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Abstract

The need for improving the operation and control of infrastructure systems has created a demand

for optimization and control methods applicable in the area of complex networked systems op-

erated by a multitude of actors in a setting of decentralized decision making. Because of the

analogy between production systems and infrastructures, process systems engineering (PSE) ap-

proaches for optimization and control can be applied to infrastructure system operations. This

paper explores the applicability of the techniques often used by the PSE community, i.e. multi-

level optimization and multi-agent model predictive control in infrastructure system operation,

and stresses their importance for capacity and system management in the energy and transport

sectors.
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1 Introduction

Our society and economy have come to rely on services that depend on networked infrastructure sys-

tems, like highway and railway systems, electricity, water and gas supply systems, telecommunication

networks, etc. Malfunctioning and service outages entail substantial social costs and have a negative

impact on economic productivity. Instead of ensuring robustness by installing redundant capacity,

more intelligent control of the existing infrastructure capacity seems a more affordable and promising

strategy to ensure reliability of service of critical infrastructures. However, the multitude and variety

of nodes and links in modern infrastructure networks as well as the multitude and variety of owners,

operators, suppliers, and users involved have created enormously complex systems. This complexity

hampers the optimization of the overall system performance, due to our limited understanding of in-

frastructure systems as well as due to practical limitations in steering the actors’ operational decision

making.
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Figure 1: Transformation shift towards more distributed systems in industry and infrastructures

A comparison of networked industrial systems with infrastructure network systems is quite obvi-

ous. Considering an industrial system that can be represented as a networked system with inter-related

subsystems designed to produce products, a shift toward more distributed production is observed when

production units operate quite independently from each other, sharing utilities and supporting activi-

ties. More and more, the status quo in industry is characterized by a distributed character of enterprises

divided over many sites and further into many plants at one location (Behdani et al., 2009).

In the past the value chain of most infrastructures was vertically integrated with centralized plan-

ning and coordination of new capacity and services; however, nowadays, most infrastructure value

chains, such as the one for electricity, have been unbundled, with different problem owners for power

generation, transport, distribution, and service provision, with different regulators for different parts

or different performance aspects of the total system, and market forces steering the security of supply

and the quality of service, see Figure 1.

The huge complexity of industrial and infrastructure networks hampers the effective and efficient

operation and control of these systems. The challenges for both industrial and infrastructure network

systems are similar, i.e.:

• acquiring a deeper understanding of the physical and social network complexity and their inter-

actions;

• dealing with more and more deeply distributed autonomous control of the network behavior;

• coping with new needs for flexibility (in time and functionality) in combination with more

stringent demands on capacity utilization, reliability and quality of service, health, safety, and

environment;

• dealing with the need for a well-defined decision-making process to guarantee the efficiency

and effectiveness of decision making in the shorter and longer term.

The urgent need for improving the performance of infrastructures creates a large demand for in-

novative optimization and control methods. As industrial process systems, at the level of individual

plants and at the level of the industrial enterprises, are networked systems and the process-system-

engineering (PSE) field has brought tremendous advances in their optimization and control, it is inter-

esting and relevant to explore to what extent the methods from PSE may be applied to infrastructure

system operation. That is the topic of this paper, which is structured following this line of thinking.

Section 2 contains a characterization of infrastructures as socio-technical systems, which can be mod-

eled with a model-based paradigm. In Section 3 optimization of multi-agent systems is addressed, to
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be continued in Section 4 for distributed decision making in more detail. Here two approaches are ex-

tensively described: multi-level optimization and distributed multi-level control including illustrative

examples from the energy and transport sectors. Section 5 shows how the multi-level optimization can

be combined with a distributed model predictive control scheme. Finally, Section 6 concludes the pa-

per by stressing the importance of learning from one another to engineers working on manufacturing

optimization control and infrastructure control.

2 Characterization of infrastructures

The physical network of an infrastructure system and the social network of actors involved in its

operation collectively form an interconnected complex network where the actors determine the devel-

opment and operation of the physical network, and the physical network structure and behavior affect

the behavior of the actors. An infrastructure can thus be seen as a complex socio-technical system,

the complexity of which is defined by its multi-agent/multi-actor character, the multi-level structure

of the system, the multi-objective optimization challenge, and the adaptivity of agents and actors to

changes in their environment. Their non-linear response functions in combination with the complex

system structure often lead to unpredictable dynamic behavior of the system.

Like industrial enterprise systems, infrastructure systems can be viewed as multi-level systems,

whether hierarchically interconnected or decentralized, with different operational regimes at the vari-

ous system levels. Usually, at each level of the decomposed system local performance objectives are

defined that should, preferably, not be restricted to the optimization of local goals, but rather aim at

optimally contributing to the overall goal. However, the relation between local and overall system

performance objectives may be rather fuzzy, especially since the overall objective is often concerned

with a longer time horizon and not defined in detail. The local objectives are generally more de-

tailed, concerned with a shorter time horizon and often with the specific interests of an individual

actor (e.g., a business unit). To facilitate an overall optimization of the performance of the system as

a whole, a kind of coordinator may be required to supervise local decision making in its relation to

the overall goal. Unlike the situation of an industrial enterprise, central coordination or supervision is

lacking in the practical situation of many infrastructure industries in liberalized markets. Especially

in these situations it is a challenging task to develop a method for decentralized optimization that can

be implemented by subjecting the actors to a proper incentive system.

To model infrastructures as socio-technical systems we will use the concept of multi-agent sys-

tems composed of multiple interacting elements (Weiss, 1999). The term agent can represent actors

in the social network (e.g., travelers taking autonomous decisions on which route to follow to avoid

road congestion, or companies involved in the production of gas or the generation of power) as well

as a control mechanism of a component (e.g., a production plant, an end-use device, or a transformer

station) in the physical network. In all these cases we see that the overall multi-agent system has its

own overall objective, while the agents have their own individual objectives. To safeguard adequate

functioning of the infrastructure the actions of the individual agents must be steered towards an ac-

ceptable overall performance of the system in terms of, e.g., availability, reliability, affordability, and

quality of service.

3 Optimization of multi-agent systems: infrastructure control issues

Capacity management at the operational level addresses day-to-day and hour-to-hour capacity alloca-

tion issues, which relate to how the flows (of goods, gas, electricity) are directed over the network.
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In the gas sector, international trade flows through the national grid should be controlled so as not to

hamper an adequate supply of gas to national users by excessive use of transport capacity or quality

conversion capacity. In the road transport sector, intelligent road capacity allocation principles are

designed to achieve more balanced capacity utilization in time and space, i.e., to minimize conges-

tion. In dynamic road pricing schemes price levels for tolls are dynamically varied over space and

time depending on the traffic conditions in the network and the policy objectives of the road author-

ity. A challenging question is what kind of operational models are needed to accommodate optimal

distributed dynamic pricing schemes. The problem of distributed dynamic pricing is not unique for

the road infrastructure. Similar issues are found in the operation of next generation electric power

systems with many small-scale distributed generating units, such as gas turbines, photovoltaics, wind

turbines, fuel cells, or micro combined heat and power (micro-CHP) units. These distributed technolo-

gies have many advantages, e.g., high fuel efficiency, modular installation, low capital investment, and

relatively short construction time (Cardell and Ilic, 2000). However, distributed generation in a com-

petitive electricity market creates major uncertainties to the operation of the system: as (millions of)

power users can switch to the role of power producers, the amount and quality of power produced in

such a distributed system can vary enormously. Similarly, wind power fluctuations can pose manage-

ment problems related to the frequency stability and the desired voltage profile. As a consequence of

distributed power generation new control techniques need to be developed and implemented in order

to guarantee power availability and quality of service (such as frequency, bounds on deviations, sta-

bility, elimination of transients for electricity networks, and so on), so as to meet the demands and

requirements of the users. As the input patterns and the demand may vary over time, the network

control system needs to be equipped with an agent-based coordination framework. An agent-based

approach is also of great value for control of cascading failures in electricity grids (Hines, 2007;

Negenborn et al., 2009a). Analogous problems and solutions related to system management can be

found in decentralized traffic (Van Katwijk, 2008), water (Negenborn et al., 2009b), and combined

electricity and gas control concepts (Arnold et al., 2009).

The value of an agent-based approach for industrial supply chain management is also evident, see,

e.g., Aldea and Bañares-Alcántara (2004), Julka et al. (2002), van Dam et al. (2008). Industrial busi-

ness processes such as inventory management, planning, scheduling, production, and logistics are still

often optimized in isolation without proper consideration of their impact on the overall performance at

the enterprise level. A multi-agent system with intelligent agents can emulate business processes un-

der a variety of business communication scenarios and makes it possible to evaluate various alternative

strategies for their contribution to local and overall goals.

4 Decentralized decision systems for infrastructure operation

In a decentralized decision system the objectives and constraints of any decision maker may be deter-

mined in part by variables controlled by other agents. In some situations, a single agent may control all

variables that permit it to influence the behavior of other decision makers as in traditional hierarchical

control. The extent of the interaction may depend on the particular environment and time dimension:

in some cases agents might be tightly linked, while in others they have little effect on each other, if

any at all. For decision making in such systems two aspects are of the utmost importance: a set of

individual goals and ways of how to reach them, and a set of communication links allowing agents

to interact. In this paper two approaches known from the PSE domain: multi-level optimization, and

single-level multi-agent control, will be discussed to present their applicability for the infrastructure

domain.
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4.1 Multi-level optimization

In a multi-level optimization problem several decision makers control in a hierarchical system their

own degrees of freedom, each acting in sequence to optimize their own objective function. The

objective at one level is determined by the decision space of other levels: the decision maker at one

level influences decisions at lower levels to improve his own performance criterion after decisions at

higher levels have been made.

The problem at each level of the hierarchy can be presented as follows:

min { fk(x) : (xk | xk+1
, . . . ,xr)}

subject to x ∈ Sk (the level-k feasible region)

where the function fk(x) is minimized over R
n by varying only the subset xk of the variables in the

decision space R
n, with k ∈ {1, . . . ,r} and r the number of levels:

Sk = {x∗ ∈ Sk−1 | fk−1(x
∗) = min{ fk−1(x) : (xk−1 | x∗

k

, . . . ,x∗
r

)} .

For two decision makers this problem can be represented as a kind of leader-follower game in which

players try to optimize their own utility function f1(x,y) and f2(x,y) with (x,y) ∈ R
n taking into

account a set of interdependent constraints. The leader optimizing f2 defines an optimal x∗ so that this

term for the objective function f1 of the follower is constant, and f1(x
∗
,y) may in principle be replaced

by f (y). However, due to the iterative structure of this decision process y can still be represented as a

function of x.

For example, to influence the amount of electricity produced by small distributed generators price-

based incentives may be used. Then, small distributed generators such as micro-CHP equipped house-

holds can decide on their supply of electricity to the distribution network while still fulfilling their own

electricity (and heat) demands. This can be formulated as a bi-level decision making problem with

respect to the price signals that have to be designed to steer the distribution network-household in-

teraction in the distributed electric power sector (Houwing et al., 2006). If distributed generation

by households takes off, dynamic pricing schemes will be needed to influence decisions of house-

holds with respect to, e.g., the micro-CHP power level and the amount of discharged heat, in order to

maintain the system balance at the distribution network level:

(Upper level)

Min {objective of the electricity supplier with respect to operational costs}

subject to constraints on frequency stability and voltage,

subject to:

(Lower level)

Min {operational costs of household}

subject to network and physical constraints.

Analogously, a dynamic pricing model with dynamic route and departure time model can be formu-

lated as a bi-level programming problem, see Figure 2:

(Upper level)

Min {objective of the road authority, e.g., congestion}

subject to constraints on tolls,
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Figure 2: Schematic representation of some bi-level decision problems found in energy and transport

infrastructures

subject to:

(Lower level)

Max {utility function of travelers}

subject to network constraints,

where the upper level describes the overall road performance and the lower level the user-specific

objective (utility) function. The aim of the road authority is to optimize system performance by

choosing the optimal tolls for a subset of links, within realistic constraints and subject to the dynamic

route and departure time choice, i.e., the travel behavioral part (Joksimovic, 2007; Staňková, 2009).

Solving multi-level problems may pose formidable mathematical and computational challenges.

Even in the linear case the bi-level programming problem is a non-convex optimization problem,

which is NP-hard. General multi-level programming problems with an arbitrary number of levels, in

which the criteria of the leader and the follower can be nonlinear and/or discrete, are the most chal-

lenging to solve. Although some remarkable progress was made in developing efficient algorithms for

this class of decision problems (Bard, 1998; Migdalas et al., 1998), solving the problems as encoun-

tered in dynamic road pricing and dynamic pricing of distributed power generation using conventional

mathematical optimization techniques still seems to be inefficient for complex networks. Therefore,

it is useful to consider heuristic methods to solve such complex problems in the operation of multi-

agent multi-level infrastructure systems. Applying multi-level optimization to decentralized decision

making in infrastructure system operation is a promising approach to cope with a layered decision

structure. Inspiring examples are found already in industrial applications of multi-level optimization

(Rodriges et al., 2000; Ryu et al., 2004; Heijnen et al., 2005).

4.2 Single-level multi-agent control

In the previous section we have considered multi-level control, which is concerned with the interplay

between higher levels and lower levels, where the higher levels typically have more system-wide

objectives, while the lower levels have more local, individual agents’ objectives. In this section we
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consider multi-agent control within one level. The type of control within a single level is concerned

with the communication and cooperation between agents that have similar goals. The agents within

one level cooperate with each other in order to obtain the best level-wide solution.

As an example of single-level multi-agent control we can consider a group of power distribution

network managers that each control a regional part of the national power grid. These regional network

managers have to coordinate among each other the flows of power between their regional networks

in order to make optimal decisions. Since one network manager does not have authority over another

and does not consider the same geographical area (as is the case with multi-level control), these

actors/agents work at the same level.

4.2.1 Model predictive control

A well-suited approach for this single-level multi-agent control is based on Model Predictive Control

(MPC), a particular approach coming from the PSE area to solve an optimal control problem (Cama-

cho, 1995; Maciejowski, 2002; Morari and Lee, 1999). MPC has become an important approach for

finding control policies for complex, dynamic systems. It has found wide application in the process

industry, and recently has also started to be used in the domain of infrastructure operation, e.g., for

the control of road traffic networks (Hegyi et al., 2005), power networks (Hines, 2007; Negenborn,

2007), combined gas and electricity networks (Arnold et al., 2009), railway networks (van den Boom

and De Schutter, 2007), and water networks (Negenborn et al., 2009b).

MPC is a model-based control approach. A prediction model and on-line optimization are used

to optimize performance over a prediction horizon subject to operational and other constraints. The

resulting optimal control input sequence is applied to the system in a receding horizon fashion, i.e., at

each controller sample step the optimization problem is solved to find the sequence of N actions that

are expected to optimize system performance over the prediction horizon. Only the action for the first

step is implemented, after which the system transits to a new state and the controller determines new

actions, given the new state of the system.

Advantages of MPC are the fact that the framework handles operational input and state constraints

explicitly in a systematic way, and that a control agent employing MPC can operate without interven-

tion for long periods of time, due to the prediction horizon that makes the agent look ahead and

anticipate undesirable future situations. Furthermore, the moving horizon approach in MPC can in

fact be considered as a feedback control strategy, which makes it more robust against disturbances

and model errors.

When using MPC to control a system, e.g., from the domain of PSE or infrastructures, the origi-

nally dynamic optimal control problem is approximated with a series of optimization problems. The

MPC optimization problems are formulated over a limited time horizon of N steps using a model of

the system and a model of the desired behavior. Essentially, the system model is used to make predic-

tions of the behavior of the system under various actions and together with the model of the desired

behavior the agent can determine those actions that give the best predicted performance.

4.2.2 Multi-agent model predictive control

In the PSE area MPC has typically been used for local control, in the sense that several devices in

the plant are equipped with an MPC controller that only considers that particular equipment. Using

manual tuning of the parameters of the controllers, the controllers are adjusted to work reasonably

well in the presence of each other, although not explicitly with each other in the sense of actively

exchanging information.
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Figure 3: Single-agent versus multi-agent control of a complex network at a single level

When applying MPC to infrastructure operations, the main challenge stems from the large scale

of the control problem. Typically infrastructures are hard to control by a single agent. Reasons for this

could be of a technical nature, e.g., due to communication delays and computational requirements, but

also originate from practical issues like distributed ownership, unavailability of information from one

subsystem to another, and restricted control access. The associated dynamic control problem should

be broken up into a number of smaller problems, see Figure 3.

Let for subsystem i at control step k the local objective function over the prediction horizon of N

be given by

J̃i,local(k) =
N−1

∑
p=0

Ji,local(xi(k + p+1),ui(k + p))

and the dynamics of subnetwork i by a model that describes the evolution of the subsystem in the

following form for p = 0, . . . ,N −1, and j = j1,i, . . . , jm,i,

xi(k +1+ p) = fi(xi(k + p),ui(k + p),w j1,ii,in(k + p), . . . ,w jm,ii,in(k + p))

w ji,out(k + p+1) = g ji,out(xi(k + p+1)),

where for subnetwork i, at time step k + p, fi is the state transition function, xi are the local states,

ui are the local inputs, j1,i, . . . , jm,i are the indices of the neighboring subnetworks of i, w ji,in and

w ji,out are interconnecting inputs and interconnecting outputs, respectively, and g ji,out is the function

that indicates how subnetwork j depends on subnetwork i. The subnetworks depend on each other

through interconnecting constraints, defined for p = 1, . . . ,N as

w ji,in(k + p) = wi j,out(k + p)

for all neighboring subnetwork couples (i, j), meaning that the influence of subnetwork i on subnet-

work j has to be equal to the influence exerted by subnetwork j on subnetwork i to obtain the overall

system description. If the interconnecting constraints were not present, then a set of subproblems

would have been obtained that can be solved independently of each other in a completely decentral-

ized way. However, for practically relevant applications this is usually not the case. Depending on

the way these interconnecting constraints are dealt with, the performance of the resulting multi-agent

scheme differs.
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One way to deal with the interconnecting constraints is to neglect them at the time of operation.

For each subsystem an MPC controller is installed, which is manually fine tuned to give reasonable

performance in the presence of the other MPC controllers. However, as infrastructures, like power and

road traffic networks, are more and more pushed to their capacity limits, the variety in operating points

increases and manual tuning of controllers will lead to deteriorating performance, or even become

intractable. Thus, the consequences of the interconnecting constraints can no longer be dealt with

through manual tuning. Instead, the controllers should automatically and autonomously coordinate

their best settings with each other, in order to improve the overall system’s flexibility and robustness.

This shows the need for infrastructure control that makes this working together explicit and automatic,

something from which the PSE area may benefit. So, instead of manually adjusting the individual

controllers, the agents should employ communication and collaboration. A typical multi-agent MPC

scheme therefore involves for each agent the following steps (Camponoraga et al., 2002; Negenborn,

2007):

1. Obtain information from other agents and measure the current subsystem state.

2. Formulate and solve the static optimization problem of finding the actions over a prediction

horizon of length N from the current decision step k until time step k +N. Since physically the

subnetwork is influenced by other subnetworks through the interconnecting constraints, solving

the local problem involves serial or parallel iterations between agents to obtain agreement on the

mutual influences. In each of the iterations the agents inform each other about how they would

like their influence to be. Through the iterations, the agents thus obtain implicit information

about the objectives of the others. So each agent solves a series of optimization problems

structured as:

min
ui(k),...,ui(k+N−1)

J̃i,local(k)+
N−1

∑
p=0

∑
j∈Ai

Jinter, ji(w ji,in(k + p),wi j,out(k + p))

subject to subnetwork dynamics for time k + p, for p = 1, . . . ,N, and other constraints on local

states and inputs for time k + p, for p = 1, . . . ,N.

Here, Ai = { j1, . . . , jn} is the set of neighboring subnetworks of subnetwork i, and Jinter, ji is an

interconnecting objective function term between subnetworks i and j that is updated every time

an agent receives new information from the other agent. The interconnecting objective function

is used to encourage agents to obtain agreement on the variables that interconnect the dynamics

of their subnetworks.

3. Implement the actions found for the first predicted time step.

4. Move on to the next decision step k +1, and repeat the procedure.

Determining how agents have to communicate to ensure that the overall system performs as de-

sired is a huge challenge (e.g., considering the problem of large transient flows in national electricity

transmission grids as a result of large-scale wind power generation abroad). Depending on the updat-

ing scheme used for the interconnecting objective function terms and properties of the overall control

problem, the resulting scheme does or does not converge to a global optimal solution in a distributed

way. E.g., for convex overall optimization problems, involving linear interconnected subsystems,

with a convex objective function, and closed and bounded domains on the states and inputs, serial and

parallel schemes that converge to the overall optimal problem in distributed way can be derived (Ne-

genborn et al., 2008). However, difficulties arise already when the domain of the inputs is defined to
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be a bounded discrete domain. In that case, the agents may not be able to come to a unique agreement

on the solution, but may instead come up with a periodic sequence of solutions (Negenborn, 2007).

To fully understand the nature of the underlying problems, many interesting open problems remain to

be considered.

5 Multi-level optimization with lower-level multi-agent MPC control

So far, we have discussed multi-level optimization and control within a level as independent tech-

niques. However, in practice, each level in a multi-level control structure may in principle consist

of several control agents with distinctive, although related, control objectives. These control agents

should jointly perform their decision making. Hence, in these cases a combination and integration of

the optimization and control techniques discussed in the previous sections is necessary. In order to

obtain coordination within a level, multi-agent single-layer MPC control is required. In order to ob-

tain coordination between levels, i.e., between the groups of control agents acting at different levels,

multi-level control is required.

An example of a situation in which this combination of multi-level and multi-agent MPC would

be required, is found in the energy sector. Recall from Section 4.1 the multi-level problem defined

for a network operator on the one hand and a household on the other. The main task of the network

operator is to ensure that the energy demand of the household in the lower level is satisfied. Hence,

the network operator has as objectives minimizing the costs, while maintaining frequency and voltage

magnitude requirements, and satisfying the energy demand of the household. The household has its

own objectives, consisting mainly of minimizing the costs for the energy that it requires. It can hereby

buy energy, possibly generate its own energy, and even sell its energy (van Dam et al., 2008).

In future power networks several households may be interconnected and have the possibility to

exchange electricity among each other. Some households may have small-scale power generators,

while others may have energy storage units. To more efficiently use available energy, households that

have their own generation, e.g., generated by a windmill or solar panel, may use the energy storage

and consumption capabilities of other households. The households then jointly have the objective to

minimize their costs for energy consumption. Each household will have a control agent employing

MPC in order to determine how the energy consumption of the household has to be optimized. To

determine which energy flows should take place between the households in order to optimize the

energy consumption of the group of households as a whole, multi-agent MPC could be used. Hence,

when a network operator provides and obtains energy from clusters of households, the combination

of multi-level and multi-agent MPC is required, see Figure 4. A smart metering system with control

abilities can be used to support this. For example, such a system can shut down a number of customers

to balance the grid, to perform demand side management, as well as to respond automatically to

dynamic prices.

6 Conclusions

In this paper we have considered challenges in the area of infrastructure system operation and control

and we have discussed how control approaches originating in process systems engineering might be

used to address these challenges. The relevance of optimization models as decision-support tools is

very high for many players in the world of infrastructures. In all systems that exhibit interactions

and interdependencies between subsystems, where multiple functionality plays a role, where capacity
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Figure 4: Illustration of a situation in which multilevel control and multi-agent MPC within a single

level is necessary. The households at the lower level use multi-agent MPC to coordinate how much

energy should flow between the households. Multilevel control is used between the higher and lower

levels.
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allocation in a complex and dynamic environment is an issue, feasible concepts of decentralized op-

timization are called for. As a particular challenge we have pointed out the application of multi-level

optimization and model predictive control in a multi-agent setting of decentralized decision making

on infrastructure system operation. Besides computational complexity, a formidable challenge here is

posed by the design of communication and cooperation schemes that enable agents to reach decisions

that are both acceptable locally and that ensure an overall system performance in respect of social

and economic public interests. We have also argued that for efficient control of many infrastructure

networks a combination of multi-level and multi-agent MPC is required.
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