effort
on the other side. An optimization for 5 time steps is run, at
each time stepk implementing only the control variables for
the current time stepk and then starting the procedure again at
time stepk +1 using updated system measurements. Running
this procedure over the entire simulation period [0, 24], total
operation costs of2.73 ·104 m.u are obtained. Figure 5 shows
the respective evolution of the active power generation and
natural gas import at hubH1. The electricity generation mainly
corresponds to the electricity load pattern and the naturalgas
import evolves similar to the heat loads. However, natural gas
is also used during time periods, in which no heat is required.
During these periods gas is converted by theµCHP device for
supporting the electricity generation. The thereby produced
heat is stored and used later for the heat supply. At hubsH2

andH3, the active power generation shows a similar evolution,
but with a level roughly half as high as at hubH1, since their
generation is twice as expensive as at hubH1. At hub H2,
where the gas access is limited, the maximum amount of gas is
imported during day times, i.e. when the prices for electricity
generation are high.

In Fig. 6, the storage contents for different lengths of
prediction horizons are presented. The horizontal lines indicate
the storage limits (0.5 p.u.≤ Ei(k) ≤ 3 p.u.). First, we focus
on the storage behavior for a prediction horizon of length
N = 5, which is represented by the dashed line. All three
storage devices are half full before the optimization starts.
In general, the storage devices are mainly discharged during
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Fig. 6. Storage evolution over simulation horizon. Comparison of different
lengths of prediction horizonN = 3, N = 5, N = 24.

TABLE II

COMPARISON OF OPERATION COSTS, N = 5

µCHP storage costs [m.u.] increase
√ √

2.73 · 104 base
√

x 2.98 · 104 9.2%

x
√

2.94 · 104 7.7%

x x 3.07 · 104 12.5%

the heat load peaks and charged when no heat is required.
However, the heat storage devices are not only important for
the heat supply but indirectly also for electricity generation,
since theµCHP devices can be operated according to the
electricity load requirements due to the heat storage devices.
At high electricity prices, electricity generation viaµCHP is
cheaper than via the generators, thus, theµCHP devices are
preferably used for supplying the electricity demand while
storing all excessive produced heat. This is also the reason
why the contents of storagesE1 andE2 rise again at the end
of the simulation. During the heat load peaks almost all gas is
directed into the furnaces because the thermal efficienciesof
theµCHPs are not sufficient in order to supply the heat loads,
not even by means of the heat storages. During these time pe-
riods, the operational costs increase correspondingly because
theµCHPs can not be used for supplying the electricity loads.

In the following the operation costs are compared for
different system setups regarding theµCHPs and the storage
devices. As base case serves the configuration withµCHPs
and storage devices. In Table II the increase in costs for the
different cases are presented, in each case with a prediction
horizon length ofN = 5. In the first two cases, theµCHPs are
utilized and the performance with and without heat storagesis
compared. Using theµCHP devices without the heat storages,
total operation costs of2.98 · 104 m.u. are obtained, corre-
sponding to an increase of 9.2%. This is due to the fact that
the µCHP devices cannot be utilized during periods without
heat loads because the thereby produced heat cannot be used.
The second two cases present the costs obtained in decoupled
operation mode, namely when the electricity and natural gas
networks are optimized independently of each other. No power
is converted by theµCHP devices in this mode. Running
the optimization withoutµCHP usage but including the heat
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Fig. 7. Total operation costs for different lengths of prediction horizonN .

storages, total costs of2.94 · 104 m.u. are obtained. Thus,
by decoupling both infrastructures instead of operating them
at once, generation costs are increased by 7.7%. Running the
simulation with either theµCHP nor the storage devices yields
total costs of3.07 · 104 m.u., corresponding to an increase of
12.5 %.

C. Comparison between different lengths of prediction horizon

For showing the effect of prediction, prediction horizons
with different lengthsN are compared. In order to obtain a fair
comparison, the prediction horizon is reduced towards the end
of the simulation. Hence, in each case, the controller knowsthe
same data, i.e., the measurements of the same 24 time steps.
Figure 7 shows the total operation costs defined in (18) for
different lengths of the prediction horizonN . Generally, the
operation costs decrease with increasing prediction horizon.
But this is not always the case. Depending on the input
profiles, some prediction horizon lengths yield poorer results
since the planned actions are suboptimal with respect to the
whole simulation horizon. As can be seen, a fast decay of the
operation costs occurs mainly within the first five prediction
horizon lengthsN = 1, . . ., N = 5. For longer prediction
horizons, not much reduction of the cost is gained, except for
optimizing for all 24 time steps at once (N = 24). Besides
that, computational effort increases with increasing prediction
horizon length.

In Fig. 6, the storage contents for different lengths of
prediction horizons (N = 3, N = 5, N = 24) are compared.
At a prediction horizon with a length ofN = 3 (dash-dotted
line), the storage devices are filled up too late or are even
emptied before the heat load peaks (storage devicesE1 and
E3 at time stepsk = 1 . . . 3) because the controller recognizes
these peaks too late. With increasing length of prediction
horizon, the storage devices are filled up earlier. By operating
the storage devices in a more efficient way, i.e. mainly by
filling them up earlier, the above discussed cost reductions
with increasing prediction horizon length (Fig. 7) are achieved.
Especially the storage device at hubH3 is utilized more
efficiently with increasing prediction horizon length. Since hub
H3 has no direct gas access, it avoids filling up the storage
device when knowing only limited information in advance.

When optimizing for all 24 time steps at once (solid line)

the most efficient behavior over the simulation horizon is
obtained. The control variables for all next 24 time steps
are determined and applied at time stepk. But optimizing
for all time steps at once is not applicable in practice since
the data for the whole next day is normally not known in
advance. Moreover, possibly occurring disturbances cannot be
handled and computational effort becomes too high. Hence
in practice, applying MPC with a properly chosen length of
prediction horizon is the best choice. In general, depending
on the specifications, a trade-off between control performance
and computational effort has to be made. For the application
example presented in this paper, a prediction horizon length
of N = 5 yields the best compromise. Moreover, issues
such as obtainable forecasts and size of possible disturbances
also influence the choice of an adequate length of prediction
horizon.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have proposed the application of model
predictive control to interconnected hub systems. The dy-
namics of storage devices, forecasts on energy prices and
demand profiles, and operational constraints are taken into
account adequately by the predictive control scheme, which
is an effective control approach for this type of systems.
The performance of different prediction horizons of varying
length have been compared. With an increasing length of
the prediction horizon total operation costs decrease, but
computational effort increases accordingly. Future research
will address the incorporation of disturbances within the
profiles instead of assuming perfect forecasts. Furthermore,
a distributed implementation of the central controller will be
developed. In addition, network operators, which influencethe
energy exchanges between the hubs, are to be incorporated into
the interconnected hub system.
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in Malmö, Sweden. He obtained his MSc and PhD
degree from the University of Lund in 1975 and
1980, respectively.

In 1980 he joined ASEA, now ABB, HVDC
division in Ludvika, Sweden, and in 1986 he was
appointed full professor in electric power systems
at the Royal Institute of Technology (KTH), Stock-
holm, Sweden. Since 2000 he is a full professor in
electric power systems at ETH Zurich (Swiss Federal
Institute of Technology Zurich), Switzerland. His

research interests are in power system analysis, simulationand control.
Another research interest is future energy and power systems.

He is a member of the Royal Swedish Academy of Engineering Sciences
and Royal Swedish Academy of Sciences, and he is active in IEEEPES. He
was the recipient of the IEEE PES Outstanding Power EducatorAward 2007.

Bart De Schutter (M’08) was born in Ek-
eren, Belgium. He received the MSc degree in
electrotechnical-mechanical engineering in 1991 and
the PhD degree in Applied Sciences (summa cum
laude with congratulations of the examination jury)
in 1996, both at K.U.Leuven, Belgium. Currently, he
is a full professor at the Delft Center for Systems and
Control and at the Marine & Transport Technology
department of Delft University of Technology in
Delft, The Netherlands.

Bart De Schutter was awarded the 1998 SIAM
Richard C. DiPrima Prize and the 1999 K.U.Leuven Robert StockPrize for his
PhD thesis. He is associate editor of Automatica and of the IEEE Transactions
on Intelligent Transportation Systems. His current research interests include
hybrid systems control, discrete-event systems, multi-agentsystems, control
of intelligent transportation systems, and optimization.


