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Coordinated Distributed Model Predictive Reach Control
of Irrigation Canals

Rudy R. Negenborn, Peter-Jules van Overloop, and Bart De Schutter

Abstract— Irrigation canals are large-scale systems, covering
vast geographical areas, and consisting of many interconnected
canal reaches that interact with control structures such as
pumps and gates. The control of such irrigation canals is
usually done in a manual way, in which a human operator
travels along the irrigation canal to adjust the settings of the
gates and pumps in order to obtain a desired water level. In
this paper we discuss how distributed model predictive control
(MPC) can be applied to determine autonomously what the
settings of these control structures should be. In particular,
we propose the application of a distributed MPC scheme for
control of the West-M irrigation canal in Arizona. We present
a linearized model representing the dynamics of the canal, we
propose a distributed MPC scheme that uses this model as
a prediction model, and we illustrate the performance of the
scheme in simulation studies on a nonlinear simulation model
of the canal.

Index Terms— Distributed control, model predictive control,
large-scale systems, irrigation canals.

I. I NTRODUCTION

Irrigation canals are used for transporting water from
source nodes, such as lakes, large rivers, etc., to sink nodes,
such as small rivers and pipes that transport water to agri-
cultural fields of farmers. Irrigation canals consist of many
connected canal reaches, the inflow or outflow of which can
be controlled by adjusting structures such as overshot or
undershot gates, activating pumps, filling or draining water
reservoirs, and controlled flooding of water meadows or of
emergency water storage areas [1].

In the near future the importance of efficient and reliable
irrigation management systems for delivering water to users
will keep on increasing, among others due to the effects of
global warming (more heavy rain during the spring season,
but possibly also drier summers).

Due to the large scale of irrigation networks, control of
such networks in general cannot be done in a centralized
way, in which from a single location measurements from the
whole system are collected and actions for the whole system
are determined. Instead, control is typically decentralized
over several local control bodies, each controlling a particular
part of the network [2]. Currently, coordination between such
decentralized local control bodies is either non-existing, or
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takes place at a very slow time scale, i.e., years, in the form
of agreements laid out in contracts.

In order to improve the operation of irrigation systems
the controllers of different parts of the irrigation network
should cooperate and coordinate their local water manage-
ment actions on a daily, hourly, or even minute basis, such
that predictions or forecasts of expected water consumption,
future rain fall, future droughts, future arrival of increased
water flow via rivers, etc. can be taken into account using
various weather and hydrological sensors, and prediction
models. Model predictive control (MPC) is a control strategy
that enables such a control framework.

In [3] an MPC scheme is proposed that is used by a
single controller to determine in a centralized way the set-
points for local flow controllers in an irrigation canal. In
[4] we made a first attempt to implement a distributed
MPC scheme to take over this task. In that paper, a highly
simplified model of the so-called West-M irrigation canal is
studied. The assumption is made that local PI controllers are
present to control the control gates and that constraints onthe
minimum and maximum water levels and on the minimum
and maximum gate positions do not have to be taken into
account. In [4], MPC controllers are then designed for each
individual control structure. In addition, simulation studies
are carried out only on a linearized model of the system.

In this paper, we make a next step for obtaining a
distributed MPC controller that can be used in practice. We
consider control of a validated, nonlinear model of the West-
M canal using a distributed MPC scheme. Hereby, it is not
assumed that local PI controllers are present. Instead, the
changes in the positions of gates are determined directly. In
addition, operational constraints on the water levels and gate
positions are taken into account. Moreover, we design MPC
controllers for controlling parts of an irrigation canal consist-
ing of several, instead of single, canal reaches and control
structures. Furthermore, we perform simulation studies on
the nonlinear, instead of a linear, system.

This paper is organized as follows. In Section II, we briefly
outline the distributed MPC scheme that we employ. In
Section III, we discuss a linearized model of the dynamics of
the West-M irrigation canal, and set up the distributed MPC
control scheme for control of this system. In Section IV,
we illustrate the potential of the proposed approach through
simulation studies on a nonlinear simulation model of the
canal. Section V concludes the paper and contains directions
for future research.



II. D ISTRIBUTED MODEL PREDICTIVE CONTROL

In distributed MPC the control of a system is divided over
several controllers. An individual controller on the one hand
obtains measurements from and determines actions for its
part of the network, and on the other hand communicates
with other controllers in order to obtain coordination and
to improve the overall network performance. To actually
determine which actions to take, each controller uses MPC.

In [5] we have proposed a distributed MPC scheme for
control of general transportation networks. Irrigation canals
are a particular type of transportation networks, and there-
fore this scheme is also suitable for distributed control of
irrigation canals. Below, we briefly outline the scheme and
the assumptions made on the system under control.

A. Dynamics

Consider a network divided inton subnetworks. It is
assumed that the dynamics of subnetworki ∈ {1, . . . , n} are
given by a deterministic linear discrete-time time-invariant
model (possibly obtained after symbolic or numerical lin-
earization of a nonlinear model in combination with dis-
cretization):

xi(k + 1) = Aixi(k) + B1,iui(k)

+ B2,idi(k) + B3,ivi(k) (1)

yi(k) = Cixi(k) + D1,iui(k)

+ D2,idi(k) + D3,ivi(k), (2)

where at control stepk, for subnetworki, xi(k) ∈ R
nxi

are the local states,ui(k) ∈ R
nui are the local inputs,

di(k) ∈ R
ndi are the local known or measureable exogenous

inputs, yi(k) ∈ R
nyi are the local outputs,vi(k) ∈ R

nvi

are the remaining variables influencing the local dynamical
states and outputs, andAi ∈ R

nxi
×nxi , B1,i ∈ R

nxi
×nui ,

B2,i ∈ R
nxi

×ndi , B3,i ∈ R
nxi

×nvi , Ci ∈ R
nyi

×nxi , D1,i ∈
R

nyi
×nui , D2,i ∈ R

nyi
×ndi , D3,i ∈ R

nyi
×nvi determine

how the different variables influence the local states and
outputs of subnetworki. The vi(k) variables represent the
influence of other subnetworks on subnetworki, and are
therefore equal to some of the variables of models rep-
resenting dynamics of neighboring subnetworks. So-called
interconnecting input variableswin,ji(k) ∈ R

nwin,ji are the
variables of subnetworki that are influenced by subnetwork
j, i.e., a selection ofvi(k). So-called interconnecting output
variableswout,ji(k) ∈ R

nwout,ji are the variables of sub-
network i that influence a neighboring subnetworkj, i.e.,
a selection ofxi(k), ui(k), and yi(k). Fig. 1 illustrates
the relations between the variables of the models of two
subnetworks.

Let subsystemi be connected tomi neighboring sub-
systems. Let the set of indices of themi subsystems con-
nected to subsystemi be denoted by the neighbors set
Ni = {ji,1, . . . , ji,mi

}. Define the interconnecting inputs and
outputs for the control problem of controlleri at control step

di
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vi

xi

yi

dj

uj

vj

xj

yj

win,ji

wout,ji win,ij

wout,ij

Fig. 1. Illustration of the relation between the models and variables of two
subnetworksi andj.

k as:

win,i(k) = vi(k) (3)

wout,i(k) = Ki

[

xT
i (k) uT

i (k) yT
i (k)

]T
, (4)

where Ki is an interconnecting output selection matrix
that contains zeros everywhere, except for a single 1 per
row corresponding to a local variable that corresponds to
an interconnecting output variable. The variableswin,i(k),
wout,i(k) are partitioned such that:

win,i(k) =
[

wT
in,ji,1i(k), . . . ,wT

in,ji,mi
i(k)

]T
(5)

wout,i(k) =
[

wT
out,ji,1i(k), . . . ,wT

out,ji,mi
i(k)

]T
. (6)

The interconnecting inputs to the control problem of con-
troller i with respect to controllerj must be equal to the inter-
connecting outputs from the control problem of controllerj
with respect to controlleri, since the variables of both control
problems model the same quantity. For controlleri this thus
gives rise to the followinginterconnecting constraints:

win,ji(k) = wout,ij(k) (7)

wout,ji(k) = win,ij(k), (8)

for all j ∈ Ni.

B. Assumptions

It is assumed that each of the subnetworksi ∈ {1, . . . , n}
is controlled by a control controlleri that:

• has a prediction model of the form (1)–(2) of the
dynamics of subnetworki;

• can measure or estimate the statexi(k) of its subnet-
work;

• can estimate exogenous inputsdi(k + l) of its sub-
network over a certain horizon of lengthN , for l =
{0, . . . , N − 1};

• can communicate with neighboring controllers.

C. Control objectives

It is assumed that the controllers are cooperative, meaning
that the individual controllers strive for the best overall
network performance. In addition, it is assumed that the
objectives of the controllers can be represented by convex
functionsJlocal,i, for i ∈ {1, . . . , n}, which are typically lin-
ear or quadratic. Such functions are commonly encountered,
in particular for systems that can be represented by (1)–(2).



D. Distributed MPC scheme

The distributed MPC scheme that we employ comprises
at control stepk the following steps:

1) For i = 1, . . . , n, controlleri makes a measurement of
the current state of the subnetworkxi(k) and estimates
the expected exogenous inputsdi(k + l), for l =
0, . . . , N − 1.

2) The controllers cooperatively solve their control prob-
lems in the following serial iterative way1:

a) Set the iteration counters to 1 and initialize the
Lagrange multipliers̃λ

(s)

in,ji(k), λ̃
(s)

out,ij(k) arbitrar-
ily.

b) For i = 1, . . . , n, one controller i after an-
other determines̃x(s)

i (k + 1), ũ
(s)
i (k), w̃

(s)
in,ji(k),

w̃
(s)
out,ji(k) as solutions of the following optimiza-

tion problem:

min Jlocal,i (x̃i(k + 1), ũi(k), ỹi(k))

+
∑

j∈Ni

J
(s)
inter,i (w̃in,ji(k), w̃out,ji(k)) , (9)

subject to the local dynamics (1)–(2) and (3)–(4)
of subsystemi over the horizon, the current state
xi(k), and the known exogenous inputs̃di(k).
The additional performance criterionJinter,i in (9)
at iterations is defined as

J
(s)
inter,i (w̃in,ji(k), w̃out,ji(k)) =

[

λ̃
(s)

in,ji(k)

−λ̃
(s)

out,ij(k)

]T
[

w̃in,ji(k)
w̃out,ji(k)

]

+
γc

2

∥

∥

∥

∥

[

w̃in,prev,ij(k) − w̃out,ji(k)
w̃out,prev,ij(k) − w̃in,ji(k)

]
∥

∥

∥

∥

2

2

,

where‖a‖2 is the 2-norm of vectora. Further-
more,w̃in,prev,ij(k) = w̃

(s)
in,ij(k) andw̃out,prev,ij(k)

= w̃
(s)
out,ij(k) is the information computed at the

current iterations for each controllerj ∈ Ni

that has solved its problembeforecontroller i in
the current iteration s. In addition,w̃in,prev,ij(k)

= w̃
(s−1)
in,ij (k) and w̃out,prev,ij(k) = w̃

(s−1)
out,ij (k) is

the information computed at thepreviousiteration
s− 1 for the other controllers. The constantγc is
a positive scalar that penalizes the deviation from
the interconnecting variable iterates that were
computed by the controllers before controlleri in
the current iteration and by the other controllers
during the last iteration. The results̃w(s)

in,ji(k)

and w̃
(s)
out,ji(k) of the optimization are sent to

controller j.
c) Update the Lagrange multipliers,

λ̃
(s+1)

in,ji (k) = λ̃
(s)

in,ji(k)

+ γc

(

w̃
(s)
in,ji(k) − w̃

(s)
out,ij(k)

)

. (10)

1The tilde notation is used to represent variables over the prediction
horizon. E.g.,ũi(k) = [ui(k)T, . . . ,ui(k + N − 1)T]T.

Send λ̃
(s+1)

in,ji (k) to controller j and receive the
multipliers from controller j to be used as

λ̃
(s+1)

out,ij (k).
d) Move on to the next iterations + 1 and repeat

steps 2b–2c. The iterations stop when the follow-
ing stopping condition is satisfied:

∥

∥

∥

∥

∥

∥

∥

∥









λ̃
(s+1)

in,err,j1,11(k)
...

λ̃
(s+1)

in,err,jn,mnn(k)









∥

∥

∥

∥

∥

∥

∥

∥

∞

≤ γǫ, (11)

with λ̃
(s+1)

in,err,ji(k) = λ̃
(s+1)

in,ji (k) − λ̃
(s)

in,ji(k), and
where γǫ is a small positive scalar and‖ · ‖∞
denotes the infinity norm.

3) The controllers implement the actions until the begin-
ning of the next control step.

Under the assumptions that we have made on the objective
functions and prediction models the solution of this scheme
converges to the solution that a centralized MPC controller
would have obtained for a sufficiently smallγǫ, see [5].

In the next section we discuss how the presented approach
can be used for controlling irrigation canals.

III. C ONTROL OF AN IRRIGATION CANAL

Let an irrigation canal be controlled byn controllers. Each
controllers controls the water levels and control structures
in several connected canal reaches. Let there bem canal
reaches. Let the set of canal reaches that controlleri ∈
{1, . . . , n} controls be denoted byRi. Below we describe
for a particular controller the dynamics of the canal reaches
it considers, the operational constraints it has to take into
account, and the formulation of its control goals.

A. Subnetwork dynamics

The subnetwork of controlleri consists of several inter-
connected canal reaches that are usually separated by control
structures, such as undershot gates. Next, we model these
components.

1) A single canal reach:The dynamics of canal reaches
can be described in detail using a system of hyperbolic partial
differential equations called the Saint Venant equations [6].
Although a model obtained using such a detailed representa-
tion is desirable for simulation, for control this high level of
detail is usually not necessary and in addition undesired for
computational reasons. Therefore, instead of representing the
reach dynamics with the Saint Venant equations, we employ
the integrator delay model [7], [1], similarly as in [3]. This
model has shown to adequately capture relevant dynamics
[7], and it reduces computations required for simulation of
the dynamics (and consequently model-based optimization)
significantly.

The integrator delay model is a linear discrete-time model,
which models how the water level in the canal changes over
time. Let time be discretized into control stepsk ∈ N0

(where N0 are the positive natural numbers) and let the
continuous time between two control stepsk and k + 1
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Fig. 2. Illustration of canal reachr and its associated variables.

correspond toTc ∈ R
+ (s) (whereR

+ are the positive real
numbers). Each canal reach is considered to have an inflow
from an upstream canal reach as illustrated in Figure 2. Let
this inflow into reachr be given byqin,r(k) ∈ R

+ (m3/s).
A canal reach has an outflow to a downstream canal reach.
Let qout,r(k) ∈ R

+ (m3/s) denote this outflow. In addition
to this inflow and outflow due to upstream and downstream
canal reaches there can be additional local inflow (e.g., dueto
rainfall) and outflow (e.g., due to outflow caused by farmers).
Let such inflow be represented byqext,in,r(k) ∈ R

+ (m3/s)
and such outflow byqext,out,r(k) ∈ R

+ (m3/s). The inflow
qext,in,r(k) and outflowqext,out,r(k) are assumed to be known
or predicted accurately in advance.

Depending on how the inflows and outflows change over
time, the levels of the water in reaches will change. Instead
of considering the levels of the water at each location in
the reaches, the integrator delay model only considers the
level hr(k) ∈ R

+ (m) of the water at the downstream end of
a reachr, since this is usually the place where offtakes are
located. In addition to the amount of inflow and outflow, also
the surface of the reach influences how much the level of the
water will change. Leter(k) ∈ R (m) denote the deviation of
the level of the water in canal reachr from a given reference
water level for that canal reach, i.e.,er(k) = hr(k)− href,r,
and let the surface of reachr be cr ∈ R

+ (m2). It takes
some time for a change in the inflow of reachr to result
in a change of the water level at the downstream end of the
reach. Let this delay bekd,r ∈ N0 control steps for reachr.

Using the variables defined above, the model describing
how the level of the water in a single canal reach changes
from one control stepk to the next control stepk + 1 is
given by:

er(k + 1) = er(k) +
Tc

cr

qin,r(k − kd,r) −
Tc

cr

qout,r(k)

+
Tc

cr

qext,in,r(k) −
Tc

cr

qext,out,r(k),

or,

er(k + 1) = er(k) + ∆er(k) +
Tc

cr

∆qin,r(k − kd,r)

−
Tc

cr

∆qout,r(k) +
Tc

cr

∆qext,in,r(k) −
Tc

cr

∆qext,out,r(k), (12)

where ∆er(k), ∆qin,r(k), ∆qout,r(k), ∆qext,in,r(k), and
∆qext,out,r(k) represent changes in the values of the respective

variables fromk − 1 to k.
2) Undershot gates:By adjusting the gate position of

undershot gates flows can be altered. Sometimes a local
flow controller is present that accepts flow set-points and
after that autonomously adjusts the gate position in order to
meet the set-points. However, such a local flow controller is
not always present and we therefore explicitly include the
gate position of undershot gates in the model. In order to do
this, the discharge formula of an undershot gate is linearized.
Under free-flow conditions, the discharge for such a gate at
the upstream end of reachr depends on the water levelhr−1

at the downstream end of the upstream reachr−1 and on the
opening of the gatedg,r of reachr. The linearized discharge
can be written down as [3]:

qin,r(k) = qin,r(k − 1) + Ce,r(k)∆hr−1(k)

+ Cu,r(k)∆dg,r(k),

with

Ce,r(k) =
gcw,rWs,rµrdg,r(k)

√

2g(hr−1(k) − (zs,r + µrdg,r(k)))

Cu,r(k) = cw,rWs,rµr

√

2g(hr−1(k) − (zs,r + µrdg,r(k)))

−
gcw,rWs,rµ

2
rdg,r

√

2g(hr−1(k) − (zs,r + µrdg,r(k)))
,

where for reachr, cw,r is a calibration coefficient,Ws,r is
the width of the gate (m),µr is the contraction coefficient,
hr−1(k) is the downstream level of the upstream canal reach
r − 1 (m), g the gravitational acceleration (m/s2), zs,r the
crest level of the gate (m), anddg,r(k) the gate opening (m).
Hence, the following relation for the change in the discharge
can be obtained:

∆qin,r(k) = Ce,r(k)∆er−1(k) + Cu,r(k)∆dg,r(k). (13)

A similar relation is obtained for the downstream discharge
as follows:

∆qout,r(k) = Ce,r+1(k)∆er(k) + Cu,r+1(k)∆dg,r+1(k).
(14)

3) Dependencies on neighboring reaches:The canal
reaches controlled by a single controller are connected to
one another. By (13) and (14) we observe that in order
to evaluate the model of canal reachr, the values of the
variables∆er−1(k) andhr−1(k) of the upstream canal reach
r−1 and of the variable∆dg,r+1(k) of the downstream canal
reachr + 1 have to be known.

B. Operational constraints

Several operational constraints have to be satisfied with
respect to the operation of canal reachr:

• There is a maximum value for the change in the gate
position, both upwards and downwards, i.e.,

∆dg,r(k) ≥ ∆dg,r,min (15)

∆dg,r(k) ≤ ∆dg,r,max, (16)

where∆dg,r,min ≤ 0, ∆dg,r,max ≥ 0.



• The gate position should always be positive and the
gate should not be lifted out of the water. Therefore, a
minimum and a maximum on the absolute gate position
are present, i.e.,

dg,r(k) ≥ 0 (17)

dg,r(k) ≤
2

3
(hr−1(k) − zs,r), (18)

where 2
3 (hr−1(k) − zs,r) is the maximum water level

above the crest.

C. Control objectives

The changes in the gate position determined by controller
i should be chosen in such a way that

1) the deviations of water levels from provided set-points
er are minimized in all canal reaches;

2) the changes in the deviations of the water levels∆er

from one control step to the next are minimized in
all canal reaches to encourage smooth water level
changes;

3) the changes in the gate positions∆dg,r are minimized
in all canal reaches to reduce wear of equipment.

The objective functionJlocal,i for controller i is therefore
written as:

Jlocal,i =

N−1
∑

l=0

∑

r∈Ri

qe (er(k + 1 + l))
2

+

N−1
∑

l=0

∑

r∈Ri

q∆e (∆er(k + 1 + l))
2

+
N−1
∑

l=0

∑

r∈Ri

q∆dg (∆dg,r(k + l))
2
,

where qe, q∆e, and q∆dg are penalty coefficients. These
penalty coefficients are chosen as follows:

qe =
1

(eMAVE )
2 , q∆e =

1

(∆eMAVE )
2 , q∆dg =

1

(∆dg,MAVE )
2 ,

where eMAVE , ∆eMAVE , and ∆dg,MAVE are the maximum
allowed value estimates (MAVE) ofe, ∆e, and ∆dg, re-
spectively. These estimates indicate how much a variable is
allowed to vary. By defining the objective function in this
way the various objective terms in the objective function are
normalized.

D. Summarizing

The equations representing the system are linear, and the
objective functions are quadratic. It is now straightforward to
cast the resulting prediction model, constraints, and objective
function in the form suitable for application of the distributed
MPC scheme of Section II. In the next section we employ
this scheme based on linearized models to control a nonlinear
representation of an irrigation canal.

reach 1

reach 2

reach 3

reach 4

reach 5

reach 6

reach 7

reach 8

controller 1

controller 2

Fig. 3. Longitudinal view of the West-M irrigation canal andits division
into two subnetworks.

IV. CASE STUDY

In this section we describe a simulation result to illustrate
the performance of the MPC scheme discussed in this paper.
The irrigation canal that we consider is based on the West-
M canal (as illustrated in Figure 3), which is an irrigation
canal close to Phoenix, in the south of Arizona. This canal
has been used by the ASCE Task Committee on Canal
Automation Algorithms to define Test Canal 1 for testing
automatic control schemes [8]. The canal is used to provide
water to farmers. The length of the canal is almost 10 km and
the maximum capacity of the head gate is2.8 m3/s [3]. The
canal consists of 8 canal reaches. At each of the reaches of
the canal water can be taken out at offtakes for irrigation
purposes. Between each of the reaches control structures
are present in the form of undershot gates to change the
water flow locally. Between canal reaches 5 and 6 a local PI
controller is present, and therefore canal reaches 5 and 6 are
considered as one reach. We refer to [8] for details on the
dynamics of the canal.

For the benchmark system under study, MPC schemes
have been proposed based on a single controller determining
in a centralized way the set-points for the local flow con-
trollers. MPC has been proposed for controlling the first 2
canal reaches of the benchmark system in [9], for controlling
the first 3 canal reaches of the system in [10], and for
controlling all canal reaches in [11], [3].

Here, we consider distributed control of the canal using
two controllers that each control their own part of the
network. For controller 1, the set of controlled reaches is
R1 = {1, 2, 3, 4}. For controller 2, the set of controlled
reaches isR2 = {5, 7, 8}.

We consider a nonlinear simulation model of the canal,
implemented in Sobek [12]. For solving the optimization
problems at each control step we use the ILOG CPLEX
v10.0 quadratic programming solver through the Tomlab v5.7
interface in Matlab v7.3.

A. Scenario

The time Tc between two consecutive control steps is
120 s. A prediction horizon length ofN = 30 is chosen
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interconnecting variables∆e4(k + l), for l = 1, . . . , N over the iterations.

to take into account the total delay present in the irriga-
tion canal. The controllers use as parametersγc = 1000,
γǫ = 1.10−3. As parameters for the objective functions
the controllers use the following values:eMAVE = 0.15,
∆eMAVE = 0.005, ∆uMAVE = 0.0075.

We perform a simulation of 240 time steps, corresponding
to 8 hours. We consider an increase in the offtake of canal
reach 3 at time step 60, corresponding to continuoust = 2 h,
and a decrease in the offtake of the same canal reach at time
step 120, corresponding to continuous timet = 4 h.

We show over a full simulation which actions the con-
trollers choose, and illustrate for a particular time step how
controllers obtain agreement on interconnecting variables.

B. Results

Figure 4 shows the gate settings that the two controllers
determine to take. We can clearly observe how the controllers
anticipate the additional offtake in reach 3 betweent = 2
and t = 4 by already beforet = 2 increasing the inflow in
the reaches. Similarly, we observe that already beforet = 4
the controllers again decrease their inflows, anticipatingthe
offtake decrease in canal reach 3 att = 4.

Figure 5 illustrates how at a particular time (t = 2.23)
the controllers obtain agreement on the values of the in-
terconnecting variables∆e4(k + l), for l = 1, . . . , N .
As the number of iterations increases (s becomes larger),
the absolute error between the interconnecting inputs and
interconnecting outputs with respect to∆e4(k+l) decreases,
ultimately resulting in agreement.

In this experiment and in experiments with alternative
scenarios (in each of which the gates where free flowing),

we have observed that the performance of the distributed
MPC approach over the full simulation is within 10% of the
performance that obtainable by a centralized MPC approach.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have considered model predictive control
(MPC) for distributed control of irrigation canals. We have
discussed the use of an iteration-based, distributed MPC
scheme for the control of irrigation canals. With this scheme
performance comparable to the performance of a centralized
MPC scheme can be achieved in a distributed way. On a
benchmark irrigation canal we have illustrated the potential
of the approach. In this case study, two controllers using
linear prediction models have successfully determined which
actions to take for controlling a nonlinear hydro-dynamic
representation of the West-M irrigation canal in Arizona.

Future work consists of further assessing the performance
of the proposed scheme, in particular when larger irrigation
canals are controlled and the number of controllers increases.
Moreover, when the gates become submerged, the dependen-
cies between canal reaches will change. Future work will
address this change.
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