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Abstract— With the increasing use of distributed energy 

resources and intelligence in the electricity infrastructure, the 

possibilities for minimizing costs of household energy 

consumption increase. Technology is moving toward a situation 

in which automated energy management systems could control 

domestic energy generation, storage, and consumption. In 

previous work we have proposed a controller based on model 

predictive control for controlling an individual household using 

a micro combined heat and power plant in combination with 

heat and electricity storages. Although the controller provides 

adequate performance in computer simulations, the 

computational time required to determine which actions to take 

can be significant, due to the precise predictions made over a 

long prediction horizon. In this paper we propose to make the 

computations less time consuming by coarsening the quality of 

the predictions made over the prediction horizon by decreasing 

their time resolution. In simulation studies we illustrate the 

performance of the proposed approach. 

I. INTRODUCTION 

A. Distributed energy resources 

ISTRIBUTED energy resources, comprising distributed 

power generation, distributed energy storage, and load 

management options, can play a crucial role in supporting 

policy objectives as electricity market liberalization, 

mitigating climate change, increasing the amount of 

electricity generated from renewable sources and enhancing 

energy savings [1, 2]. A wide body of literature states that 

distributed generation of electricity, e.g., via photo-voltaics, 

wind turbines, or micro combined heat and power plants 

(µCHP), has a good chance of pervading the electricity 

infrastructure in the future (see, e.g. [3, 4]). Also, several 

electricity storage technologies are under development (such 

as lithium-ion batteries, plug-in hybrid electric vehicles [5], 

and demand-side management options are foreseen for the 
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future power system [6]. 

Applying distributed generation and storage technologies 

at customer sites has key economic and environmental 

potentials. Specific potential lies in the opportunity to locally 

utilise the waste heat from the conversion of primary fuels 

into electricity by combined heat and power systems. 

Consequently, there has been significant progress toward 

developing small combined heat and power systems (kW-

scale), so-called micro-CHP or µCHP systems, based on a 

Stirling engine, an internal combustion engine, a gas turbine, 

or fuel cell conversion technology [7]. E.g., Stirling µCHP 

systems are expected to pervade the Dutch market 

substantially in the short- to mid-term [8]. In The 

Netherlands, these Stirling systems target the housing market 

segment of system replacements and are probably not meant 

for newly built houses as these have too little heat demand. 

The matured Dutch market is expected to comprise of 

around 300.000 units per year. For several other countries 

(e.g., UK, Germany, and Japan) µCHP technology is also 

expected to play a significant role [7]. 

The introduction of such distributed energy resources 

together with the introduction of more information and 

communication technology in the electricity system provides 

interesting and novel automated demand response 

opportunities at the domestic user level. Households thereby 

become more active end-users of electricity. They can devise 

new contractual arrangements with suppliers and/or network 

managers, thereby becoming more independent in terms of 

energy usage. 

B. Model predictive control 

In order to exploit the increased operational freedom of 

households, in [9] we proposed a controller for household 

energy flow optimization.  The controller controls a 

household that has the capability of generating its own power 

with a µCHP unit, that can store heat and electricity, and that 

can trade electricity with an external energy supplier. The 

controller uses the control technique Model Predictive 

Control (MPC) [10] and has the task to automatically 

determine which actions should be taken in order to 

minimize the operational costs of fulfilling residential 

electricity and heat requirements subject to operational 

constraints. The controller uses an MPC strategy such that it 

can: 

• take into account the decision freedom due to heat and 

electricity storage possibilities; 

• incorporate predictions on residential electricity and 
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heat demands; 

• incorporate models of the dynamics and constraints of 

installed generators and storages. 

MPC is based on solving at each control step an 

optimization problem over a prediction horizon subject to 

system dynamics, an objective function, and constraints on 

states, actions, and outputs. At each control step the 

optimization yields a sequence of actions optimizing 

expected system behavior over the prediction horizon. 

Actions (control inputs) are implemented by the controller 

on the system until the next control step, after which the 

procedure is repeated with new system measurements. Due 

to the prediction horizon an MPC controller can take benefit 

of knowledge that it may have over the future, such as 

predicted energy demand based on historical data of energy 

consumption patterns. 

C. Aim and outline of this paper 

Although the MPC controller proposed in [9] chooses 

actions that optimize the energy costs for the household in 

simulation studies, the time that is required to find these 

actions can be considerable. The large amount of time 

required is due to the large amount of computations required 

to solve the MPC optimization problem at each control step. 

The aim of this paper is to reduce the computational burden 

of the approach presented in [9]. In this paper we propose an 

approximation of the original MPC optimization problem 

which yields a significant reduction in required computation 

time, while keeping the performance loss due to this 

reduction limited. 

This paper is organized as follows. In Section II we 

shortly describe the main components and assumptions of the 

system under study. In Section III we propose the control 

objective and constraints of the approximation of our MPC 

formulation. In Section IV the performance of the proposed 

approach is illustrated through simulation studies.  

II. SYSTEM DESCRIPTION 

The analysis in this paper focuses on the system as shown 

in Fig. 1. The system consists of a household that interacts 

with its energy supplier. Energy trading flows are present 

between the household and the supplier as shown. The 

household has full control over its distributed energy 

resources and there is no interaction with other households 

regarding electrical energy trade.  

The household fulfils its electricity and heat consumption 

requirements through several alternative energy supply and 

consumption means. The µCHP unit installed in the 

household is based on Stirling technology [7]. The unit 

consists of a Stirling engine prime mover, conversion 1, and 

an auxiliary burner, conversion 2, which can provide 

additional thermal power. The Stirling engine converts 

natural gas (f1) into electrical energy (g) and heat (h1). The 

heat is supplied to a central heat storage in the form of hot 

water, of which the energy content is indicated by hs. The 

auxiliary burner also converts natural gas (f2) in providing 

the additional heat (h2). Heat consumption (hc) is taken from 

the heat storage. Electrical energy can be stored in a battery 

(es) (e.g., a lithium-ion battery). In addition, electrical energy 

can flow to and from the battery, represented in Fig. 1 by (si) 

and (so) respectively. Locally generated electrical energy can 

be used directly by the household (ec), it can be stored, or it 

can be sold to the supplier (eext). Electrical energy can also 

be imported from the supplier (iext). The supplier thus sells 

primary fuel (f=f1+f2) for fuelling the µCHP unit as well as 

additionally required import electrical energy for the 

household. The supplier buys any electrical energy that the 

household would like to feed back for a feed-back tariff.  

Note that we consider one large heat storage from which 

all heat, for domestic hot water as well as for space heating 

purposes, can be extracted. Such a heat storage system is 

currently being marketed by a manufacturer in the UK, see 

[11]. One storage allows us to combine space heating and 

domestic hot water demand, which is more convenient for 

the system modeling. Note also that we consider only a 

single heat consumption block. Buildings exhibit dynamic 

heat consumption behavior, depending on, among others, 

solar radiation, occupancy, the in-house heating system 

configuration and building characteristics. By making use of 

the heat storage from which the needed heat for the 

household is extracted, the exact heat demand pattern as 

represented by the single heat consumption block does not 

have to be known and it can therefore be aggregated into 

time blocks of relatively low resolution (15 min) compared 

to the actual dynamic changes in heat demand.  

A description of additional assumptions can be found in 
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Fig. 1. Conceptual overview of the system under study. 

 



 

 

 

[1, 9]. 

III. MPC FORMULATION 

In [9], a MPC controller is proposed for control of the 

household just described. The objective of the MPC 

controller is to minimize the daily operational costs of 

residential energy use. The MPC controller employs a 

control step size of 15 minutes, meaning that every 15 

minutes the controller determines which action to take next. 

To determine which action to take, the controller makes 

predictions over a number of simulation steps, referred to as 

the prediction horizon. At each control step the controller 

performs the following steps: 

1. Make a measurement of the current state of the 

household, involving measurements of the current 

energy levels in the heat and electricity storage. 

2. Solve the MPC optimization problem, which involves 

finding over a prediction horizon of N simulation 

steps of 15 minutes the actions that lead to the best 

predicted performance over the prediction horizon.  

3. Implement the actions found until the next control 

step. 

The MPC controller makes predictions and determines 

which actions to take at each control step in the prediction 

horizon. In a sense the controller of [9] performs long-term 

detailed planning of its actions at each decision step. 

Although this gives at each control step the best decision 

over the full prediction horizon, the computations involved 

in finding this decision can be considerable. To decrease the 

computational load, instead of computing an action for each 

time simulation time step of the prediction horizon, in this 

paper we propose the combination of short-term detailed 

planning and long-term less detailed planning. This is 

expected to increase computational speed, while still 

providing adequate control performance.  

A. Short-term detailed and long-term rough predictions 

The idea is to decrease the computational requirements by 

using a more abstract model of the system for predictions 

made further in the future. The abstract models are obtained 

by decreasing the resolution of the simulation time steps 

considered in the prediction horizon. Hence, whereas in the 

original approach equal simulation time steps of 15 minutes 

are considered over the complete prediction horizon, here 

we propose to increase the duration of simulation time steps 

within the horizon. Such an approach yields a reduction in 

the number of equations and variables involved in the 

optimization problem (in particular in terms of integer-

valued variables), and is therefore expected to yield fewer 

computations. Under the assumption that events appearing 

further away in the future have a smaller influence on 

control performance than events appearing soon, the 

performance loss should be small. 

In order to obtain a combination of short-term detailed 

planning and long-term, less-detailed, planning, the 

prediction horizon is divided into two parts, and in each part 

of the horizon a different prediction model is used. For the 

first part a detailed, exact model is used. For the second part 

a less detailed model is used. In the following, we refer to 

the two parts of the prediction horizon as Phases I and Phase 

II. In Phase I, a simulation time step size of 15 minutes is 

taken, which gives an exact representation of the dynamics 

of the modeled system. In Phase II, a simulation time step 

size of 1 hour is taken. Fig. 2 illustrates the decreasing 

simulation time step resolution further in the prediction 

horizon. The system accepts new actions every 15 minutes. 

Below we discuss how to formulate the prediction models 

and the control objectives for the different phases within the 

prediction horizon.  

B. System model formulation 

In principle, there are various ways in which the more 

abstract model for Phase II could be derived from the 

detailed model. We develop the abstract model based on 

expert knowledge of the system. As will be shown, the 

prediction model designed in this way for Phase II gives 

good system performance and provides a basis for future 

comparison with possible other models. 

Our starting point is the model developed previously in [1, 

9]. In Phase I the model that exactly represents the 

household is used. For Phase II, as pointed out, larger 

simulation time steps are used. The model for Phase II is 

obtained by adapting some of the equations of the model for 

Phase I. The adaptation mainly entails the removal of binary 

variables to continuous variables, the rewriting of some 

constraints as to present system behavior when considering 

the larger simulation time steps and aggregating and 

averaging of simulation input data (described below). 

We first describe the model for Phase I and then describe 

how the model for Phase II differs from this model. 

 

1) Model for Phase I 

The model for Phase I that we have used in this paper is 

similar to the model described in [9]. It is worthwhile to 

describe it here as well, as then the differences in modeling 

the system in the different phases of the prediction horizon 

can be made clear. Define the binary variables CHP

kv  and aux

kv , 

 

 
 

Fig. 2. Illustration of the different simulation time step resolutions 

considered over a prediction horizon. The top part of the figure indicates 

the steps used in the original approach, i.e., equidistant simulation time 

steps over the full prediction horizon. The bottom part indicates how in our 

approach for Phase I small simulation time steps are considered, while for 

Phase II several simulation time steps are aggregated to form larger 

simulation time steps. 



 

 

 

which indicate whether the installed µCHP prime mover and 

auxiliary burner are in operation at a specific time step k. In 

addition, the binary variables CHP

down,

CHP

up, , kk uu and aux

down,

aux

up, , kk uu are 

start-up and shut-down indicators for the µCHP prime mover 

and auxiliary burner, respectively, at time step k.  

An electric energy balance has to be satisfied relating the 

power output of the Stirling engine, the input and output 

power flows of the electricity storage, the electricity 

consumption, and electricity exchanged with the energy 

supplier. This power balance is given by: 

ext, o, ext, i, c, = 0k k k k k kg i s e s e+ + − − − ,        (1) 

where
e 1,k kg fη= ⋅ , with ηe the electric efficiency of the 

Stirling engine. The power output of the Stirling engine can 

be modulated between part load and full load, which is 

modeled by the constraints:  
CHP

1, 1,maxk kf v f≤ ⋅                (2) 

CHP

1, 1,partk kf v f≥ ⋅ ,               (3) 

where f1,max and f1,part are the fuel consumption at part and full 

load. For the Stirling engine there is also a minimal operation 

time and a minimum down time. The constraints that force 

the prime mover to stay in operation until this minimum has 

been reached are:  
CHP CHP

up, up, 0,..., 1k n kv u n t+ ≥ = − ,           (4) 

where tup is the minimum number of simulation time steps 

that the prime mover has to stay in operation. The constraints 

that force the prime mover to stay out of operation during 

down-time are:  
CHP CHP

down, down1 , 0,..., 1k r kv u r t+− ≥ = − ,         (5) 

where tdown is the minimum number of simulation time steps 

that the prime mover has to stay out of operation. 

The fuel consumption of the auxiliary burner is restricted 

to lie within: 
aux aux

2,min 2, 2,maxk k kv f f v f⋅ ≤ ≤ ⋅ ,          (6) 

where f2,min and f2,max are the minimal and maximum fuel 

consumption of the auxiliary burner. 

The electrical energy and heat stored should be between 

minimum and maximum values: 

s,min s, s,maxke e e≤ ≤                 (7) 

s,min s, s,maxkh h h≤ ≤ ,               (8) 

where es,min and es,max are minimum and maximum energy 

levels of the battery, and hs,min and hs,max are minimum and 

maximum energy levels of the heat storage. 

The electricity flows to and from the battery are limited by 

an assumed battery charge or discharge time of half an hour 

[5]. Hence, in 15 minutes the battery can be maximally 

charged or discharged with an amount equal to half the total 

storage capacity. Therefore, the constraint limiting the flows 

to and from the battery is given by: 

i, o, s,max0.5k ks s e+ ≤ ⋅ ,              (9) 

where es,max is the maximum energy that can be stored in the 

battery. At each time step k electrical energy can either only 

be imported from or only be exported to the external energy 

supplier. Constraints on the import and export power flows 

are therefore: 

ext, e 1, o,k k ke f sη≤ ⋅ +               (10) 

ext, e, maxk ke x P≤ ⋅                 (11) 

ext, c, i,k k ki e s≤ +                 (12) 

ext, i, maxk ki x P≤ ⋅                 (13) 

i, e, 1k kx x+ ≤ ,                (14) 

where Pmax is the maximum power flow allowed (2 kW) 

through the physical connection between the household and 

the external network, xe,k and xi,k are auxiliary binary 

variables indicating whether electrical energy is imported or 

exported 

The heat in the heat storage changes over time depending 

on the heat consumption and generation. The dynamics of 

the heat storage are modeled by: 

s, 1 s, 1, 2, cp,k k k k kh h h h h+ = + + − ,           (15) 

where 
1, tot e 1, 2, tot 2,( ) ,k k k kh f h fη η η= − ⋅ = ⋅ , and ηtot is the total 

efficiency of the µCHP unit. Similarly, the dynamics of the 

electricity storage are modeled by: 

s, 1 s, i, o,k k k ke e s s+ = + − .             (16) 

In order to let the modeled energy conversion units 

function as they should, the binary variables , ,
CHP

up,

CHP

kk uv and 

CHP

down,ku on the one hand, and , , aux

up,

aux

kk uv  and aux

down,ku  on the other, 

have to be linked. The relations between these variables are:  
CHP CHP CHP CHP

1 up, down,k k k kv v u u−− = −             (17) 

aux aux aux aux

1 up, down,k k k kv v u u−− = −             (18) 

CHP CHP

up, down, 1k ku u+ ≤                (19) 

aux aux

up, down, 1k ku u+ ≤ .               (20) 

 

2) Model for Phase II 

The prediction model used for Phase II is derived from the 

detailed model for Phase I. The main differences between the 

original prediction model and the model for Phase II are the 

following:  

• The start-up and shut-down behavior of the Stirling 

engine and the auxiliary burner is modeled differently 

and therefore constraints (4) and (5) are not present. 

• We treat the auxiliary burner power output as a 

continuous variable. The binary variable vaux,k therefore 

becomes unnecessary. 

• Because the simulation time steps span longer time 

intervals, there can now be import and export of power 

in the same simulation time step. Hence, constraint 

(11), (13), and (14) are absent. 

• In the energy balance equations, aggregated electricity 

and heat demand values are used, obtained by 

aggregating the 15-minute demand data to obtain data 

per hour for Phase II. 



 

 

 

 Due to the above abstractions the integer variables 

kkkkkkk xxvuuuu e,i,

auxaux

down,

aux

up,

CHP

down,

CHP

up, ,,,,,, become obsolete and 

are removed from the model. The equations of the system 

model that change substantially for Phase II are described 

below.  

Since if the Stirling engine runs, its energy output should 

be between the output value corresponding with the minimal 

up-time and the maximum value, instead of equations (2) and 

(3) for the Stirling engine operation, the following 

constraints are used: 
CHP

1, up 1,partk kf t v f≥ ⋅ ⋅               (21) 

CHP

1, II 1,maxk kf r v f≤ ⋅ ⋅ ,              (22) 

where 
IIr  is the number of time steps that are considered 

aggregated in the model of Phase II. The auxiliary burner 

constraint (6) is changed to: 

II 2,min 2, II 2,maxkr f f r f⋅ ≤ ≤ ⋅ .            (23) 

The constraint on the power flows to and from the battery 

change from (9) to: 

i, o, II s,max0.5k ks s r e+ ≤ ⋅ ⋅ .            (24) 

Finally, the constraint on the power import and export 

change from (11), (13) and (14) to: 

ext , ext, II maxk ke i r P+ ≤ ⋅ .             (25) 

The prediction models for Phases I and II are coupled to 

each other. The model for Phase I requires the measurement 

of the current state. Using the model for Phase I, predictions 

are made for NI prediction steps of 15 minutes. From that 

moment, the model of Phase II is used to make NII prediction 

steps of 60 minutes.  

C. Control objectives 

1) Objectives for Phase I 

For Phase I, costs are computed for each simulation time 

step of 15 minutes. The operational costs depend on the 

price pf for gas consumption, the price pi,ext for importing 

electricity and the price pe,ext at which electricity can be sold. 

The cost function for control step k with a prediction horizon 

of NI is therefore defined as:  

1-1

1, 2, f ext, i,ext, ext, e,ext

0

( )

(( ) ).
N

k m k m k m k m k m

m

J

f f p i p e p+ + + + +
=

⋅ =

+ ⋅ + ⋅ − ⋅∑
(26) 

 

2) Objectives for Phase II 

For Phase II the control objective function is similar to 

(26). The electricity prices differ, however, as in Phase II, 

average prices for electricity import and export are taken 

over the aggregated simulation time steps. 

IV. SIMULATIONS 

In this section we illustrate the performance of the 

proposed approach with simulation experiments. We focus 

on the relation between the reduction in the computational 

load for the MPC controller and the accompanying change in 

system performance. 

A. Implementation 

 We have implemented the described system and MPC 

controller in Matlab 7.4. The optimization problem that has 

to be solved at each decision step is a mixed-integer linear 

programming problem, due to the presence of continuous-

valued and binary-valued variables in combination with the 

lienar objective function and constraints. We use the state-of-

the-art mixed-integer solver CPLEX v10 through the Tomlab 

interface to Matlab to solve the problem.  

B. Simulation setup 

We consider a simulation period of one week in a winter 

season. Heat demand and electricity demand patterns, as well 

as prices for gas and electricity are assumed given on a per 

quarter basis, similarly as in [9]. The import and export 

prices are taken equal to each other and vary per hour. The 

starting values for the simulation of the system are for k=1 

taken as: 
CHP aux CHP CHP aux aux

1 1 up,1 down,1 up,1 down,1 0,v v u u u u= = = = = =  
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Fig. 4. Maximum computation time required (s) over all control 

steps for varying levels of detail considered in the prediction horizon.  
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Fig. 3. Mean computation time required (s) over all control steps for 

varying levels of detail considered in the prediction horizon.  

 



 

 

 

min,s1,s ee = , .min,s1,s hh =             

We are interested in observing the reduction in 

computational load as the predictions made over the 

prediction horizon are made less precisely. We do this by 

varying for a specific prediction horizon length the number 

of simulation steps that is considered in detail (modeled with 

the Phase I model) as well as the number of simulation steps 

that is considered in less detail (modeled with the Phase II 

model). As a prediction horizon we take two days, i.e., 192 

simulation steps of 15 minutes. We start with computing the 

time required and performance obtained when making 192 

detailed simulation steps and thus do not employ aggregated 

simulation steps in the prediction horizon. We then gradually 

decrease the detailed part of the prediction horizon by 

replacing the detailed simulation steps with aggregated 

simulation steps. 

C. Results 

Fig. 3 illustrates the mean computational time required at 

each control step, when simulating for one full week, and 

while varying the degree of detail considered by the 

controller over the prediction horizon. We define this degree 

of detail as the number of prediction steps considered in 

detail with the Phase I model devided by the total number of 

prediction steps in the prediction horizon, i.e., 192. We 

clearly observe that as the degree of detail is decreased, the 

mean computational time required decreases significantly. 

Fig. 4 shows the maximum computational time required over 

all control steps for varying degrees of detail. For larger 

degrees of detail, the computational time required is 

significantly larger than the control step length. 

Fig. 5 illustrates the change in the total performance, i.e., 

the performance over the full simulation of one week in 

terms of operational costs of energy use, as we vary the 

degree of detail considered over the prediction horizon. We 

observe that the total performance decreases only slightly 

with the decrease in detail.  Hence, these simulations clearly 

illustrate that the approach proposed in this paper has the 

potential to yield a significant reduction in computational 

time required, while only giving a slight reduction in 

performance. 

V. CONCLUSIONS AND FUTURE RESEARCH 

In this paper we have discussed reduction of 

computational requirements of a model predictive control 

(MPC) controller for household optimization. We have 

proposed to reduce the computational requirements of the 

controller by coarsening the predictions made over the 

prediction horizon. Our approach relies on using a prediction 

model that makes predictions at more coarse time intervals 

as prediction steps further in the prediction horizon are 

considered. In experiments using a simulation study we have 

illustrated the reduction in computational requirements and 

the relatively low reduction in performance. 

Future research should focus on more structured 

approaches of setting up the approximations of the detailed 

model, determining if it is beneficial to include a further 

coarsening of the prediction horizon, and analyzing the effect 

of the horizon length on the performance. In addition, the 

robustness of the MPC controller against uncertainty in 

measurements and predictions of energy consumption patters 

should be investigated. Furthermore, the implementability of 

the proposed approach using embedded hardware should be 

addressed to make the step to a practical implementation. 
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Fig. 5. Total cost over full simulation of one week for varying levels 

of detail consi dered in the prediction horizon.  

 


