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Model predictive control for residential energy resources

using a mixed-logical dynamic model

R.R. Negenborn, M. Houwing, B. De Schutter, J. Hellendoorn

Abstract— With the increase in the number of distributed
energy resources and the amount of intelligence in electricity in-
frastructures, the possibilities for minimizing costs of household
energy consumption increase. Household systems are hybrid
systems, in the sense that they exhibit both continuous and
discrete dynamics. In this paper the mixed-logical dynamic
framework is used to construct a dynamic model of a household
system equipped with distributed energy resources. A model
predictive controller (MPC) is then proposed that uses the
mixed-logical dynamic model to control the energy flows inside
the household. In simulation studies we assess the performance
of the proposed controller, and we illustrate how additional
profits can be obtained by increasing the decision freedom of
the controller.

I. INTRODUCTION

Distributed energy resources (DER), comprising dis-

tributed power generators, energy storage units, and re-

sponsive loads, can play a crucial role in supporting many

countries’ key policy objectives of market liberalization,

combating climate change, increasing the amount of electric-

ity generated from renewable sources, and enhancing energy

saving. Distributed generation of electricity, e.g., via photo-

voltaic cells, wind turbines, or combined heat and power

plants, will pervade the electricity infrastructure in the future

[1]. In addition, several electricity storage technologies are

under development (e.g., lithium-ion batteries and plug-in

hybrid electric vehicles [2]) and options for load response

are foreseen for the future power system [3].

Households with distributed energy resources can operate

more independently of energy suppliers and in addition they

can buy and sell power to and from their suppliers. In order to

determine how households can cost-efficiently manage their

energy resources, we propose the use of model predictive

control (MPC). Using MPC, expected energy consumption

profiles, energy prices, and operational constraints can all be

taken into account in determining DER technology settings

and in making decisions on trading energy with suppliers.

A major challenge that hereby has to be addressed is how

to efficiently capture the dynamics of a household into a

prediction model suitable for control. In earlier work, e.g.,

[4], [5], the prediction model was constructed in an ad-hoc
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Fig. 1. Conceptual overview of the system under study [4].

fashion, not employing a formalized modeling approach. In

this paper we propose the use of so-called mixed-logical dy-

namic models [6], which in a structured way can adequately

model both the continuous and discrete dynamics present in

households.

This paper is organized as follows. In Section II we

introduce the system under study. The mixed-logical dynamic

framework is briefly described in Section III. Next, we

develop the mixed-logical dynamic model for our bench-

mark system in Section IV. In Section V we propose a

model predictive controller using this mixed-logical dynamic

model. Simulation experiments illustrate the performance of

the proposed controller in Section VI. Section VII concludes

this paper and provides directions for future research.

II. SYSTEM DESCRIPTION

The system under study consists of a household interacting

with its energy supplier, as depicted in Figure 1. The house-

hold can buy electricity and gas from its energy supplier.

In addition, the household can sell electricity to the energy

supplier. The household can produce this electricity using

a micro combined heat and power (µCHP) unit [1]. This

unit can simultaneously produce heat and electricity for the

household. Heat can be stored in a heat storage unit in the

form of hot water. Electricity can be stored in a battery.

We assume that the µCHP unit in the household is based

on Stirling technology [1]. The µCHP unit consists of a

Stirling engine prime mover, referred to as conversion unit

1, and an auxiliary burner, referred to as conversion unit 2.

Conversion unit 1 can operate in part or full load and has a



minimum activation constraint, i.e., it has to stay in operation

for a minimum amount of time before it is allowed to be

switched off. For energy efficiency reasons conversion unit

2 should be used as a backup heat generator only. Therefore,

priority has to be given to conversion unit 1. Conversion

units 1 and 2 are equipped with built-in on/off controllers

and should produce heat in order to keep the temperature

level of water in the heat storage unit between certain upper

and lower bounds.

The system just described comprises hybrid dynamics, in

the sense that continuously evolving dynamics are present in

combination with discrete events. The continuously evolving

dynamics of the energy flows and storage units changes due

to discrete events caused by saturations and the logic of the

built-in on/off controllers. We use mixed-logical dynamic

models, as described next, to model the hybrid system.

III. MIXED-LOGICAL DYNAMIC MODELS

Since we are interested in model predictive control, we

have to construct a suitable prediction model of the hybrid

system. Discrete logic statements (e.g., statements of the

form if . . . , then . . . , else . . . ) are usually part of the

description of the behavior of such hybrid systems. It would

be convenient if these logic statements could be transformed

into linear mixed-integer constraints (i.e., constraints involv-

ing both variables that take on values from a continuous set

of values, and variables that take on values from a discrete

set of values), since optimization problem solvers that can

deal with these constraints efficiently are available [7].

In [8], [6] it is shown how discrete logic statements can be

transformed into linear mixed-integer equality and inequality

constraints. As in [6], we denote continuous variables by x ∈
R

nx and a binary logical variable by δ ∈ {0,1}. In addition,

we denote a logic statement by [exp], which has as value the

evaluation of an expression exp to true or false. So, [ f (x)≤ 0]
evaluates to true when f (x) ≤ 0, and to false otherwise.

Some useful transformations from logic statements into

linear mixed-integer inequality constraints are given by [6]:

[ f (x) ≤ 0]∧ [δ = 1] is true iff

f (x)−δ ≤−1+ γm(1−δ ) (1)

[ f (x) ≤ 0]∨ [δ = 1] is true iff f (x) ≤ γMδ (2)

∼ [ f (x) ≤ 0] is true iff f (x) ≥ γε ,mach (3)

[ f (x) ≤ 0] ⇒ [δ = 1] is true iff

f (x) ≥ γε,mach +(γm − γε ,mach)δ (4)

[ f (x) ≤ 0] ⇔ [δ = 1] is true iff
{

f (x) ≤ γM(1−δ )
f (x) ≥ γε,mach +(γm − γε ,mach)δ ,

(5)

where f : X →R, X ⊂R
nx is a given bounded set, γε,mach is

a small positive constant, e.g., the machine precision, which

indicates when a constraint is considered to be violated, and

γM = max
x∈X

f (x), γm = min
x∈X

f (x). (6)

Products of logical variables can be transformed into linear

inequalities. E.g., the product term δ1δ2 can be replaced

by an auxiliary binary variable δ3 and linear inequalities as

follows [6]:

δ3 = δ1δ2 is true iff







−δ1 +δ3 ≤ 0

−δ2 +δ3 ≤ 0

δ1 +δ2 −δ3 ≤ 1.

(7)

The product term δ f (x), for a function f : X → R and

δ ∈ {0,1}, is replaced by an auxiliary variable z and linear

inequality constraints as follows [6]:

z = δ f (x) is true iff















z ≤ γMδ
z ≥ γmδ

z ≤ f (x)− γm(1−δ )
z ≥ f (x)− γM(1−δ ),

(8)

where γM and γm are as defined in (6).

For hybrid systems involving a combination of affine dy-

namics (on polytopic regions in the input and state space) and

if . . . , then . . . , else . . . rules, a prediction model can be cast

into mixed-logical dynamic form using the transformations

to obtain a compact representation of the hybrid dynamics

as follows [6]:

x(k +1) = Ax(k)+B1u(k)+B2δδδ (k)+B3z(k) (9)

y(k) = Cx(k)+D1u(k)+D2δδδ (k)+D3z(k) (10)

E2δδδ (k)+E3z(k) ≤ E1u(k)+E4x(k)+E5, (11)

where

x(k) =

[

xc(k)
xb(k)

]

y(k) =

[

yc(k)
yb(k)

]

u(k) =

[

uc(k)
ub(k)

]

,

are the state, output, and input, respectively, separated into

continuous components and binary components, i.e., xc(k)∈
R

nxc , xb(k)∈R
nxb , nx = nxc +nxb

, yc(k)∈R
nyc , yb(k)∈R

nyb ,

ny = nyc + nyb
, uc(k) ∈ R

nuc , ub(k) ∈ R
nub , nu = nuc + nub

.

In addition, δδδ (k) are the binary variables and z(k) are the

auxiliary continuous variables.

IV. SYSTEM DYNAMICS

Below we formalize the dynamics of the household using

the transformations of Section III to obtain a prediction

model consisting of only mixed-integer linear equality and

inequality constraints. In the modeling, we consider a time

step length of a quarter of an hour, and for most of the vari-

ables we consider as unit the amount of energy exchanged

over this quarter.

1) Conversion unit 1: Conversion unit 1 can operate at

part or full load. The control inputs are therefore u1,part(k) ∈
{0,1} and u1,full(k) ∈ {0,1}, where input u1,full(k) can only

be used when u1,part(k) = 1. The energy contained in the

gas used per quarter zg,1(k), the electricity provided to the

internal network per quarter ze,p(k), and the thermal energy

provided to the heat storage unit per quarter zh,p,1(k) are

given by:

zg,1(k) = ηg,partu1,part(k)+(ηg,max −ηg,part)u1,full(k) (12)

ze,p(k) = ηezg,1(k) (13)

zh,p,1(k) = (ηtot −ηe)zg,1(k), (14)



where ηg,part (in kWh) is the energy in the consumed gas per

quarter when the conversion unit operates in part load, ηg,max

(in kWh) is the energy in the gas consumed per quarter when

the conversion unit operates in full load, ηe is the electric

efficiency of the unit, and ηtot is the total efficiency of the

unit, i.e., the sum of the electric and thermal efficiencies.

The conversion unit cannot operate in full genera-

tion mode, without having it’s partial generation u1,full(k)
switched on at the same time. This behavior is modeled with

the inequality constraint:

u1,full(k)−u1,part(k) ≤ 0. (15)

Conversion unit 1 has a minimum activation constraint

to avoid fast wear and tear of the device due to frequent

on and off switching. The minimum activation constraint

specifies that when the device has been switched on it has

to stay in operation for at least ηact,min ∈ N
+ time units,

with N
+ the set of the positive natural numbers. To model

the minimum activation constraint, we introduce the counter

xact(k) ∈ [0,xact,max] (with xact,max a finite upper bound on

the maximum time that a device can be in operation), which

counts the number of time units that the device has been in

operation so far. The evolution of this variable is given by

the relation:

xact(k +1) =

{

xact(k)+1 if u1,part(k) = 1

0 otherwise.
(16)

Using (8) this relation can be transformed into mixed-integer

inequality constraints.

If the activation xact(k) is 0, then the conversion unit is

allowed to stay switched off or to be switched on. However, if

the activation xact(k) is larger than 0, then the conversion unit

is not allowed to be switched off, until the activation xact(k)
has reached the minimum activation ηact,min. Hence, as long

as xact(k) is larger than 0 and smaller than ηact,min, the value

of input u1,part(k) should stay at its maximum, i.e., 1. After

the activation xact(k) has reached the minimum activation,

the input u1,part(k) is allowed to have a different value again.

To model this, introduce a constraint on the minimum value

of u1,part(k) as follows:

u1,part,min(k) ≤ u1,part(k), (17)

with u1,part,min(k) ∈ {0,1}. Using the activation variable

xact(k) and this constraint we can enforce the minimum

activation constraint by adjusting the lower limit u1,part,min(k)
of u1,part(k) with the relation:

[1 ≤ xact(k) ≤ ηact,min −1] ⇔ [u1,part,min(k) = 1].

To transform this relation we introduce auxiliary binary

variables δ1(k) and δ2(k) and the following relations:

[1 ≤ xact(k)] ⇔ [δ1(k) = 1] (18)

[xact(k) ≤ ηact,min −1] ⇔ [δ2(k) = 1] (19)

u1,part,min(k) = δ1(k)δ2(k). (20)

To transform these three relations into mixed-integer inequal-

ity constraints, (5) and (7) are used. With these constraints,

variable u1,part,min(k) is constraint to the value 1 if the device

should be kept in operation, and to the value 0 otherwise.

An on/off controller is installed in conversion unit 1. This

on/off controller switches the conversion unit on when the

amount of thermal energy in the heat storage unit xh,s(k)
is lower than a lower limit ηh,s,lim,min,1, and switches it off

when the thermal energy in the heat storage unit xh,s(k) is

larger than an upper limit ηh,s,lim,max,1. In this way, the on/off

controller ensures that a minimal amount of thermal energy

is present in the heat storage unit. Let u1,part,tmp(k) ∈ {0,1}
denote the actuator setting that the on/off controller would

choose if the minimum activation constraint would not be

present. The on/off controller determines the value for this

variable as follows:

u1,part,tmp(k) =







1 for xh,s(k) ≤ ηh,s,lim,min,1

0 for xh,s(k) ≥ ηh,s,lim,max,1

u1,part(k−1) otherwise.

To transform this relation auxiliary variables δ3(k), δ4(k),
δ5(k), and δ6(k) are defined such that:

[δ3(k) = 1] ⇔ [xh,s(k) ≤ ηh,s,lim,min,1] (21)

[δ4(k) = 1] ⇔ [xh,s(k) ≥ ηh,s,lim,max,1] (22)

δ5(k) = (1−δ3(k))(1−δ4(k)) (23)

δ6(k) = δ5(k)u1,part(k−1). (24)

Using (5) and (7) these relations are transformed into linear

mixed-integer constraints. Given the values for these auxil-

iary variables, the on/off controller determines the value for

u1,part,tmp(k) as:

u1,part,tmp(k) = 1.δ3(k)+δ6(k). (25)

In determining the actual setting for conversion unit 1,

the on/off controller has to respect the minimum activation

constraint. Therefore, the value that the on/off controller of

conversion unit 1 chooses as input u1,part(k) to the actuator

of conversion unit 1 is not the value of u1,part,tmp(k) directly,

but the value determined as follows:

u1,part(k) =

{

1 if not allowed to switch off

u1,part,tmp(k) otherwise,

which can be written as:

u1,part(k) = 1.u1,part,min(k)+(1−u1,part,min(k))u1,part,tmp(k),
(26)

where u1,part,min(k) is defined through the minimum activa-

tion constraints (18)–(20). This relation can be transformed

into linear mixed-integer constraints using (7).

2) Conversion unit 2: Conversion unit 2 has as control

input u2(k) ∈ [0,u2,max]. The energy in the gas used per

quarter zg,2(k) and the thermal energy provided per quarter

zh,p,2(k) are given by:

zg,2(k) = u2(k) (27)

zh,p,2(k) = ηtotzg,2(k). (28)

A device-in-operation variable δdio,2(k)∈ {0,1} indicating

when conversion unit 2 is in operation is defined as:

[u2(k) ≥ γε ,mach] ⇔ [δdio,2(k) = 1]. (29)



This relation can be converted into linear mixed-integer

inequality constraints using (5). The device-in-operation vari-

able δdio,2(k) is used to enforce that conversion unit 2 is in

operation only when conversion unit 1 is in operation through

the following constraints:

δdio,2(k)−u1,part(k) ≤ 0. (30)

A on/off controller is installed in conversion unit 2,

similar to the on/off controller as in conversion unit 1. The

on/off controller of conversion unit 2 determines an auxiliary

actuator setting u2,tmp(k) ∈ {0,1} as follows:

u2,tmp(k) =







1 for xh,s(k) ≤ ηh,s,lim,min,2

0 for xh,s(k) ≥ ηh,s,lim,max,2

u2,tmp(k−1) otherwise.

To transform this relation, auxiliary variables δ7(k), δ8(k),
δ9(k), and δ10(k) are defined such that:

[δ7(k) = 1] ⇔ [xh,s(k) ≤ ηh,s,lim,min,2] (31)

[δ8(k) = 1] ⇔ [xh,s(k) ≥ ηh,s,lim,max,2] (32)

δ9(k) = (1−δ7(k))(1−δ8(k)) (33)

δ10(k) = δ9(k)u2,tmp(k−1). (34)

Using (5) and (7) these relations are transformed into linear

mixed-integer constraints. The on/off controller determines

the value for the auxiliary actuator setting u2,tmp(k) as:

u2,tmp(k) = 1.δ7(k)+δ10(k). (35)

The on/off controller uses this auxiliary actuator setting to

determine the actual input for conversion unit 2 as:

u2(k) = u2,tmp(k)ηfracu2,max, (36)

where ηfrac is the part of the maximum output u2,max that is

activated when conversion unit 2 is switched on.

3) Electricity and heat storage units: The dynamics of

the electrical energy in the storage unit per quarter xe,s(k)
are given by:

xe,s(k +1) = xe,s(k)+ ze,in(k)− ze,out(k), (37)

where ze,in(k) and ze,out(k) are the electrical energy going into

and taken from the storage unit per quarter, respectively, and

where it is assumed that the charging and discharging of the

battery takes place without energy loss.

The dynamics of the thermal energy in the heat storage

unit per quarter xh,s(k) are given by:

xh,s(k +1) = xh,s(k)+ zh,p,1(k)+ zh,p,2(k)−dh,c(k), (38)

where dh,c(k) is the heat consumption per quarter.

The electrical and thermal energy levels of the storage

units are limited by minimum and maximum values, i.e.:

xe,s,min ≤ xe,s(k) ≤ xe,s,max (39)

xh,s,min ≤ xh,s(k) ≤ xh,s,max. (40)

4) Power balance: The following power balance relating

the amount of electricity generated per quarter by conversion

unit 1 ze,p(k), the electricity input to the battery per quarter

ze,in(k), the electricity output from the battery per quarter

ze,out(k), the electricity consumption per quarter de,c(k), and

the electricity bought from ue,imp(k) or sold to ue,exp(k) the

energy supplier per quarter, has to hold:

0 = ze,p(k)+ue,imp(k)+ ze,out(k)−ue,exp(k)

− ze,in(k)−de,c(k). (41)

All of this results in an MLD model of the form (9)–(11).

V. MPC PROBLEM FORMULATION

We now use the derived model as prediction model for a

controller controlling the energy flows of a household. The

controller uses an MPC strategy such that the controller can:

• optimize the usage of the storage units;

• take into account the decision freedom due to the

possibility of electricity import, export, and generation;

• incorporate predictions on electricity and heat consump-

tion;

• incorporate models of the dynamics and constraints of

installed generators and storage units,

while maintaining the amount of energy in the heat storage

unit between a desired upper and lower limit, and respecting

the operational constraints, including a minimal activation of

2 time units for conversion unit 1.

A. MPC scheme

At each control step k the controller makes a measurement

of the system state consisting of values for xh,s(k), xe,s(k),
and xact(k). Then the controller determines values for the

control inputs u1,full(k), ue,imp(k), and ue,exp(k) by solving the

MPC optimization problem that minimizes a cost function,

subject to the prediction model, operational constraints, and

initial state. With respect to the conversion units, the con-

troller only determines u1,full(k), since u1,part(k) and u2(k)
are determined by the on/off controllers.

1) Cost function: The main objective of the controller

is to minimize the daily operational costs of residential

energy use. These costs depend on the price pf (e/kWh)

for gas consumption, the price pimp(k) (e/kWh) at which

electricity can be bought, and the price pexp (e/kWh) at

which electricity can be sold. In principle, the prices for gas,

electricity import, and electricity output vary over the day.

However, as a first step we assume that the pf and pexp are

constant, whereas the pimp varies over the day.

In addition to minimizing the daily operational cost, the

controller should maintain xh,s(k) between the desired upper

and lower limits. This goal is included as a soft constraint

by penalizing an auxiliary variable zaux(k + l) ≥ 0, for l ∈
{1, . . . ,N}, with a large positive cost psoft. This auxiliary

variable zaux(k + l) is defined such that:

zaux(k + l) =






xh,s(k + l)−ηh,s,lim,max for xh,s(k + l) ≥ ηh,s,lim,max

ηh,s,lim,min − xh,s(k + l) for xh,s(k + l) ≤ ηh,s,lim,min

0 otherwise,



TABLE I

VALUES OF THE PARAMETERS OF THE HOUSEHOLD SYSTEM.

parameter [unit] value parameter [unit] value

u2,max [kWh] 4.9383 ηg,max [kWh] 1.8333

xact,max [steps] 1.106 ηg,part [kWh] 0.9167
xe,s,max [kWh] 2 ηtot [-] 1.0125
xe,s,min [kWh] 0 ηh,s,lim,max [kWh] 8.1278
xh,s,max [kWh] 9.1728 ηh,s,lim,max,1 [kWh] 6.9667
xh,s,min [kWh] 0 ηh,s,lim,max,2 [kWh] 5.2250

γε ,mach [-] 1.10−8 ηh,s,lim,min [kWh] 2.3222
ηact,min [steps] 2 ηh,s,lim,min,1 [kWh] 4.0639

ηe [-] 0.15 ηh,s,lim,min,2 [kWh] 2.9028
ηfrac [-] 0.6

which in combination with the minimization of the term

psoftzaux(k + l) can also be written as:

zaux(k + l) =
{

ηh,s,lim,min − zaux(k + l) ≤ xh,s(k + l)
xh,s(k + l) ≤ ηh,s,lim,max + zaux(k + l).

(42)

The cost function at control step k over a prediction

horizon of N control cycles, including the costs for the soft

constraints, is defined as:

J =
N−1

∑
l=0

(

pf

(

zg,1(k + l)+ zg,2(k + l)
)

− pexpue,exp(k + l)

+ pimp(k + l)ue,imp(k + l)+ psoftzaux(k +1+ l)
)

. (43)

2) Prediction model: The prediction model that the con-

troller uses is based on the relations as given in Section II,

specified over the prediction horizon. Hence, the prediction

model consists of a large system of linear mixed-integer

equality and inequality constraints. The values of the pa-

rameters are given in Table I.

3) Initial constraints: At control cycle k, the following

variables are constrained to the known or measured values:

xe,s(k), xh,s(k), xact(k), u1,part(k−1), and u2,tmp(k−1).
4) Solving the optimization problem: The MPC optimiza-

tion problem is a mixed-integer linear programming problem.

It is linear, since the cost function and all constraints are

linear and it is mixed integer, since the problem involves

continuous and discrete variables.

VI. SIMULATIONS

To illustrate the operation of the proposed controller, we

perform experiments for a particular winter day, January

29, 2006. For this day, average residential electricity and

aggregated heat demand profiles have been created with 2006

data from ‘EnergieNed’, the Dutch Federation of Energy

Companies. The controller determines new actions every 15

minutes by solving its MPC problem at that time. To set

up the MPC problem prices for electricity import, electricity

export, and gas consumption have to be calculated first.

A. Price calculation

The variable electricity import price pimp(k) is calculated

as follows. The Dutch Central Bureau of Statistics states

a total electricity tariff for small consumers for 2006 of

194e/MWh1 (household class: single tariff, 3000 kWh). The

1http://www.cbs.nl/, Dutch central bureau of statistics.

variable part of the total tariff (including energy and VAT

taxes) is around 90 % of the total tariff at the time of perform-

ing the experiments2, so this becomes 0.1746e/kWh. The

variable supply part of the total tariff accounts for 32 % of

the total tariff at the time of performing the experiments1. For

this variable supply part we have substituted values obtained

from the Amsterdam Power Exchange. For the value of the

feedback tariff pexp we have taken average “EnergieNed”

data for 2006, which gives 0.0601e/kWh.

The gas price pf is determined as follows. At the website

of the Dutch Central Bureau of Statistics, a total gas tariff for

small consumers of 552e/1000 m3 is given (for consumer

class: 2000 m3). According to the website of the Energy

Research Center of The Netherlands2, 91 % of the gas tariff

is variable (including taxes) at the time of performing the

experiments. This leads to a gas price of 0.50232e/m3.

B. Simulations

To illustrate the operation of the proposed approach, we

first consider a prediction horizon with length N = 16. After

that we consider the performance of the controller under

varying N. The starting values at k = 1 are taken as:

xe,s(k) = 0, xh,s(k) = 5.806, xact(k) = 0 (44)

u1,part(k−1) = 0, u2,tmp(k−1) = 0. (45)

For solving the MPC problem at each control cycle the

controller uses the ILOG CPLEX v10.0 linear mixed-integer

programming solver through the Tomlab v5.7 interface in

Matlab v7.3.

C. Results for MPC with N = 16

Figure 2(a) shows the energy level in the heat storage

unit each quarter for the controlled case. Figure 2(b) shows

the energy consumed in the form of gas per quarter by

the conversion units for the controlled case. The on/off

controllers should switch on the conversion units depending

on the energy content of the heat storage unit. It is observed

that, indeed, when the energy content of the heat storage unit

reaches one of the lower limits, the respective conversion unit

is switched on, whereas when the content reaches one of the

upper limits, the respective conversion unit is switched off.

Conversion unit 1 is switched on 5 times throughout the

day, and stays in operation at least 2 time units. Hence,

the constraints on the minimal activation time of 2 time

units is respected. Conversion unit 1 is switched to full

load operation several times throughout the day. When this

happens, the controller has ensured that conversion unit 1 is

already operating at part load.

D. Results for varying prediction horizon lengths

For varying prediction horizon lengths, we consider two

scenarios: the scenario considered so far, i.e., the scenario in

which the MPC controller controls the household including

on/off controllers in the conversion units, and a scenario

in which the on/off controllers in the conversion units are

2http://www.energie.nl/, Energy Research Center of The Netherlands.
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Fig. 2. (a) The energy level in the heat storage unit xh,s(k) each quarter. The
dashed and dashed-dotted lines indicate upper and lower activation bounds
of the on/off controllers of conversion unit 1 and 2, respectively. The solid
horizontal lines indicate physical upper and lower bounds; (b) amount of
energy consumed in the form of gas per quarter by the conversion units.
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Fig. 3. Closed-loop cost Jsim for varying prediction horizon lengths N,
both for the scenario in which the on/off controllers is installed, and for the
scenario in which the on/off controllers are not installed.

not present. In this second scenario, the MPC controller

has more decision freedom, since it can determine by itself

when conversion unit 1 and conversion unit 2 should be

switched on or off (although it still has to respect the priority

constraint).

Figure 3 shows the cost Jsim defined over the full sim-

ulation period for varying prediction horizon lengths3. For

both scenarios, there is a general trend that as the prediction

horizon length increases, the performance increases as well.

However, since the controller does not take into account the

3In order to make a fair comparison of the control performance for varying
horizon lengths, the prediction horizon length is decreased as soon as during
a simulation predictions would go over the actual simulation time span.

energy consumption patterns and electricity price fluctuations

after its prediction horizon, it can choose actions that are

not optimal over the full simulation. Therefore, in our case

it is not strictly necessary that the performance increases

with a longer prediction horizon. We also observe this in

Figure 3. From the figure we also observe that if the on/off

controllers are not present, indeed, the MPC controller can

exploit the increased decision freedom. This results in a

higher performance for the scenario in which the on/off

controllers are not installed.

VII. CONCLUSIONS & FUTURE RESEARCH

In this paper we have applied the mixed-logical framework

to model a household system. We have derived a model for

a household equipped with its own power generation (via a

micro combined heat and power unit), energy storage capa-

bilities (via a water tank and a battery), and the possibility

for energy exchange with an external energy supplier. Using

this model, we have constructed a model predictive control

(MPC) strategy for a controller in a household. In simulations

we have illustrated the performance gain of the proposed

approach that is obtained when the decision freedom of the

MPC controller is increased by removing the internal on/off

controller logic.

Future research consists of validating, and if necessary im-

proving, the household model, investigating the predictability

of the energy patterns of individual and groups of house-

holds, and extending the MPC approach to a distributed

control setting in which households can also exchange or

sell power amongst one another.
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