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Abstract

The design of a higher-layer controller using model predictive control (MPC) is con-

sidered. The higher-layer controller uses MPC to determine set-points for controllers

in a lower control layer. In this paper the use of an object-oriented model of the sys-

tem for making predictions is proposed. When employing such an object-oriented

prediction model the MPC problem is a nonlinear, non-smooth optimization problem,

with an objective function that is expensive to evaluate. Multi-start pattern search is

proposed as approach to solving this problem, since it deals effectively with the local

minima and the non-smoothness of the problem, and does not require expensive es-

timation of derivatives. Experiments in an emergency voltage control problem on a

9-bus dynamic power network show the superior performance of the proposed multi-

start pattern search approach when compared to a gradient-based approach.

Keywords: Power networks, supervisory control, model predictive control, pattern

search, object-oriented modeling, voltage control.

1. Introduction

1.1. Power network control

General power networks are controlled in a hierarchical way in which control of

the physical network is the result of several control layers at local, regional, national,

and sometimes international level (Fardanesh, 2002; Hill et al., 2003). As illustrated in

Figure 1, at the physical level the power network consists of multiple interconnected

subsystems, like generators, loads, transmission lines, etc. This physical level is con-

trolled by one or more control layers in order to control the network in some desired

way. The lowest control layer typically consists of decentralized controllers that inde-

pendently of each other control the actuators in the physical system directly. Higher
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Figure 1: Multi-layer control of a power network: higher layers provide set-points to lower layers and the

lowest layer controls the physical system directly. Dashed and dotted lines indicate control signals going

from a higher to a lower layer (see section 5.1).

control layers consist of supervisory controllers that determine set-points for lower con-

trol layers to obtain coordination. The set-points have to be determined in such a way

that some objectives defined for the full system are achieved (Mesarovic et al., 1970).

The controllers in higher layers hereby typically take into account nonlinear behavior

of the system, behavior that may be neglected by the lower control layers.

The particular task of the higher-layer controller considered in this work is to pre-

vent voltage collapses from appearing in power networks. Briefly stated, voltage in-

stability stems from the attempt of the load dynamics to restore the power consump-

tion beyond the capability of the transmission and generation system (Van Cutsem and

Vournas, 1998). Typically, this situation occurs after the outage of one or more com-

ponents in the network, such that the system cannot satisfy the load demand with the

given inputs at a physically sustainable voltage profile.

1.2. The higher layer

In current power network operation higher-layer control is typically done by hu-

man operators that determine the set-points for lower layers, using offline studies, ex-

perience, system conditions observed via telemetry, heuristics, knowledge bases, and

state-estimator outputs. As it becomes more complex for humans to accurately predict

the consequences of faults in the network due to deregulation of the energy market,

the increase in power demands, and the emergence of embedded generation (Jenkins

et al., 2000), intelligent automatic online control systems become increasingly neces-

sary. Such an approach for online control is proposed in this paper.

To adequately steer the lower control layer, a higher-layer supervisor has to moni-

tor the state of the lower control layer and the underlying physical system and foresee

when the behavior of the system is going into an undesirable direction. The supervi-

sor proposed in this paper uses model predictive control (MPC) (Maciejowski, 2002).
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MPC has traditionally been employed in the process industry, and is now gaining in-

creasing attention in fields like amongst others power networks (Geyer et al., 2003),

railway networks (De Schutter et al., 2002), steam networks (Majanne, 2005), green-

house control (Piñón et al., 2005), and drug delivery (Bleris et al., 2007). In MPC

control actions are obtained at each control sample step by solving an optimization

problem that minimizes an objective function over a finite horizon subject to a predic-

tion model and operational constraints. The main advantages of MPC are its explicit

way of integrating soft as well as hard constraints, its easy way of integrating forecasts,

and its straightforward design procedure.

The complexity of power networks makes developing appropriate prediction mod-

els a complex task. The number of elements in large-scale power networks is huge.

Moreover, the dynamics of power systems are hybrid, in the sense that the dynam-

ics are the result of interactions between continuous dynamics (e.g., due to loads and

generators) and discrete events (due to, e.g., saturation in generators or discrete switch-

ing of transformer taps, capacitor banks, or loads) (Leirens et al., 2005). Over the

last decade modeling languages and simulation environments have been introduced

that allow general-purpose physical modeling based on non-causal modeling, with true

equations and the use of object-oriented constructs (Mattsson et al., 1998; Piela et al.,

1991; Barton and Pantelides, 1994; Dynasim, 2004), therewith easing the development

of such complex prediction models.

1.3. Proposed control approach

In (Larsson and Karlsson, 2003; Hill et al., 2003) a tree search has been proposed to

solve a nonlinear MPC problem for coordinating controllers in a power network with

dynamics in loads and generators. A discrete time prediction model has been used

with quantified small variations of the control inputs, leading to a purely combinatorial

optimization problem. In (Geyer et al., 2003; Negenborn et al., 2007) approaches have

been proposed using mixed-integer linear programming to solve optimization problems

derived from the nonlinear MPC problem. The approach proposed in this paper uses

an object-oriented model as prediction model and multi-start pattern search as solver

of the nonlinear MPC problem.

Several authors have considered approaches for nonlinear MPC, e.g., (Oliveira and

Biegler, 1995; Chen and Allgöwer, 1998; Diehl et al., 2002; Martinsen et al., 2004).

These approaches each make particular assumptions on the type of prediction model

(e.g., systems of differential equations, smooth transition functions) and assume ex-

plicit access to the equations of the prediction model. Efficient control strategies result

from exploiting the structure of the nonlinear MPC programming problems. In this pa-

per, a multi-start pattern search approach is proposed that does not rely on the explicit

knowledge of the model equations. Recently, a pattern-search method has been applied

to power systems in (Al-Othman and El-Naggar, 2007) to solve an economic dispatch

problem. However, there, no network dynamics and MPC strategy are considered.

So, here, a higher layer MPC controller is proposed with the following aspects:

• the prediction model that the higher layer is object-oriented;

• the prediction model is a full nonlinear, non-smooth model of the lower control

layer and physical network;
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• the optimization technique used to solve the optimization problem is the direct-

optimization method pattern search.

Noted that the proposed approach is not restricted to the voltage collapse problem,

and can easily be adapted to other control problems, e.g., minimization of power losses,

automatic generation control, etc. Also, the approach may be suitable for higher-layer

control in other domains, such as water and road traffic networks.

1.4. Outline of this paper

In Section 2 object-oriented power network modeling and the assumptions regard-

ing the prediction model are discussed. In Section 3 the supervisory control problem is

formulated in a nonlinear MPC fashion. In Section 4 direct-search versus gradient-

based optimization methods are discussed, and a multi-start implementation of the

direct-search method pattern search is presented. In Section 5 the direct-search ap-

proach is compared with a gradient-based approach and performance is assessed by

means of simulation studies on a voltage control problem.

2. Object-oriented prediction models

2.1. Object-oriented modeling

To face the difficulty of developing complex power network models, object-oriented

approaches for analysis and simulation have received increasing attention (Manzoni

et al., 1999). In object-oriented modeling, models are mapped as closely as possible

to the corresponding physical subsystems that make up the overall system. Models are

described in a declarative way, i.e., only local equations of the objects and the connec-

tions between the objects are defined. Objected-oriented modeling concepts, such as

inheritance and composition enable proper structuring of models and generally lead to

more flexible, modular, and reusable models. Inheritance is a way to form new classes

of models using classes that have already been defined. The new classes take over or

inherit attributes and behavior, e.g., dynamics, of the already existing classes. Extended

models can then be constructed by inheriting dynamics and properties of more basic

or more general models. E.g., advanced generator models are designed in this way by

extending a basic generator model containing the basic dynamics of a synchronous ma-

chine only. Composition is a way to combine simple models into more complex ones.

E.g., a voltage regulator and a turbine governor do not have functionality by them-

selves. However, composing them with a basic generator model results in a regulated

generator with complex dynamics.

As stated above the dynamics of power networks involve continuous and discrete

dynamics and are therefore hybrid. Each of the objects of a power network can there-

fore be modeled with a mixture of differential equations, algebraic equations, and

discrete-event logic, e.g., in the form of if-then-else rules. The model for the overall

system then consists of the models for the objects and in addition algebraic equations

interconnecting the individual objects.
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2.2. Modeling tools

Several object-oriented approaches have been developed over the years, e.g., (Piela

et al., 1991; Barton and Pantelides, 1994; The Modelica Association, 2005; Mattsson

et al., 1998; Dynasim, 2004). These approaches typically support both high-level mod-

eling by composition and detailed component modeling using equations. Models of

system components are typically organized in model libraries. A component model

may be a composite model to support hierarchical modeling and specify the system

topology in terms of components and connections between them. Using a graphical

model editor, e.g., Dymola (Dynasim, 2004), a model can be defined by drawing a

composition diagram by positioning icons that represent the models of the components,

drawing connections, and giving parameter values in dialog boxes.

It should be noted that some of the object-oriented simulation software packages,

e.g., Simulink, assume that a system can be decomposed into sub-models with fixed

causal interactions. This means that the models can be expressed as the interconnection

of sub-models with an explicit state-space form. Often a significant effort in terms

of analysis and analytical transformations is required to obtain a model in this form

(Dynasim, 2004). In general, causality is not assigned in power networks. Setting

the causality of an element of the power network, e.g., a transmission line, involves

representing the model equations in an explicit input-output form. In a voltage-current

formulation this means that currents are expressed as function of voltages, or vice versa.

Non-causal modeling permits to relax the causality constraint and allows to focus on

the elements and the way these elements are connected to each other, i.e., the system’s

topology. An environment that allows non-causal modeling, and that is used in this

work, is Dymola (Dynasim, 2004), which implements the object-oriented modeling

language Modelica. See (Navarro et al., 2000) for an example of non-causal and object-

oriented power system modeling.

2.3. Prediction model assumptions

For the object-oriented model to be useful as a prediction model, a method has to

be available that can evaluate the model over a certain time horizon from time t0 until tf.

This means that an initial value problem has to be solved that given the initial continu-

ous state xc(t0)∈R
nxc , the initial discrete state xd(t0)∈Z

nxd , the initial derivative of the

continuous state ẋc(t0), the initial algebraic variables z(t0) ∈ R
nz , and inputs u(t) spec-

ified over the full prediction interval, computes the output y(t) ∈ R
ny , for t ∈ [t0, tf].

For power networks, xc typically are state variables of generators, loads, etc., xd are

transformer tap settings or status information like whether or not a saturation point has

been reached, z represent voltage magnitudes, voltage angles, and auxiliary algebraic

variables used in modeling physical phenomena in generators, y are the outputs, e.g.,

voltage magnitudes, power losses, etc., and u are actuator inputs for generators, turbine

governors, loads, etc.

Note that the set-points cannot be continuously provided, but only at discrete con-

trol sample steps kc + i, for i = {0,1, . . .}, where control sample step kc + i corresponds

to continuous time t0 + (kc + i)Tc, with Tc the distance between two control sample

steps in continuous time units. The controller uses a zero-order hold approach to make

the transformation between the discrete-time input signal and the continuous-time in-

put signal. So u(t) = ukc
, for t ∈ [t0 + kcTc, t0 + (kc + 1)Tc). Therefore, instead of
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specifying a continuous input signal, the prediction model is given a sequence of Nc

inputs, collected in ũ(kc) = [u(kc)
T, . . . ,u(kc + Nc − 1)T]T, where Nc =

⌊

tf−t0
Tc

⌋

+ 1 is

the number of set-point updates over the prediction horizon2.

In general, there is no analytic expression for the solution of the initial value prob-

lem. Instead, the trajectories of all variables of interest have to be approximated by nu-

merical means to obtain values for the variables at discrete points in time. It is assumed

that computing a sample of the output y once every Tp time units is sufficient to ade-

quately represent the underlying continuous signals. Therefore the prediction horizon

is defined as Np =
⌊

tf−t0
Tp

⌋

+1, and the outputs as ỹ(kp) = [y(kp)
T, . . . ,y(kp +Np−1)T]T,

where discrete time step kp + i corresponds to continuous time t0 +(kp + i)Tp.

In the following it is assumed without loss of generality that the object-oriented

model of the power network is given by the mapping

ỹ(kp) = P(ẋc(t0),xc(t0),xd(t0),z(t0), ũ(kc)), (1)

where P maps the derivative of the continuous state ẋc(t0), the continuous state xc(t0),
the discrete state xd(t0), the algebraic variables z(t0) at time t0, and the Nc inputs col-

lected in ũ(kc) to the Np outputs collected in ỹ(kp). The prediction model thus includes

the procedure to perform the time-domain simulation of the object-oriented model.

In this paper, the prediction model is emulated by the differential-algebraic equations

solver DASSL (Petzold, 1983; Brenan et al., 1996) as implemented in Dymola (Dy-

nasim, 2004), which solves the initial-value problem of the system of differential-

algebraic equations obtained after transforming the object-oriented model. It should

be noted that the prediction model P is nonlinear and non-smooth, and involves the

numerical solution of systems of differential-algebraic equations in combination with

discrete logic, and that therefore computing the predictions is a computationally inten-

sive process.

3. Supervisory voltage control problem

The supervisory controller uses MPC to determine which set-points to provide to

the lower control layer. The MPC problem of the supervisory controller is formulated

as follows. Every Tc time units the supervisory controller has to provide a set of set-

points for the next Tc time units. These inputs have to be chosen in such a way that

costs over a prediction horizon of Nc control sample steps, i.e., over a time span of NcTc

time units, are minimized.

The control objectives of the supervisory controller consist of providing set-points

to the decentralized controllers in the lower layer such that: all voltage magnitudes are

maintained as much as possible within certain lower and upper bounds; changes in set-

points provided earlier are minimized; and acceptable steady-state voltage magnitudes

are obtained (i.e., no oscillations are present). These control objectives are quantified

2⌊v⌋ indicates the largest integer value smaller than or equal to v.
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through the following objective function:

J(ũ(kc), ỹ(kp)) =
Np−1

∑
i=0

‖Qyyerr(y(kp + i))‖∞

+‖Qu(u(kc)− ū)‖1 +
Nc−1

∑
i=0

‖Qu(u(kc + i)−u(kc + i−1))‖1, (2)

where ū are the set-points provided at the last control sample step, Qy and Qu are

penalty matrices, ‖ · ‖∞ and ‖ · ‖1 denote the infinity norm and one norm, respectively,

where y are the voltage magnitudes and u are the set-points for the lower control layer,

and where yerr is the violation of the desired voltage bounds, of which the entries are

computed as

yerr,q(y(kp + i)) =







yq,lower −yq(kp + i) for yq(kp + i) ≤ yq,lower

0 for yq,lower < yq(kp + i) < yq,upper,

yq(kp + i)−yq,upper for yq(kp + i) ≥ yq,upper

where vq indicates entry q of vector v, and yq,lower and yq,upper are the desired up-

per and lower bounds for the corresponding voltage magnitudes. The infinity norm is

taken for minimization of the variables yerr, such that the worst-case error is minimized

(Geyer et al., 2003; Beccuti and Morari, 2006). Using the infinity norm is sufficient

for representing the control objective of maintaining all voltage magnitudes between

the given lower and upper bounds3. The one norm is used for the changes in the inputs

u(kc + i)−u(kc + i−1), such that the changes in each of the inputs are minimized.

Hence, the supervisory MPC control problem is formulated at control step kc, cor-

responding to time t = t0, as

min
ũ(kc),ỹ(kp)

J(ũ(kc), ỹ(kp))

subject to ỹ(kp) = P(ẋc(t0),xc(t0),xd(t0),z(t0), ũ(kc))

ũlower ≤ ũ(kc) ≤ ũupper,

where ulower and uupper are given bounds on u, and ũlower = [uT
lower, . . . ,u

T
lower]

T and

ũupper = [uT
upper, . . . ,u

T
upper]

T.

Note that instead of keeping the relation for the prediction model as an explicit

equality relation, this relation can be eliminated by substituting it into the objective

function, which has computational advantages. The resulting control problem reduces

to minimization of the objective function subject to simple bound constraints,

min
ũ(kc)

J(ũ(kc),P(ẋc(t0),xc(t0),xd(t0),z(t0), ũ(kc))) (3)

subject to ũlower ≤ ũ(kc) ≤ ũupper.

3In the case that all voltage magnitude errors should be penalized the infinity norm can simply be replaced

by the one or two norm.
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Since the objective function of this problem includes the procedure to compute the

prediction model and due to the definition of yerr, this is a nonlinear, non-smooth op-

timization problem subject to simple bound constraints. In addition it should be men-

tioned that evaluating the objective function is expensive, since it involves time-domain

simulation of the prediction model. In the following two approaches are considered to

solve problem (3). In particular the direct-search method pattern search is used as

an appropriate solver, for its more effective way of dealing with the problem at hand

when compared to solvers for nonlinear optimization that require gradient or Hessian

information.

4. Multi-start pattern search for nonlinear optimization

In optimization problem (3), evaluating the objective function is expensive due

to the evaluation of the prediction model. In practice, within the limited available

computation time, a solution that is as good as possible has to be determined. Many

nonlinear optimization methods rely on gradient and Hessian information (Nocedal and

Wright, 1999; Bertsekas, 2003). However, the saturations and the use of the infinity

norm in the objective function make that the objective function has many flat areas in

which the gradient and Hessian are both equal to zero and thus not informative. Solvers

that use this first-order or second-order information will therefore perform unnecessary

numerical estimation, involving numerous objective function evaluations. In addition,

due to the non-smoothness of the problem there are many local minima in which this

type of solvers typically can get stuck quickly.

Instead of using gradient-based or Hessian-based solvers, so-called direct-search

optimization methods can be used, which do not explicitly require gradient and Hessian

information (Conn et al., 1997; Wright, 1996). The only property that these methods

require is that the values of the objective function can be ranked (Lewis et al., 2000).

Moreover the feature that direct-search methods are suitable for non-smooth problems

(Conn et al., 1997), make that these methods are suitable for solving the control prob-

lem at hand. The direct-search method which is proposed to be used in particular is

pattern search (Lewis et al., 2000), for its straightforward implementation and its abil-

ity to yield good solutions, even for objective functions with many local minima, in

combination with a multi-start method, to improve the probability of obtaining a solu-

tion close to a globally optimal solution. Several theoretical issues of pattern search are

discussed in (Torczon, 1997; Lewis and Torczon, 2000; Audet and Dennis Jr., 2007).

Appendix Appendix A contains more details on the way in which pattern search works.

The combination of pattern search with multi-start for solving the control problem

at control step kc consists of solving the control problem from ninit different initial

solutions. The proposed multi-start implementation involves starting from different

initial solutions as long as computation time is available. The first initial solution is

based on the shifted solution of control sample step kc−1, since the solution of control

sample step kc − 1 typically gives a good guess of the solution at control sample step

kc. The solution with the minimal objective function value after optimization with

pattern search when the maximum optimization time has elapsed is used as the solution

at control sample step kc. Although multi-start methods generally increase the time
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Figure 2: Network topology of the 9-bus dynamic network.

required to solve an optimization problem significantly, they can typically be executed

in a highly parallel fashion.

5. Case study: A 9-bus power network

In this section case studies are performed on a voltage control problem in a 9-bus

power network. The system and the control setup are described and uncontrolled be-

havior is illustrated. Then pattern search is compared with a gradient-based approach,

and the controlled behavior is illustrated.

5.1. System

Figure 2 shows the topology of the system under study. This system is the 9-bus

Anderson-Farmer network (Farmer and Anderson, 1996), as taken from the Dynamical

Systems Benchmark Library4, to which the reader is referred for an exhaustive descrip-

tion. The network consists of 4 generators (G1–G4), 5 loads (L5–L9), and a capacitor

bank. Generators G1 and G4 are aggregate generators representing the combination of

multiple smaller generators. These generators are modeled with second-order dynam-

ics (Kundur, 1994). Generators G2 and G3 are smaller generators and modeled in more

detail with sixth-order dynamic models (Kundur, 1994). Transmission lines are rep-

resented by the classical π model. The loads are modeled in the original system with

static voltage-dependent relations. These static loads have been replaced with dynamic

loads by modeling the loads in more detail with a second-order ZIP model (Hill, 1993).

Hence, the power network contains both fast dynamics (due to the generators) and slow

dynamics (due to the loads).

5.2. Control setup

Control of the power network is done through two-layered control. The lower layer

consists of an automatic voltage regulator and turbine governor for each generator, a

4URL: http://psdyn.ece.wisc.edu/IEEEbenchmarks/
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power system stabilizer for generators G2 and G3, load shedding controllers for each

load, and a capacitor bank switcher. Summarizing, the higher-layer controller can pro-

vide the following set-points to the lower control layer:

• the voltage magnitude set-points for the automatic voltage regulators;

• the mechanical power set-point for the turbine governors;

• the reference frequency for the turbine governors and power system stabilizers;

• the amount of load to shed;

• the number of capacitor banks to connect to the grid.

Depending on the particular control problem a higher-layer controller will adjust the

values of these controls. For the problem at hand the amount of load shed and the

set-points of the automatic voltage regulators are taken as the available controls.

Since typically uncontrolled slow voltage collapses emerge over time spans of sev-

eral tens of seconds up to several minutes (Van Cutsem and Vournas, 1998), a control

sample time of 20 s is acceptable. It should be noted that the speed at which a voltage

collapse unfolds depends on the magnitude of the fault occurring. So, depending on

the range of faults that should be adequately dealt with, the control sample time will

have to be decreased or may be increased.

5.3. Control problem

The control problem of the supervisory controller is formulated as specified in Sec-

tion 3, using a prediction model that matches the dynamics of the power network and

the lower control layer, and a prediction horizon of 40 s. The voltage magnitudes should

stay between 0.9 and 1.1 per unit (p.u.).

Figure 3 shows a typical scenario considered where a fault consisting in a 600%

impedance increase in the transformer between bus 1 and 5 occurs. Due to the changed

transmission capacity of the network and the dynamics of the loads, the voltage mag-

nitudes start to oscillate with a decreasing trend. If set-points to the decentralized

controllers of the lower layer are not updated, the network collapses.

5.4. Pattern search versus gradient-based optimization

Pattern search, as part of Matlab’s Direct Search and Genetic Algorithms tool-

box and in a multi-start implementation, is compared with the derivative-based solver

SNOPT, as implemented in Tomlab. SNOPT uses a sparse sequential quadratic pro-

gramming method, using limited-memory quasi-Newton approximations to the Hes-

sian of the Lagrangian. In principle it requires gradient information, but this informa-

tion can be approximated numerically if it is not available.

To compare the performance of the solvers, 50 experiments are performed in which

faults occur at varying locations (i.e., at the 4 transformers and all lines), with varying

magnitudes (i.e., an impedance increase of 100% up to 800%), and at varying times

(i.e., the fault time varies between second 20 and 28). The control problems of the first
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control sample step after a fault has been applied are solved by both pattern search and

SNOPT, allowing a total decision making time of 300 s5.

Figure 4 shows that SNOPT considers far more initial solutions within the allowed

decision making time span. The time that SNOPT requires to obtain a locally optimal

solution is much smaller than the time required by pattern search. This is because

SNOPT uses much fewer prediction model evaluations per optimization, since it does

not explore the search space as much as pattern search. Figure 5 shows, as decision time

tdec progresses, the so-called average normalized performance of multi-start pattern

search and multi-start SNOPT. For a particular decision making time tdec, the average

normalized performance Javg,norm of pattern search is computed as follows: the best

objective value of pattern search so far is divided by the best objective value of SNOPT

so far, and for this quantity the average is taken over all experiments. For obtaining

the average normalized performance of SNOPT, the average value of the best objective

value of SNOPT so far is divided by itself, yielding values of 1 throughout the decision

making step. The figure considers only points for which the fraction can be computed,

i.e., both pattern search and SNOPT have finished at least one optimization problem.

Pattern search on average, has a best objective value so far that is about a factor 5

smaller than the best objective value so far of SNOPT, and that, hence, pattern search

yields significantly lower costs. The comparison shows that pattern search, although it

does not require gradient or Hessian information and is straightforward to implement,

generally provides solutions that outperform the solutions provided by SNOPT.

5This relatively long decision making time is taken to illustrate how the performance of both solvers

varies over time. In practice, multiple processors can be employed to parallelize the multi-start approach and

in this way obtain acceptable solutions in a more realistic time frame. In addition all code can be optimized

for speed and implemented in object code (currently only the SNOPT code is in object code).
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Figure 6: Voltage magnitude profiles for simulation including a higher-layer MPC controller.
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Figure 7: Evolution of the set-points provided by the supervisory controller to the automatic voltage regula-

tors (uAVR,i, in p.u.) and the amount of load to shed (ushed,i, in % of the total load) for simulation including

this controller.

5.5. Controlled scenario

To illustrate the performance of the proposed approach, consider again the fault

consisting in a 600% impedance increase at tfault = 26.5 s in the transformer in the line

from bus 1 to 5. The supervisory controller operates at Tc = 20 s using the MPC strategy

based on multi-start pattern search as discussed before. The supervisory controller uses

a prediction of 40 s, and samples the voltage magnitudes from its prediction model

every Tp = 0.5 s.

Figures 6 and 7 show the resulting voltage profiles and set-points, respectively.

After the fault has appeared, the supervisory controller is able to stabilize the voltage
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magnitudes between 0.9 and 1.1 p.u. and thus achieves its objectives.

6. Conclusions

A control strategy has been proposed for the controller in a higher control layer

of a power network, that provides set-points to a lower layer with decentralized con-

trollers, with the aim to prevent voltage collapses from occurring. The control strategy

uses model predictive control (MPC) in which a prediction model describes both the

dynamics of the system and the functioning of the lower control layer. The prediction

model is formulated in an object-oriented modeling environment, allowing relatively

easy construction of models of complex systems. Due to the nature of power networks,

the prediction model involves differential, algebraic, and logic relations and is nonlin-

ear, non-smooth, and computationally intensive to evaluate.

Pattern search has been proposed to solve the nonlinear MPC problem of the super-

visory controller. Pattern search is a direct-optimization method that does not require

gradients and/or Hessians, which are not available in the situation considered. More-

over, due to the discrete elements, such as saturations, the MPC problem is non-smooth,

making gradient or Hessian-based approaches less suitable.

Simulation studies on a 9-bus dynamic power system have shown the potential of

the proposed approach. It has been shown that the proposed controller is capable of

preventing voltage collapses from occurring and that the pattern search method has

superior performance when compared to a gradient-based method.

Future research will address the stability of the final closed-loop, employing a

quasi-infinite horizon approach, in which a penalty term together with an additional

terminal region are determined such that nominal stability of the closed-loop is guar-

anteed (Chen and Allgöwer, 1998). Future research will also consider using a reduced-

order instead of a full-order prediction model, integrating the idea that a supervisory

controller should use a less detailed representation of the system behavior to mainly

steer the long-term behavior of the lower control layer.

Appendix A. Pattern search

The control problem (3) has an objective function that is computationally expensive

to evaluate. Pattern search (Lewis et al., 2000) is proposed to solve the control problem.

It is a so-called direct search method and does therefore not explicitly require gradient

and Hessian information (Conn et al., 1997; Wright, 1996), and is suitable for solving

non-smooth problems (Conn et al., 1997),

Pattern search works in an iterative way in which the solution xs at iteration s is

replaced by a new solution x+ only if f (x+) < f (xs). The new solution x+ is selected

from a finite set of candidate solutions Ms that is updated at each iteration. An iteration

of pattern search is summarized as follows (Lewis et al., 2000):

1. A mesh Ms around current solution xs is constructed, consisting of a discrete set

of candidate solutions in R
n in which the algorithm searches for a new solution.

The set of candidate solutions is defined using a set of directions, called the pat-

tern, and a mesh size parameter. The pattern consists of a set of positive spanning
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directions D of which non-negative linear combinations span the solution space.

The mesh size parameter ∆s ∈ R
+ determines the coarseness of the mesh. The

mesh Ms then consists of the linear combinations of the current solution xs with

an individual direction di multiplied m times by the mesh size ∆s ∈ R
+, for each

di ∈ D and for m = {1,2, . . .}.

2. The mesh Ms is explored in the following way:

• In the so-called search phase any strategy (e.g., a random or heuristic

search) can be used to find a solution x+ ∈ Ms for which f (x+) < f (xs),
as long as a finite number of points is considered. If a solution x+ is found,

the search was successful and the algorithm continues with step 3.

• If no solution x+ is found in the search phase, then the exploration of the

mesh Ms continuous with the so-called polling phase. In the polling phase

a new solution x+ for which f (x+) < f (xs) is searched for in a subset of

solutions in Ms, consisting of those solutions that are in the direct neigh-

borhood of the current solution xs. The direct neighborhood consists of

these points of the mesh obtained using multiplication factor m = 1. If a

solution x+ is found in this neighborhood then the polling phase was suc-

cessful.

3. If either of the phases was successful, then xs+1 = x+, the coarseness of the

mesh is set to ∆s+1 = ε∆s, with expansion factor ε > 1, and the next iteration

starts. If x+ was not found, then xs+1 = xs, the coarseness of the mesh is set to

∆s+1 = γ∆s, with contraction factor γ ∈ (0,1), and the next iteration starts.

The iterations continue until a stopping condition is satisfied, e.g., the mesh size is

less than a given tolerance, the total number of objective function evaluations reaches

a given maximum, or the distance between the point found at one successful poll and

the point at the next successful poll is less than a given tolerance.

Analyzing the convergence of pattern search is complicated, since no explicit rep-

resentation of the directional derivative of the objective function is available. Analysis

of pattern search uses a simple decrease criterion, requiring ordinal information. This

criterion specifies that a new solution is accepted only if the value of that new solution

is strictly less than the value of the previous solution. Pattern search employs at least

nx + 1 points (where nx is the dimension of the solution vector x). This ensures suffi-

cient information about the entire nx-dimensional domain in the neighborhood of the

current iterate. Under very mild assumptions on the objective function f , these sim-

ple heuristics provide enough structure to guarantee global convergence to a stationary,

usually local-minimum, solution. See (Torczon, 1997; Lewis and Torczon, 2000; Audet

and Dennis Jr., 2007) for more details.
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