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Abstract: In this paper, a model predictive framework is used to optimize the operation and 
maintenance actions of power system equipment based on the predicted health sate of this 
equipment. In particular, this framework is used to predict the health state of transformers based on 
their usage. The health state of a transformer is hereby given by the hot-spot temperature of the 
paper insulation of the transformer and is predicted using the planned loading of the transformer. 
The actual loading of the transformer is subsequently optimized using these predictions. 

 
1. INTRODUCTION 

With a significant portion of the electrical 
infrastructure reaching the end of its operational age 
within the coming few decades, reliability of the 
electricity grid is becoming a more and more important 
issue. The reliability of the grid can be improved by 
monitoring its condition and by taking preventive 
actions based on this condition [1]. Currently, 
condition-based asset management is based mainly on 
historic data and on heuristics. In order to optimize the 
operation and maintenance of power system 
equipment, while assuring a predefined level of 
reliability, a model describing the evolution of its 
health state, has to be incorporated into the asset 
management [2]. 

In [2], a framework is proposed for modelling the 
health state of power system equipment and used for 
modelling degradation of the paper insulation of 
transformers. The framework can be used to predict the 
effects of different maintenance actions and usage 
patterns. The predictions can then be used for the 
optimization of maintenance actions and the equipment 
usage. In this paper, we use this framework to optimize 
the loading of the transformer using temperature 
predictions. 

The loading limits of a transformer depend on the 
temperature within that transformer. The so-called hot-
spot temperature can therefore be used to determine the 
loading limits [3, 4]. This hot-spot temperature can be 
predicted using the load of the transformer [3-7]. 

2. FRAMEWORK FOR MODEL-BASED 
OPTIMIZATION 

A framework for model-based optimization using a 
predictive health model has been proposed in [2]. 
Using this predictive health model, the future health 
state of equipment that is used in the electricity grid 

can be predicted given a range of possible actions and 
usage patterns of its equipment. The framework also 
defines the cost function for the optimization. Below 
the components of this framework are outlined briefly. 

2.1. Predictive health model 

The predictive health model in the framework consists 
of a dynamic stress model, a failure model and an 
estimation of cumulative stresses, as illustrated in 
Figure 1. As equipment ages, various stresses, such as 
electrical, thermal, mechanical and environmental 
stresses, weaken the strength of the equipment. The 
cumulative stresses of the equipment are affected by 
the usage pattern (e.g., the loading) and the 
maintenance actions (e.g., the replacement of parts) 
performed on the equipment. The health state of the 
equipment is represented by the cumulative stresses. 
Their dynamics can be described using a dynamic 
stress model such as the following discrete-time state-
space model: 

 ( ) ( ) ( )( )ˆ ˆ1 , ,k k k+ =x f x u  (1) 

where ( ) ( ) ( ) T

a d .k u k u k=   u  At discrete time step 

k, the future cumulative stresses ( )ˆ 1k +x  are predicted 

based on the usage of the equipment ( )d ku , the 

maintenance actions ( )a ku  and the current cumulative 

stresses ( )ˆ kx . 

 
As the cumulative stresses increase over time, the 
probability of failure of the equipment also increases. 
The relationship between the cumulative stresses and 
the failure rate of the equipment is described in a 
failure model. The failure model uses the predicted 
cumulative stresses to predict the failure rate of the 
equipment. The failure model directly maps the 
cumulative stresses to the failure rate ( )ŷ k  as follows: 



 ( ) ( )( )ˆ ˆy k g k= x . (2) 

The cumulative stresses are indicated by condition 
parameters of the equipment, such as the partial 
discharge, temperature measurements, etc. Different 
online and offline monitoring systems can detect these 
condition parameters. In practice, only a few condition 
parameters (such as the electrical and thermal stresses) 
are measured by monitoring systems. Estimates of the 
monitored cumulative stresses ( )eˆ kx  can be made 

based on measurements ( )kc  of the monitoring 

systems as follows: 

 ( ) ( )( )e x
ˆ k k=x h c . (3) 

The obtained cumulative stress estimates ex̂  can be 

used in the dynamic stress model to update the 
corresponding cumulative stresses. The remaining 
unmonitored cumulative stresses are predicted by the 
dynamic stress model. 

The framework of the predictive health model can be 
used to predict the health state and the failure rate of 
equipment by considering its usage and the performed 
maintenance actions. The measurements of the 
monitoring systems can be used to update the 
cumulative stresses of the equipment. 

2.2. Optimization of maintenance and usage 

Typically, maintenance improves the health state of the 
equipment, which, in turn, reduces its failure rate. An 
optimal maintenance action balances the economical 
cost of the maintenance, the improvement of the health 
state and the reduction in the failure rate of the 
equipment. The usage indicates its utilization. 

The process of model-based optimization is illustrated 
in Figure 2. The total cost of the usage and the 
maintenance actions is defined to consist of three sub-
cost functions. The sub-cost function of the planned 
usage and the maintenance actions Ja incorporates the 
economical cost of the maintenance. The sub-cost 
function of the failure rate Jf takes into account the cost 
associated with the failure of the equipment. The sub-
cost function of the cumulative stresses Jcs incorporates 
the cost of the deterioration of the equipment. The 
summation of these three sub-cost functions gives the 
total cost of a particular maintenance action in a 
particular state. 

The optimization of the usage and the maintenance 
actions is considered over a given predicted time frame 
of N steps in the future, such that future usage and 
future maintenance actions can be optimized. The total 
cost over the predicted time frame is considered in the 
optimization. Hence, the model-based optimization 
problem is formulated as follows: 
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subject to 

 ( ) ( ) ( )( )ˆ ˆ1 ,k l k l k l+ + = + +x f x u  

 ( ) ( )( )ˆ ˆy k l g k l+ = +x  for 0, , 1l N= −⋯ . 

 
The predictive health model is thus used to predict the 
cumulative stresses and the failure rates for the planned 
usage pattern and different future maintenance actions. 
The total cost is evaluated for different future usage 
and maintenance actions over the predicted time frame. 
In this way, the optimal usage and maintenance actions 
minimizing the total cost over the time horizon is 
searched for. 

3. THERMAL EFFECTS IN A POWER 
TRANSFORMER 

Temperatures within a transformer are important 
factors for its operation. Below we discuss the different 
types of temperatures that play a role and their 
consequences for transformer loading requirements. 

3.1. Temperatures in a transformer 

The main sources of the heat generated within a 
transformer are losses in its magnetic core and in its 
windings. The core losses depend on the applied 
voltage of the transformer; the winding losses depend 
on the loading (current) of the transformer. Other stray 
losses (constituting losses due to the leakage flux, the 
winding connection, and the terminal connections) also 
contribute to the heating of the transformer. In the case 
of an oil-immersed transformer, the heat dissipated in 
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Figure 1: Predictive health model which predicts 
cumulative stresses and failure rate for the given usage 
and actions. 



the core, the windings, and the other parts is transferred 
to the oil. Subsequently, the heat is transferred from the 
oil to the cooling medium via the radiators. 

The winding material in a transformer can withstand 
temperatures of several hundred degrees Celsius and 
the oil does not degrade significantly below 140 °C [7]. 
However, insulation paper that surrounds the windings 
in a transformer degrades increasingly rapid as the 
temperature exceeds 90 °C. This degradation process 
reduces the dielectric and mechanical strength of the 
insulation paper and hence reduces its life time [2-4, 
8]. 

Different temperatures inside the transformer are 
defined, as illustrated in Figure 3. The hot-spot 
temperature is defined as the temperature of the hottest 
part of the windings. It is this temperature that is used 
for determining the level of the paper degradation. 

3.2. Loading of transformers 

The maximum allowable loading of a transformer 
mainly depends on the thermal performance of the 
transformer. IEEE C57.91 [4] defines four types of 
loading, for which the suggested maximum hot-spot 
temperature is given in Table 1. 

Table 1: Suggested maximum temperature of loading 
types based on the hot-spot temperature [4]. 

Loading types 
Maximum hot-

spot temperature 
(°C) 

Normal life expectancy loading 120 
Planned loading beyond nameplate 130 
Long-time emergency loading 140 
Short-time emergency loading 180 
 
Under normal life expectancy loading, the maximum 
hot-spot temperature allowed is 120 °C. The planned 
loading beyond nameplate is suggested for a planned, 

repetitive load, provided that the transformer is not 
loaded continuously at the rated load. The long-time 
emergency loading is suggested only for rare 
emergency conditions. The short-time emergency 
loading is only suggested for a short time in a few 
abnormal emergency conditions. Normal life 
expectancy loading is considered risk free [4]. In the 
other three cases, the calculation of the loss of life due 
to the loading and the risk of failure associated with 
this should be considered. 

4. THERMAL MODEL OF A POWER 
TRANSFORMER 

The thermal models of a power transformer are based 
on the ambient temperature, the top-oil or bottom-oil 
temperatures, and the hot-spot temperature. The oil 
temperatures are calculated based on the ambient 
temperature and on the dynamics of the heat transfer 
from the oil to the environment through the radiators. 
Similarly, the hot-spot temperature is calculated based 
on the oil temperatures and on the dynamics of the heat 
transfer between the windings and the oil. 

IEEE C57.91 [4] suggests a top-oil time constant based 
on the mass of different parts and on the cooling type 
of the transformer. The winding time constant, which 
describes the dynamics of the heat transfer between the 
windings and the oil, is estimated based on the cooling 
experiments. Swift et al. [5] propose a thermal model 
based on heat transfer theory, which includes thermal 
capacitances and non-linear thermal resistances. Their 
approach is extended by Susa et al. [6, 7] by 
considering the oil viscosity changes and the loss 
variation with the temperature. Their thermal model 
consists of the top-oil model and the hot-spot model, as 
presented below. 

4.1. Top-oil thermal model 

The top-oil temperature depends on the load factor and 
the ambient temperature. The dynamics of the top-oil 
temperature θoil are described by: 
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where θamb is the ambient temperature, K is the load 
factor (the per unit (pu) load), R is the ratio of load 
losses at the rated current and no-load losses, ∆θoil,rated 
is the rated top-oil temperature rise over the ambient 
temperature, µpu(θoil) is the variable oil viscosity in pu, 
τoil,rated is the rated top-oil time constant and n is a 
constant which depends on the type of cooling. 
 
The rated top-oil time constant τoil,rated (in minutes) can 
be calculated as: 

 FLUID oil,rated
oil,rated

0.48
60,

M

P

θ
τ

⋅ ⋅ ∆
=  (6) 

where MFLUID is the mass of the oil in kg and P 
represents the total losses at the rated load in watts. 
 
The change in viscosity of oil at the top-oil temperature 
µpu(θoil) is given by: 
 

 ( ) ( )( )
( )( )
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where θoil,rated is the rated top-oil temperature. 
 
4.2. Hot-spot thermal model 

The hot-spot temperature θhs is based on the top-oil 
temperature and the load factor. Its dynamics are 
described as follows: 
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where ∆θhs,rated is the rated hot-spot temperature rise 
over the top-oil temperature, Pcu,pu(θhs) are the variable 
load losses in pu and τwdg,rated is the rated hot-spot time 
constant. The variable load losses Pcu,pu(θhs) is given 
by: 
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where Pcu,dc,pu are the DC losses in pu, Pcu,eddy,pu are the 
eddy current losses in pu and θhs,rated is the rated hot-
spot temperature. 
 
5. THERMAL MODEL IN THE MODEL-

BASED OPTIMIZATION FRAMEWORK 

The thermal models (5), (8) are converted to the 
dynamic stress model (1) of the model-based 
optimization framework. The top-oil temperature θoil 
and the hot-spot temperature θhs are taken as 
cumulative stresses xθ,oil and xθ,hs, respectively. The 

load factor K is taken as the usage uI. The ambient 
temperature θamb is taken as the exogenous input uθ,amb. 
The differential equations (5) and (8) are discretized by 
using the forward Euler approximation. The top-oil 
model discretized from (5) is then given by: 
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where h is the time step and 
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The discretized hot-spot model is then given by: 
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where 
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5.1. Simulation of the thermal model 

The models (10) and (12) are simulated for the 250 
MVA ONAF (Oil Natural Air Forced)-cooled 
transformer presented in [3] and [6]. The parameters of 
the model are given in Table 2. 

Table 2: Parameters of the 250 MVA transformer used 
in the case study [3, 6]. 

Parameter Value 
θoil,rated/°C 75 
Pcu,dc/W 411780 

Pcu,eddy/W 29469 
Ps/W 43391 

∆θhs,rated/K 20.3 
∆θoil,rated/K 38.3 

τwdg,rated/min. 6 
MFLUID/kg 73887 

R 1000 
n 0.25 

θoil,i/°C 38.3 

θhs,i/°C 38.3 

 



The model is simulated for a constant ambient 
temperature of 25.6 °C. The load profile of the 
transformer for the simulation is 1.0 pu for 190 
minutes, 0.6 pu for 175 minutes, 1.5 pu for 145 
minutes, 2.1 pu for 25 minutes and 0.0 pu for 15 
minutes.  

The top-oil and the hot-spot temperatures from the 
simulation are shown in Figure 4, which is similar to 
the results reported in [3] and [6]. 

6. LOADING OF THE TRANSFORMER 
BASED ON THE HOT-SPOT 
TEMPERATURE 

The loading based on the hot-spot temperature is 
depicted in Table 1. The type of loading and the 
allowed limits depend on the preference of the utilities, 
the criticality of the transformer and the situation (e.g., 
under emergency conditions limits may be relaxed). 
The normal life expectancy loading based on the hot-
spot temperature prediction (in which the maximum 
hot-spot temperature is maintained below 120 °C) is 
considered in this section. 

The load of the transformer depends on the energy 
demand and production. A prediction of the load can 
be made based on the predicted generation, the 
predicted loading and the network configuration. For 
the predicted loading, the hot-spot temperature should 
be below the maximum value of 120 °C for the normal 
life expectancy loading. In the case of thermal 
overloading of the transformer, the load should be 
reduced. The load can be varied using different 
methods, such as network re-configurations, changing 
the generation and the load, using an energy storage, 
etc. 

In our framework, the required loading is considered as 
reference loading uI,ref. The actual loading of the 
transformer uI should follow the reference loading 
within the given thermal limit of the transformer. 
Assuming the loading uI to be controllable, the 
optimization problem is specified as: 
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where foil and fhs are given by (10) and (12), 
respectively. 
 

The optimization problem (14) consists of non-linear 
constraints. The optimization therefore is solved by a 
non-linear solver, SNOPT [9]. This solver is used 
through the Tomlab v6.1 [10] interface in Matlab v7.5. 

6.1. Simulation of loading based on the hot-spot 
temperature 

The 250 MVA transformer mentioned in the previous 
section is considered for the case study. A loading of 
1.5 pu for a duration of 180 minutes is considered. The 
loading is considered to decrease to 0.3 pu after 180 
minutes. An initial hot-spot temperature of 59.4 °C and 
an initial top-oil temperature of 49.8 °C are assumed 
for the case study. The assumptions are based on the 
temperatures at 365 minutes for the simulation 
presented in Section 5.1 (see Figure 4). 

The hot-spot and top-oil temperature for the given 
conditions is shown in Figure 5. As seen in the figure, 
the hot-spot temperature exceeds the limit of 120 °C 
after 120 minutes. 

Optimization of the load given in (14) is applied for the 
transformer. The length of the time frame over which 
predictions are made is 15 minutes. At each time step, 
the hot-spot temperature is predicted for the given 
prediction horizon. The optimal load profile is 
recommended based on the prediction. The load of the 
transformer is adjusted based on the recommended 
profile. The temperatures and the load are shown in 
Figure 6 and Figure 7, respectively. As seen in these 
figures, the hot-spot temperature is kept below the limit 
by lowering the load of the transformer. The deviation 
of the load from the reference load starts at 105 
minutes as the model predicts that the hot-spot 
temperature will exceed the limit in the predicted time 
frame (15 minutes). 
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Figure 4: Hot-spot and top-oil temperatures for the 
given load profile. 



7. CONCLUSIONS AND FUTURE WORK 

A model-based predictive optimization framework has 
been applied for the optimization of the loading of a 
transformer. By using the optimized loading profile, 
the hot-spot temperature was maintained below the 
allowed limit. The proposed method optimizes the 
utilization of the transformer by recommending load 
changes when required and by keeping the temperature 
within the safe limits. The effectiveness of the 
proposed solution depends on the accuracy of the 
temperature estimation and the ability to control the 
load of the transformer as recommended. 

The framework is implemented for the normal life 
expectancy loading of the transformer. The planned 

loading beyond nameplate, long-time emergency 
loading and short-time emergency loading will be 
considered in future work. In these cases, the risk due 
to loading will be accounted for by considering the 
degree of polymerization of the paper insulation. 
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Figure 5: Hot-spot and top-oil temperatures without 
load control. The hot-spot temperature exceeds the 
limit of 120°C. 
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Figure 6: Hot-spot and top-oil temperatures with load 
control. The hot-spot temperature is maintained below 
the limit of 120 °C. 
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Figure 7: Load profile for the proposed load control. 


