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A Distributed Model Predictive Control Approach
for the Control of Irrigation Canals

Rudy R. Negenborn and Bart De Schutter

Abstract— Water networks are large-scale systems, consisting
of many interacting components. They are currently typically
operated by local decentralized controllers which receive set-
points from human operators. We discuss how communi-
cation among the local controllers can be included and in
particular propose the use of distributed model predictive
control for enabling the local controllers to determine set-
points autonomously using communication and coordination.
We consider the control of a particular class of water networks,
viz. irrigation canals. A simulation study on a 7-reach irrigation
canal illustrates the potential of the proposed approach.

I. I NTRODUCTION

A. Water networks

In the near future the importance of an efficient and
reliable flood and water management system will keep on
increasing, among others due to the effects of global warming
(higher sea levels, more heavy rain during the spring season,
but possibly also drier summers). Due to the large scale of
water networks, control of such networks in general cannot
be done in a centralized way, in which from a single location
measurements from the whole system are collected and
actions for the whole system are determined. Instead, control
is typically decentralized over several local control bodies,
each controlling a particular part of the network [1], [2].
Local control actions include activation of pumps or locks,
filling or draining of water reservoirs, or controlled flooding
of water meadows or of emergency water storage areas.

To each of the actions that can be taken in a water system
a certain cost is associated, and the same holds in case
of too high water levels (which may result in floods) or
too low groundwater or surface water levels (which have
a negative impact on agriculture, irrigation, and drinking
water supplies). Although the local water management bodies
usually only control or manage the water levels in a relatively
small region, the evolution of the water levels is influenced
by what happens over a much larger region, often extending
far beyond the neighborhood of the given region (e.g., due to
water arriving via rivers or via subsurface diffusion flows).

To improve the operation of water systems the controllers
of different parts of the water network should cooperate
and coordinate their local water management actions, and
take into account predictions or forecasts of future rain fall,
future droughts, future arrival of increased water flow via
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Fig. 1. Illustration of distributed MPC control of a network.

rivers, etc. (using various weather and hydrological sensors,
and prediction models). In this paper we propose the use of
distributed model predictive control to obtain more efficient
flood and water management with less risks and less costs.

B. Distributed model predictive control

To determine the actions that meet the control objectives
of the local control bodies as well as possible, the local
controllers have to make a trade-off among the various
actions available. An in particular promising form of control
for this seems to be model predictive control (MPC) [3].
Over the last decades MPC (also known as receding horizon
control or moving horizon control) has become an important
strategy for finding control policies for complex, dynamic
systems. MPC for centralized control has shown successful
application in the process industry [3], and is now gaining
increasing attention in fields like power networks [4], road
traffic networks [5], and steam networks [6].

In a distributed MPC control configuration, there are
multiple controllers, each of them using MPC to control its
own subnetwork, i.e., its own part of the overall network,
as illustrated in Fig. 1. The challenge in implementing
a distributed MPC strategy comes from ensuring that the
actions that the individual controllers choose result in a joint
performance that ideally is as good as when a hypothetical
centralized control configuration in which all informationis
available at a central location would be used.

Various distributed MPC control schemes have been in-
vestigated since the 90s, e.g., in [7], [8], [9]. In this paper
we apply a particular distributed MPC scheme, recently
proposed in [10], for improving the operation of a particular
type of water systems, viz. irrigation canals.



C. Outline

The remainder of this paper is organized as follows. In
Section II we discuss a particular distributed MPC scheme.
In Section III we discuss the dynamics of a particular water
system, viz. an irrigation canal, and set up the distributed
MPC control scheme for control of this system. In Section
IV we illustrate the potential of the proposed approach
through simulation studies. Section V concludes the paper
and contains directions for future research.

II. D ISTRIBUTED MODEL PREDICTIVE CONTROL

In distributed MPC control each individual controller is re-
sponsible for a particular part of the network. The individual
controllers on the one hand obtain measurements from and
determine actions for their part of the network, and on the
other hand communicate with other controllers in order to
obtain coordination and to improve predictions. To actually
determine which actions to take each controller uses MPC.

A. General ingredients and structure of distributed MPC

At each control cycle each controller uses the following
information:

• a prediction modeldescribing the behavior of its sub-
network;

• an objective functionexpressing which subnetwork be-
havior and actions are desired;

• possiblyconstraintson the local states, the local inputs,
and the local outputs;

• possibly known information about future disturbances
and exogenous inputs;

• a measurementof the state of the subnetwork at the
beginning of the current control cycle.

The objective of each controller is to determine those actions
that optimize the behavior of the overall network and to
minimize costs as specified through the objective function.
In order to find the actions that lead to the best performance,
each controller uses its prediction model to predict the be-
havior of its subnetwork under various actions over a certain
prediction horizon, starting from the state at the beginning
of the control cycle. Once the controller has determined
the actions that optimize the performance of its subnetwork
over the prediction horizon, it implements these actions until
the beginning of the next control cycle, at which point the
controller determines new actions over the prediction horizon
starting at that point, using updated information. Hence, each
controller operates in a receding or rolling horizon fashion
to determine its actions.

To make accurate predictions of the evolution of a
subnetwork, each controller requires the current state of
its subnetwork, a sequence of actions over the prediction
horizon, and predictions of the values of variables that
interconnect the model of its subnetwork with the model
of other subnetworks. The predictions of the values of these
so-calledinterconnecting variablesare based on the infor-
mation communicated with the neighboring controllers. One
particular class of methods aims at achieving cooperation
among controllers in an iterative way in which in each

control cycle controllers perform several iterations consisting
of local problem solving and communication. In each iter-
ation controllers then obtain information about the plans of
neighboring controllers. Ideally, at the end of the iterations
the controllers choose overall optimal actions.

In [10] we have proposed a distributed MPC scheme for
control of general transportation networks. Water networks
are a particular type of transportation networks, and there-
fore this scheme is also suitable for distributed control of
water networks. The actions that the controllers determine
using the scheme lead over the iterations to overall optimal
performance if certain assumptions on the dynamics, the in-
formation available to controllers, and the control objectives
are made. Below we briefly outline these assumptions and
the steps of the scheme.

B. Dynamics

Let the network be divided inton subnetworks. Assume
that the dynamics of subnetworki ∈ {1, . . . , n} are given
by a deterministic linear discrete-time time-invariant model
(possibly obtained after symbolic or numerical linearization
of a nonlinear model in combination with discretization):

xi(k + 1) = Aixi(k) + B1,iui(k)

+ B2,idi(k) + B3,ivi(k) (1)

yi(k) = Cixi(k) + D1,iui(k)

+ D2,idi(k) + D3,ivi(k), (2)

where at control cyclek, for subnetworki, xi(k) ∈ R
nxi

are the local states,ui(k) ∈ R
nui are the local inputs,

di(k) ∈ R
ndi are the local known exogenous inputs,yi(k) ∈

R
nyi are the local outputs,vi(k) ∈ R

nvi are the remaining
variables influencing the local dynamical states and outputs,
and Ai ∈ R

nxi
×nxi , B1,i ∈ R

nxi
×nui , B2,i ∈ R

nxi
×ndi ,

B3,i ∈ R
nxi

×nvi , Ci ∈ R
nyi

×nxi , D1,i ∈ R
nyi

×nui ,
D2,i ∈ R

nyi
×ndi , D3,i ∈ R

nyi
×nvi determine how the

different variables influence the local states and outputs of
subnetworki. Thevi(k) variables appear due to the fact that
a subnetwork is connected to other subnetworks. Hence, the
vi(k) variables represent the influence of other subnetworks
on subnetworki. If the values ofvi(k) would be constant,
then the dynamics of subnetworki would be decoupled from
the other subnetworks. In practice, however, the variables
vi(k) are equal to some of the variables of models represent-
ing dynamics of neighboring subnetworks. Below we refer
to the interconnecting input variableswin,ji(k) ∈ R

nwin,ji

as these variables of subnetworki that are influenced by
subnetworkj, i.e., a selection ofvi(k), and we refer to
the interconnecting output variableswout,ji(k) ∈ R

nwout,ji as
these variables of subnetworki that influence a neighboring
subnetworkj, i.e., a selection ofxi(k), ui(k), and yi(k).
Fig. 2 illustrates the relations between the variables of the
models of two subnetworks.

C. Available information

Assume that each of the subnetworksi ∈ {1, . . . , n} is
controlled by a controlleri that:
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Fig. 2. Illustration of the relation between the models and variables of two
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• has a prediction model of the form (1)–(2) of the
dynamics of subnetworki;

• can measure or estimate the statexi(k) of its subnet-
work;

• can determine settingsui(k) for the actuators of its
subnetwork;

• can estimate exogenous inputsdi(k + l) of its sub-
network over a certain horizon of lengthN , for l =
{0, . . . , N − 1};

• can communicate with neighboring controllers, i.e., the
controllers controlling the subnetworksj ∈ Ni, where
Ni = {ji,1, . . . , ji,mi

} is the set of indexes of themi

subnetworks connected to subnetworki, also referred
to as theneighborsof subnetwork or controlleri.

D. Control objectives

We assume that the controllers are cooperative, meaning
that the individual controllers strive for the best overallnet-
work performance. In addition, we assume that the objectives
of the controllers can be represented by convex functions
Jlocal,i, for i ∈ {1, . . . , n}, which are typically linear or
quadratic. Such functions are commonly encountered, in
particular for systems that can be represented by (1)–(2),
as illustrated in Section III-E.

E. Distributed MPC scheme

The distributed MPC scheme that we employ comprises
at control cyclek the following steps:

1) For i = 1, . . . , n, controlleri makes a measurement of
the current state of the subnetworkxi(k) and estimates
the expected exogenous inputsdi(k + l), for l =
0, . . . , N − 1.

2) The controllers cooperatively solve their control prob-
lems in the following iterative way1:

a) Set the iteration counters to 1 and initialize the
Lagrange multipliers̃λ

(s)

in,ji(k), λ̃
(s)

out,ij(k) arbitrar-
ily2.

b) For i = 1, . . . , n, one controller i after an-
other determines̃x(s)

i (k + 1), ũ
(s)
i (k), w̃

(s)
in,ji(k),

1The tilde notation is used to represent variables over the prediction
horizon. E.g.,ũi(k) = [ui(k)T, . . . ,ui(k + N − 1)T]T.

2The Lagrange multipliers can in principle be initialized arbitrarily.
However, initializing them with values close to the optimal Lagrange
multipliers will increase the convergence of the decision making process.
Therefore, also initializing the Lagrange multipliers withvalues obtained
from the previous control cycle is beneficial, since typically these Lagrange
multipliers will be good initial guesses for the new solution. This is referred
to aswarm start.

w̃
(s)
out,ji(k) as solution of the following optimiza-

tion problem:

min
x̃i(k+1),ũi(k),ỹi(k),

w̃in,ji,1i(k),...,w̃in,ji,mi
i(k),

w̃out,ji,1i(k),...,w̃out,ji,mi
i(k)

Jlocal,i (x̃i(k + 1), ũi(k), ỹi(k))

+
∑

j∈Ni

J
(s)
inter,i (w̃in,ji(k), w̃out,ji(k)) ,

(3)

subject to the local dynamics (1)–(2) of subnet-
work i over the horizon, the measurement of the
current statexi(k), the known exogenous inputs
d̃i(k). In this, the additional objective function
Jinter,i is at iterations defined as

J
(s)
inter,i (w̃in,ji(k), w̃out,ji(k)) =

[

λ̃
(s)

in,ji(k)

−λ̃
(s)

out,ij(k)

]T
[

w̃in,ji(k)
w̃out,ji(k)

]

+
γc

2

∥

∥

∥

∥

[

w̃in,prev,ij(k) − w̃out,ji(k)
w̃out,prev,ij(k) − w̃in,ji(k)

]∥

∥

∥

∥

2

2

,

wherew̃in,prev,ij(k) = w̃
(s)
in,ij(k) andw̃out,prev,ij(k)

= w̃
(s)
out,ij(k) is the information computed at the

current iterations for each controllerj ∈ Ni

that has solved its problembeforecontroller i in
thecurrent iterations, and wherew̃in,prev,ij(k) =

w̃
(s−1)
in,ij (k) andw̃out,prev,ij(k) = w̃

(s−1)
out,ij (k) is the

information computed at thelast iteration s − 1
for the other controllers. Furthermore,γc is a pos-
itive scalar that penalizes the deviation from the
interconnecting variable iterates that were com-
puted by the controllers before controllersi in
the current iteration and by the other controllers
during the last iteration. The results̃w(s)

out,ji(k) of
the optimization are sent to controllerj.

c) Update the Lagrange multipliers,

λ̃
(s+1)

in,ji (k) = λ̃
(s)

in,ji(k)

+ γc

(

w̃
(s)
in,ji(k) − w̃

(s)
out,ij(k)

)

. (4)

d) Move on to the next iterations + 1 and repeat
steps 2b–2c. The iterations stop when the follow-
ing stopping condition is satisfied:

∥

∥

∥

∥

∥

∥

∥

∥









λ̃
(s+1)

in,err,j1,11(k)
...

λ̃
(s+1)

in,err,jn,mnn(k)









∥

∥

∥

∥

∥

∥

∥

∥

∞

≤ γǫ,term, (5)

whereλ̃
(s+1)

in,err,ji(k) = λ̃
(s+1)

in,ji (k) − λ̃
(s)

in,ji(k), and
γǫ,term is a small positive scalar and‖ · ‖∞
denotes the infinity norm. Note that satisfaction
of this stopping condition can be determined in a
distributed way, since each individual component
of the infinity norm depends only on variables of
one particular controller.

3) The controllers implement the actions until the begin-
ning of the next control cycle.



local flow
controller 1

human operator

local flow...

irrigation canal

controllern

(a)

local flow
controller 1

MPC controller

local flow...

irrigation canal

controllern

(b)

MPC
controller 1

MPC

local flow...

irrigation canal

...

local flow
controller 1 controllern

controllern

(c)

Fig. 3. Three control configurations for the control of irrigation canals.

4) The computations of the next control cycle are started.

Under the assumptions that we have made on the objective
functions and prediction models the solution of this scheme
converges to the solution that a centralized MPC controller
would have obtained, see [10].

III. C ONTROL OF AN IRRIGATION CANAL

In this section we describe the dynamics and control of a
particular water network, viz. an irrigation canal. Irrigation
canals are used mostly to transport water from source nodes,
such as lakes, large rivers, etc., to sink nodes, such as small
rivers and pipes transporting water to agricultural fields of
farmers. Irrigation canals consist of several connected canal
reaches, the inflow or outflow of which can be controlled
using structures such as so-called overshot or undershot
gates, which restrict the flow of water flowing from an
upstream canal reach into a downstream canal reach [11].
These structures usually have a local flow controller that
regulates the position of the gates in order to obtain a certain
flow. We focus on determining the set-points for the local
flow controllers at these structures.

A. Control configurations

Fig. 3 illustrates three possible control configurations for
irrigation canals. Currently the configuration of Fig. 3(a)
is typically used in practice. A human operator manually
adjusts the set-points for the local flow controllers at the
undershot and overshot gates. This manual process is ex-
pensive, since the human operator has to travel from one
control structure to the next, possibly several times per day
[12]. A more advanced control configuration is depicted in
Fig. 3(b). In this case, the determination of the set-pointsfor
the local flow controllers has been centralized and automated.
Although implementation of such a centralized control con-
figuration may be feasible in practice for relatively small wa-
ter networks, the increasing computational requirements and
required bandwidth prevent application to larger networks.
A centralized control configuration is not well scalable and

moreover constitutes a single point of failure. In addition,
in practice, management of irrigation canals may already
be distributed over several control authorities, preventing a
centralized control configuration from being implemented.
Instead of a centralized control configuration, the control
configuration in Fig. 3(c) may be employed, i.e., a distributed
control configuration may be installed, in which set-points
are autonomously decided upon by the distributed controllers
based on local communication and cooperation.

B. Benchmark system

The irrigation canal that we consider is based on the W-
M canal, which is a physically existing irrigation canal in
the South of Phoenix, Arizona. The canal is used to provide
water to farmers. The length of the canal is almost 10 km and
the maximum capacity of the head gate is2.8 m3/s [12].
The irrigation canal that we consider consists of 7 canal
reaches. At each of the reaches water can be taken out at
offtakes for irrigation purposes. Between each of the reaches
control structures are present in the form of undershot gates
to control the water flow locally. These control structures are
equipped with local flow controllers that adjust the height of
the undershot gate in order to meet a set-point for the water
flow.

In [12] an MPC scheme is proposed that is used by a single
controller to determine in a centralized way the set-pointsfor
the local flow controllers, cf. Fig. 3(b). Here we propose to
use the distributed MPC scheme of Section II to take over
this task. Using a distributed approach there is no need for
a central control location in the network. Using a distributed
approach only local information available to a local controller
and information from neighboring local controllers is used.

C. Dynamics of irrigation canals

The dynamics of irrigation canals can be modeled in
detail, e.g., using the Saint Venant equations [11] resulting
in systems of highly-nonlinear partial differential-algebraic
equations. However, using such highly-detailed models for
predictive control results in significant requirements on com-
putational power. Therefore, similarly as in [12], we employ
the integral delay model [13] to model the dynamics of a
canal reach. This model has shown to adequately capture
relevant dynamics [13], and reduces computations required
for simulation of the dynamics significantly.

The integrator delay model is a discrete-time model, which
models how the water level at particular places in the canal
changes over time. Let time be discretized into control cycles
k ∈ N

+ (whereN
+ are the positive natural numbers) and let

the continuous time between two control cyclesk andk + 1
correspond toTc ∈ R

+ (s) (whereR
+ are the positive real

numbers). Each canal reach is considered to have an inflow
from an upstream canal reach. Let this inflow into reachi be
given byqin,i(k) ∈ R

+ (m3/s). A canal reach has an outflow
to a downstream canal reach. Letqout,i(k) ∈ R

+ (m3/s)
denote this outflow. In addition to this inflow and outflow
due to upstream and downstream canal reaches there can
be additional local inflow (e.g., due to rainfall) and outflow



(e.g., due to outflow caused by farmers). Let such inflow be
represented byqext,in,i(k) ∈ R

+ (m3/s) and such outflow by
qext,out,i(k) ∈ R

+ (m3/s). The inflowqext,in,i(k) and outflow
qext,out,i(k) are assumed to be static and known or predicted
accurately in advance.

Depending on how the inflows and outflows change over
time, the levels of the water in reaches will change. Instead
of considering the levels of the water at each location in
the reaches, we only consider the levels of the water at the
downstream end of each reach. In addition to the amount of
inflow and outflow, also the surface of the reach influences
how much the level of the water will change. Lethi(k) ∈ R

+

(m) denote the level of the water in canal reachi, and let
the surface of reachi be ci ∈ R

+ (m2). It takes some time
for a change in the inflow of reachi to result in a change of
the water level at the downstream end of the reach. Let this
delay bekd,i ∈ N

+ control cycles for reachi.
Using the variables defined above, the model describing

how the level of the water in the canal reach changes from
one control cyclek to the next control cyclek + 1 is given
by:

hi(k + 1) = hi(k) +
Tc

ci

qin,i(k − kd,i) −
Tc

ci

qout,i(k)

+
Tc

ci

qext,in,i(k) −
Tc

ci

qext,out,i(k). (6)

Canal reaches are connected to one another. When two
canal reaches are connected to each other, the inflow of one
canal reach is equal to the outflow of the other. Hence, for
neighboring reachesi andj this interconnection is given by

qout,i(k) = qin,j(k). (7)

In the state-space form (1)–(2) the dynamics of canal reach
i are conveniently written down by defining

xi(k) =











hi(k)
qin,i(k − kd,i)

...
qin,i(k − 1)











di(k) =

[

qext,in,i(k)
qext,out,i(k)

]

ui(k) = qin,i(k) vi(k) = qout,i(k) yi(k) = xi(k)

and

Ai =























1 Tc
ci

0 . . . . . . 0

0 0 1 0 . . . 0
...

.. .
. . .

.. .
. ..

...

0
.. .

. . .
.. .

. .. 0

0
.. .

. . .
.. .

. .. 1
0 . . . . . . . . . . . . 0























B1,i =











−Tc
ci

0
...
0











B2,i =











Tc
ci

−Tc
ci

0 0
...

...
0 0











B3,i =











0
...
0
1











Ci =
[

1 0 · · · 0
]

D1,i = 0 D2,i =
[

0 0
]

D3,i = 0,

and

win,jdowni(k) = qout,i(k) wout,jupi(k) = qin,i(k),

where jup and jdown are the index of the upstream and
downstream canal reach, respectively.

D. Available information

There aren controllers, and each controlleri is responsible
for canal reachi. Controller i can measure the water level
in its canal reach, can adjust the set-point for the flow
controller at its upstream gate, and can communicate with
the controllers of the canal reaches immediately upstream
and downstream of the canal reach. In addition, controller
i can obtain the expected water offtakes and rainfall with
respect to its canal reach.

The actions that are optimal for each of the controllers
depend on one another, since if one controller decides to
increase its inflow, the water level in the upstream reach
will decrease and therefore influences the decision making
process of the upstream controller.

E. Control objectives

The set-points determined by the controllers and provided
to the local flow controllers of the undershot gates should be
chosen in such a way that

1) the deviations of water levelshi from provided set-
pointshref,i ∈ R

+, for i ∈ {1, . . . , n} are minimized;
2) the changes in the water levelshi from one control

cycle to the next are minimized to encourage smooth
water level changes;

3) the changes in the set-pointsui provided to the local
flow controllers are minimized to reduce equipment
wear.

After defining the deviation in the water levelhdev,i(k) ∈ R

as hdev,i(k) = hi(k) − href,i, the objective functionJlocal,i

can be written as

Jlocal,i(·) =

N−1
∑

l=0

ph,i (hdev,i(k + 1 + l))
2

+

N−1
∑

l=0

p∆h,i (hdev,i(k + 1 + l) − hdev,i(k + l))
2

+

N−1
∑

l=0

pu,i (ui(k + l) − ui(k − 1 + l))
2

where for controlleri, ph,i ∈ R
+ is the quadratic cost on

the water level deviation,p∆h,i ∈ R
+ is the quadratic cost

on a change in the water level deviation, andpu,i ∈ R
+ is

the quadratic cost on a change in the set-point provided to
the local flow controller.

IV. SIMULATION

In this section we describe a simulation result to illustrate
the performance of the controllers discussed in this paper.
We have implemented the model of the benchmark irrigation
canal consisting of 7 canal reaches in Matlab v7.33. For

3See http://www.mathworks.com/.



TABLE I

VALUES OF THE PARAMETERS OF THE MODEL, TAKEN FROM [12].

i 1 2 3 4 5 6 7
kd,i (steps) 1 3 1 1 9 3 5

ci (m2) 397 653 503 1530 1614 2000 1241
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Fig. 4. Evolution for four representative canal reaches of (a) set-points
and (b) deviation of the water levels from reference values.

solving the optimization problems at each control sample we
use the ILOG CPLEX v10.0 quadratic programming solver
through the Tomlab v5.7 interface [14] to Matlab.

We compare the performance of the distributed MPC
scheme with a hypothetical centralized scheme, i.e., we com-
pare the performance of a control configuration of Fig. 3(c)
with a corresponding control configuration of Fig. 3(b).

A. Scenario

The parameters used for the model of the irrigation canal
are shown in Table I. The timeTc between two consecutive
control cycles is 240 s. The controllers use as parameters
N = 31, γc = 1, γǫ,term = 1.10−4. A prediction horizon
length of 31 is chosen to take into account the total delay
present in the irrigation canal [12]. The cost coefficients that
the controllers use are chosen asph,i = 10, p∆h,i = 1,
pu,i = 0.01, for i ∈ {1, . . . , n}.

As scenario we consider a sudden increase in the water
offtake of canal reach 3 atk = 30 of 0.1 m3/s.

B. Results

Fig. 4(a) shows the changes in the set-points decided upon
by the controllers. Fig. 4(b) shows the closed-loop evolution
of the deviations of the water levels from the reference
values. It can be seen that the inflow of canal reach 1 is
increased right before the additional offtake increase takes
place to prevent having a too low water level after the
additional offtake. It can also be observed that the deviations
of the water levels after the offtake increase are minimal due
to the changes in the set-points. We observe that after about
25 control cycles the set-points settle at a constant value,
while the deviations of the water levels from the references
are minimal, and that thus the controllers have performed
their tasks adequately.

The costs computed over the full simulation using the
distributed MPC scheme are1832.10−7. A centralized MPC
controller based on the same objectives obtains costs over the
full simulation of1831.10−7. This difference in performance
is negligible, and hence, in this case in which the as-
sumptions made are valid, indeed, the distributed controllers

have achieved a performance comparable to the performance
obtained by a centralized MPC controller.

V. CONCLUSION AND FUTURE RESEARCH

In this paper we have considered model predictive con-
trol (MPC) for distributed control of water networks. In
particular, we have discussed the use of a serial, iteration-
based, distributed MPC scheme for the control of irrigation
canals. We have illustrated the potential of the approach in
a simulation study on a 7-reach irrigation canal.

Future work consists of further assessing the performance
of the proposed scheme, extending the system model to
include constraints on the minimal and maximal flow pos-
sible through undershot and overshot gates, assessing the
performance of the distributed MPC scheme using linear
prediction models on a nonlinear simulation model of the
canal, and, based on this assessment, further improving the
system model if necessary.
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