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A Distributed Model Predictive Control Approach
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control configuration

Abstract— Water networks are large-scale systems, consisting N ———— :
of many interacting components. They are currently typically WL '

points from human operators. We discuss how communi-
cation among the local controllers can be included and in
particular propose the use of distributed model predictive
control for enabling the local controllers to determine set-
points autonomously using communication and coordination.
We consider the control of a particular class of water networks, measurements | actions measurements | actions
viz. irrigation canals. A simulation study on a 7-reach irrigation
canal illustrates the potential of the proposed approach.

operated by local decentralized controllers which receive set- %

measuremen(s actions

I. INTRODUCTION

A. Water networks

In the near future the importance of an efficient and
reliable flood and water management system will keep on
increasing, among others due to the effects of g|oba| ngn’] Fig. 1. lllustration of distributed MPC control of a network

(higher sea levels, more heavy rain during the spring season

but possibly also drier summers). Due to the large scale oo et(_:. _(usmg various We_ather and hydrological ses)so
nd prediction models). In this paper we propose the use of

water networks, control of such networks in general cannc% . - . »
. ) : : ) . _distributed model predictive control to obtain more effitie

be done in a centralized way, in which from a single Iocauora . .

od and water management with less risks and less costs.
measurements from the whole system are collected an8
actions for the whole system are determined. Instead, @ontiB. Distributed model predictive control
is typically decentralized over several local control tesi
each controlling a particular part of the network [1], [2].

physical network

To determine the actions that meet the control objectives
Local | acti includ L f lock of the local control bodies as well as possible, the local
ocal control actions include activation of pumps or 10CkSyqnyrgllers have to make a trade-off among the various

filling or draining of water reservoirs, or controlled floadi actions available. An in particular promising form of cantr

of water meadows or of emergency water §t0rage areas. for this seems to be model predictive control (MPC) [3].
To ea_ch of th? actlons.that can be taken in a water SYSt€8ler the last decades MPC (also known as receding horizon

a certalr_1 cost Is assomated,_ and the same holds in ¢ trol or moving horizon control) has become an important

of too high water levels (which may result in ﬂO,OdS) Orstrategy for finding control policies for complex, dynamic

too low groundwater or surface water levels (which hangstems. MPC for centralized control has shown successful

a negat|ve|_|mpaclthon ?]grr:culltur?, irrigation, and dm;gggapplication in the process industry [3], and is now gaining
water supplies). Although the local water management 150di, -0 oging attention in fields like power networks [4], road

usually only control or manage the water levels in a reléive affic networks [5], and steam networks [6]

small region, the evolution of the water levels is influenceér In a distributed, MPC control configuraﬁon there are
by what happens_over a much Iarger_ region, _often eXtend"?gultipIe controllers, each of them using MPC to control its
far beyond the neighborhood of the given region (e.g., due Bwn subnetwork, i.e., its own part of the overall network,
water arriving via rivers or via subsurface diffusion flows) as illustrated in Fig. 1. The challenge in implementing

To improve the operation of water systems the controllerg distributed MPC strategy comes from ensuring that the

of different parts of the water network should COOperat%étions that the individual controllers choose result iniatj

and coordinate their local water management actions, ar& rformance that ideally is as good as when a hypothetical

take into account predictions or forecasts of future ralh fa centralized control configuration in which all informatios

future droughts, future arrival of increased water flow V&, qilable at a central location would be used.

R.R. Negenborn and B. De Schutter are with the Delft CenteSjstems Various d'_St”bUtGd MPC Cont_r0| schemes have _been in-
and Control of Delft University of Technology, Mekelweg 262B CD  vestigated since the 90s, e.g., in [7], [8], [9]. In this pape
b. deschutter @csc. tudel ft. nl.B. De Schutter is also with . . . . .

proposed in [10], for improving the operation of a particula

the Marine and Transport Technology department of Delft Ersity of TR -
Technology. type of water systems, viz. irrigation canals.



C. Outline control cycle controllers perform several iterations dstirsg

The remainder of this paper is organized as follows. IRf local problem solving and communication. In each iter-
Section Il we discuss a particular distributed MPC schem@&tion controllers then obtain information about the plafis o
In Section 11l we discuss the dynamics of a particular watefeighboring controllers. Ideally, at the end of the itevas
system, viz. an irrigation canal, and set up the distributedf® controllers choose overall optimal actions.

MPC control scheme for control of this system. In Section N [10] we have proposed a distributed MPC scheme for
IV we illustrate the potential of the proposed approacﬁonm' of general transportation networks. Water network
through simulation studies. Section V concludes the pap@f€ & particular type of transportation networks, and there

and contains directions for future research. fore this scheme is also suitable for distributed control of
water networks. The actions that the controllers determine
Il. DISTRIBUTED MODEL PREDICTIVE CONTROL using the scheme lead over the iterations to overall optimal

In distributed MPC control each individual controller is re performance if certain assumptions on the dynamics, the in-
sponsible for a particular part of the network. The indidtlu formation available to controllers, and the control ohijest
controllers on the one hand obtain measurements from aade made. Below we briefly outline these assumptions and
determine actions for their part of the network, and on ththe steps of the scheme.
other hand communicate with other controllers in order to ]
obtain coordination and to improve predictions. To acuall B- Dynamics
determine which actions to take each controller uses MPC. Let the network be divided inta subnetworks. Assume
that the dynamics of subnetwoike {1,...,n} are given
by a deterministic linear discrete-time time-invariantdab
At each control cycle each controller uses the foIIowinqpossimy obtained after symbolic or numerical lineaiizat

A. General ingredients and structure of distributed MPC

information: of a nonlinear model in combination with discretization):
« a prediction modeldescribing the behavior of its sub-
network; xi(k +1) = Ayx; (k) + By iui(k)
« anobijective functiorexpressing which subnetwork be- + Bg,d;(k) + Bs,vi(k) (1)
havior and actions are desired, yi(k) = Cix;(k) + Dy ju; (k)

« possiblyconstraintson the local states, the local inputs,
gnd thglocal outputs; P + D3,di(k) + Dsvi(k), (2)

« possibly known information about future disturbancesvhere at control cyclé:, for subnetworki, x;(k) € R"

and exogenous inputs; are the local statesy;(k) € R™: are the local inputs,
« a measurementf the state of the subnetwork at thedi(k) € R™4: are the local known exogenous inpugs(k) €
beginning of the current control cycle. R™v: are the local outputsy;(k) € R™: are the remaining

The objective of each controller is to determine those astio variables influencing the local dynamical states and ostput
that optimize the behavior of the overall network and tand A; € R™*™, By, € R™:i*™i, By; € R™i*"di,
minimize costs as specified through the objective functioBs3; € R™:*"™vi, C; € R™:i*"™i, Dy,; € R™:i*"u,
In order to find the actions that lead to the best performancB,; € R"™:*"di, D3, € R™:*™: determine how the
each controller uses its prediction model to predict the bealifferent variables influence the local states and outpfits o
havior of its subnetwork under various actions over a certasubnetworki. Thev; (k) variables appear due to the fact that
prediction horizon, starting from the state at the begignina subnetwork is connected to other subnetworks. Hence, the
of the control cycle. Once the controller has determines;(k) variables represent the influence of other subnetworks
the actions that optimize the performance of its subnetwordn subnetworki. If the values ofv;(k) would be constant,
over the prediction horizon, it implements these actiortd un then the dynamics of subnetwoikvould be decoupled from
the beginning of the next control cycle, at which point thehe other subnetworks. In practice, however, the variables
controller determines new actions over the predictiondwori v, (k) are equal to some of the variables of models represent-
starting at that point, using updated information. Heneehe ing dynamics of neighboring subnetworks. Below we refer
controller operates in a receding or rolling horizon fashioto the interconnecting input variablesi, j;(k) € R™"in.i:
to determine its actions. as these variables of subnetworkthat are influenced by
To make accurate predictions of the evolution of aubnetworkj, i.e., a selection ofv;(k), and we refer to
subnetwork, each controller requires the current state dfe interconnecting output variableg, ;;(k) € R™"vowsi as
its subnetwork, a sequence of actions over the predictidghese variables of subnetwoikhat influence a neighboring
horizon, and predictions of the values of variables thatubnetworkj, i.e., a selection ok;(k), u;(k), andy;(k).
interconnect the model of its subnetwork with the modeFig. 2 illustrates the relations between the variables ef th
of other subnetworks. The predictions of the values of thesaodels of two subnetworks.
so-calledinterconnecting variablesre based on the infor- ] ] )
mation communicated with the neighboring controllers. On&- Available information
particular class of methods aims at achieving cooperation Assume that each of the subnetworks {1,...,n} is
among controllers in an iterative way in which in eachcontrolled by a controllef that:
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Fig. 2. lllustration of the relation between the models andaides of two

subnetworks and ;.

« has a prediction model of the form (1)-(2) of the
dynamics of subnetwork

can measure or estimate the staté¢k) of its subnet-
work;

can determine settinga;(k) for the actuators of its
subnetwork;

can estimate exogenous inpulis(k + ) of its sub-
network over a certain horizon of lengtN, for | =
{0,...,N —1};

can communicate with neighboring controllers, i.e., the
controllers controlling the subnetworkse N;, where
N = {ji1,--.,Jim,; } 1S the set of indexes of they;
subnetworks connected to subnetwarkalso referred
to as theneighborsof subnetwork or controllet.

D. Control objectives

We assume that the controllers are cooperative, meaning
that the individual controllers strive for the best overa-
work performance. In addition, we assume that the objestive
of the controllers can be represented by convex functions
Jiocali, for i € {1,...,n}, which are typically linear or
quadratic. Such functions are commonly encountered, in
particular for systems that can be represented by (1)-(2),
as illustrated in Section IlI-E.

E. Distributed MPC scheme

The distributed MPC scheme that we employ comprises
at control cyclek the following steps:

1) Fori=1,...,n, controlleri makes a measurement of
the current state of the subnetwodk k) and estimates
the expected exogenous inpufs(k + 1), for [ =
0,...,N—1.

2) The controllers cooperatively solve their control prob-
lems in the following iterative way

a) Set the iteration counterto 1 and initialize the
S

Lagrange mult|pl|er§\,n)ﬂ(k), Xf,ulij( k) arbitrar-

ily?2.
b) Fori = 1,...,n, one controlleri; after an-
other determmex(s)(k +1), @Y (k), vaiﬂi(k),

1The tilde notation is used to represent variables over treigtion
horizon. E.g.,i1; (k) = [u;(k)7,...,u;(k+ N — 1)T]T.

2The Lagrange multipliers can in principle be initialized itweuily.
However, initializing them with values close to the optimahdrange
multipliers will increase the convergence of the decision imglprocess.
Therefore, also initializing the Lagrange multipliers withlues obtained
from the previous control cycle is beneficial, since tydic#these Lagrange
multipliers will be good initial guesses for the new solutidinis is referred
to aswarm start

v”vc()fjlji(k) as solution of the following optimiza-

tion problem:
Jiocari (X;(k +1),0;(k),y:(k
x1<k+1>fﬂz(k> i), o (X( 1), 0ulk), 5:(k))

L Win 2Ji,my i(k), —+ Z nterz Wmdz(k),\%‘/()ut’ji(k))7
w0 SR
(3)

subject to the local dynamics (1)—(2) of subnet-

work ¢ over the horizon, the measurement of the

wherewin previj (k) = W,

that has solved its probleimeforecontrolleri in
in,25

2Ji,18

It 11(k)7

2
+

)

2

current statex; (k), the known exogenous inputs
d;(k). In this, the additional objective function
Jinter,i 1S at iterations defined as
Tivans (Win i (), Wour i (k) =
) T
)‘in,jz‘(k) |:len]7,(k):|
_S‘gi)nij(k) Woutji (k)
Ye ||| Winprevij (k) — Wout i (k)
2 V~Vout,pre\u‘j(k) - V~Vin,jz'(k')
X |(ns)u (k) andWout previ; (k)
vvgﬂlm(k’) is the information computed at the
current iterations for each controllerj € N
the currentiterations, and wherein prev; (k) =
WiV (k) and Wouprevij (k) = Wiy (k) is the
information computed at thiast iterations — 1
for the other controllers. Furthermorg, is a pos-
itive scalar that penalizes the deviation from the
interconnecting variable iterates that were com-
puted by the controllers before controllersn
the current iteration and by the other controllers

: e (s)
during the last iteration. The resulés,, ;; (k) of
the optimization are sent to controllgr

c) Update the Lagrange multipliers,
{(+D) 1 ()
)‘in,jz’ (k) = )‘in,ji(k)
e (Wi (k) = Wi, () - (@)
d) Move on to the next iteration + 1 and repeat

steps 2b—2c. The iterations stop when the follow-
ing stopping condition is satisfied:
{(s+D)

in,err,jl,ll(k)
< Ve terms %)
{(s+1)
)‘in eI jn, m”n(k)
(s+1) (s+1) < (s)
Where)‘ln errﬂ( ) = >‘|n N ( ) - )‘inyﬂ(k)' and
Yeterm 1S @ small positive scalar angl - |«

denotes the infinity norm. Note that satisfaction
of this stopping condition can be determined in a
distributed way, since each individual component
of the infinity norm depends only on variables of
one particular controller.
3) The controllers implement the actions until the begin-
ning of the next control cycle.



moreover constitutes a single_ poin_t of failure. In addition
in practice, management of irrigation canals may already

[Iocalﬂow ] [ ] [malﬂ?lw J [Ioci‘ﬂﬁwJ [ ] [‘oca:ﬂ?lw J be dist.ributed over sevgral cqntrol author'ities_, prevent
corfollern | contgler 2= centralized control configuration from being implemented.
I I Instead of a centralized control configuration, the control
m m configuration in Fig. 3(c) may be employed, i.e., a distréout
control configuration may be installed, in which set-points
mgaton canl imgaton canel are autonomously decided upon by the distributed conteolle
(@ (b) based on local communication and cooperation.

[ﬁ”oiﬁ?.m]‘—'[ i HMF%'J B. Benchmark system

[‘é’ﬁi'ﬂf?!h} [ ) J [|:ﬂ”wJ The irrigation canal that we consider is based on the W-
\ I / M canal, which is a physically existing irrigation canal in
the South of Phoenix, Arizona. The canal is used to provide
M water to farmers. The length of the canal is almost 10 km and
the maximum capacity of the head gate2i8 m*/s [12].
The irrigation canal that we consider consists of 7 canal
reaches. At each of the reaches water can be taken out at

offtakes for irrigation purposes. Between each of the reach
4) The computations of the next control cycle are starte@ontrol structures are present in the form of undershotsgate

Under the assumptions that we have made on the objecti%contm' the water flow locally. These control structures a

functions and prediction models the solution of this schemgdUiPPed with local flow controllers that adjust the height o

converges to the solution that a centralized MPC controlldf€ undershot gate in order to meet a set-point for the water

controller 1

irrigation canal

©

Fig. 3. Three control configurations for the control of iaigpn canals.

would have obtained, see [10]. flow. . . .
In [12] an MPC scheme is proposed that is used by a single
[1l. CONTROL OF AN IRRIGATION CANAL controller to determine in a centralized way the set-pdinits

In this section we describe the dynamics and control of #e local flow controllers, cf. Fig. 3(b). Here we propose to
par[icu|ar water network, viz. an irrigation canal. |rr|gm use the distributed MPC scheme of Section Il to take over
canals are used mostly to transport water from source nod&gis task. Using a distributed approach there is no need for
such as lakes, |arge rivers, etc., to sink nodes, such a$ Snﬁapentral control location in the network. USing a distrdalit
rivers and pipes transporting water to agricultural fiells o@pproach only local information available to a local cotéro
farmers. Irrigation canals consist of several connectethica and information from neighboring local controllers is used
reaches, the inflow or outflow of which can be controlledC
using structures such as so-called overshot or undershot
gates, which restrict the flow of water flowing from an The dynamics of irrigation canals can be modeled in
upstream canal reach into a downstream canal reach [18ptail, e.g., using the Saint Venant equations [11] resilti
These structures usually have a local flow controller thdh systems of highly-nonlinear partial differential-atgaic
regulates the position of the gates in order to obtain aicerta€guations. However, using such highly-detailed models for
flow. We focus on determining the set-points for the locapredictive control results in significant requirements ome

Dynamics of irrigation canals

flow controllers at these structures. putational power. Therefore, Sim”arly asin [12], we en}plo
. . the integral delay model [13] to model the dynamics of a
A. Control configurations canal reach. This model has shown to adequately capture

Fig. 3 illustrates three possible control configurations forelevant dynamics [13], and reduces computations required
irrigation canals. Currently the configuration of Fig. 3(a)for simulation of the dynamics significantly.
is typically used in practice. A human operator manually The integrator delay model is a discrete-time model, which
adjusts the set-points for the local flow controllers at thenodels how the water level at particular places in the canal
undershot and overshot gates. This manual process is &kanges over time. Let time be discretized into controleycl
pensive, since the human operator has to travel from orec N (whereN* are the positive natural numbers) and let
control structure to the next, possibly several times pgr dahe continuous time between two control cycleandk + 1
[12]. A more advanced control configuration is depicted irtorrespond tdl, € R™ (s) (whereR™ are the positive real
Fig. 3(b). In this case, the determination of the set-pdimts numbers). Each canal reach is considered to have an inflow
the local flow controllers has been centralized and autamatedrom an upstream canal reach. Let this inflow into reabtle
Although implementation of such a centralized control congiven bygi, ;(k) € RT (m?/s). A canal reach has an outflow
figuration may be feasible in practice for relatively smadi-w to a downstream canal reach. Lef;(k) € Rt (m3/s)
ter networks, the increasing computational requirememnds adenote this outflow. In addition to this inflow and outflow
required bandwidth prevent application to larger networkslue to upstream and downstream canal reaches there can
A centralized control configuration is not well scalable andbe additional local inflow (e.g., due to rainfall) and outflow



(e.g., due to outflow caused by farmers). Let such inflow band
represented byexini(k) € R* (m3/s) and such outflow by
extouti (k) € RT (m3/s). The inflowgextin; (k) and outflow
dext.outi (k) are assumed to be static and known or predictegthere jy, and jgown are the index of the upstream and
accurately in advance. downstream canal reach, respectively.

Depending on how the inflows and outflows change ov

time, the levels of the water in reaches will change. Instead’ Available information ) .

of considering the levels of the water at each location in There arex controllers, and each controllefs responsible
the reaches, we only consider the levels of the water at tf@" canal reachi. Controller: can measure the water level
downstream end of each reach. In addition to the amount Bt itS canal reach, can adjust the set-point for the flow
inflow and outflow, also the surface of the reach influencegPntroller at its upstream gate, and can communicate with

how much the level of the water will change. Lig{k) € R+  the controllers of the canal reaches immediately upstream
(m) denote the level of the water in canal reactand let and downstream of the canal reach. In addition, controller

the surface of reach be ¢; € R+ (m2). It takes some time 1 can obtain the expected water offtakes and rainfall with

for a change in the inflow of reachto result in a change of eSpect to its canal reach.

the water level at the downstream end of the reach. Let this The actions that are optimal for each of the controllers

delay bekq; € N* control cycles for reach. depend on one another, since if one controller decides to
Using the variables defined above, the model describiri§crease its inflow, the water level in the upstream reach

how the level of the water in the canal reach changes froMfill decrease and therefore influences the decision making

one control cyclek to the next control cycld: + 1 is given Process of the upstream controller.

Win,joomi () = qouti (k) Woutjiyi (k) = Gini(K),

by: E. Control objectives

T T _ . . .
ha(k + 1) = h(k) + fcqm,i(k — ki) — fcqouu(k‘) The set-points determined by the controllers and provided
Ci Ci to the local flow controllers of the undershot gates should be

1t T chosen in such a way that
+ —dextini (k) — —dextouti (k). (6 L .
C; Gextini (k) G Gextoui (k). (6) 1) the deviations of water levels; from provided set-
Canal reaches are connected to one another. When two pointsher; € R, fori € {1,...,n} are minimized;

canal reaches are connected to each other, the inflow of on€2) the changes in the water levels from one control
canal reach is equal to the outflow of the other. Hence, for ~ cycle to the next are minimized to encourage smooth

neighboring reachesand; this interconnection is given by water level changes;
3) the changes in the set-points provided to the local
Gouti (k) = din,j (K)- ™ flow controllers are minimized to reduce equipment
In the state-space form (1)—(2) the dynamics of canal reach  wear.
¢ are conveniently written down by defining After defining the deviation in the water levBle,; (k) € R
hi(k) as hde\,,i(k)_ = hi(k) — hret, the objective functionjipcal;
gin.i(k — kq.i) () can be written as
iy = [T = [ =
: Qext,outz( ) Jlocal,i(') — Z Phi (hdev,i(k +1+4 l))Q
gin.i(k —1) 1=0
uik:'ﬂ‘k Vik‘: 1]6 ik‘:Xik‘ N-1
(B) = @ni(k)  vi(k) = douei(k)  ¥ilk) = xi(k) + 3 s (sl + 1+ §) = sl +
and 1=0
1 Lo ... ... 0] N-1
00 1 0 0 + > pui (wilk +1) = ui(k — 1+1))?
=0
A= | ' ' ' t where for controlleri, p,; € R is the quadratic cost on
0 - ‘ ’ .0 the water level deviationpa,; € RT is the quadratic cost
on a change in the water level deviation, gnd;, € R* is
0 1 the quadratic cost on a change in the set-point provided to
L0 ) 0 the local flow controller.
_IL . _ T 0
0‘371 Ci Oci _ IV. SIMULATION
B, = ) By;=|. . B;,=|* In this section we describe a simulation result to illustrat
: : : 0 the performance of the controllers discussed in this paper.
0 0 0 1 We have implemented the model of the benchmark irrigation
C;=[1 0 - 0 canal consisting of 7 canal reaches in Matlab ¥7 Bor

3See http://www.mathworks.com/.



TABLE |
VALUES OF THE PARAMETERS OF THE MODELTAKEN FROM [12].

7 1 2 3 4 5 6 7
kq; (steps)| 1 3 1 1 9 3 5
c; (m?) 397 653 503 1530 1614 2000 1241
mxm’4
006 — =1 i=1
---i=4 8 -ooi=d
0.04 i *i’ i= f:
- i=17 g i=17
:‘Et 0.02 :é N
= T i
P e, i
002 o ,,,,JK‘L,,___
% 20 30 0 50 60 o 20 3‘0 : 40 50 60
k k
@) (b)

Fig. 4. Evolution for four representative canal reachesa)fget-points
and (b) deviation of the water levels from reference values.

have achieved a performance comparable to the performance
obtained by a centralized MPC controller.

V. CONCLUSION AND FUTURE RESEARCH

In this paper we have considered model predictive con-
trol (MPC) for distributed control of water networks. In
particular, we have discussed the use of a serial, iteration
based, distributed MPC scheme for the control of irrigation
canals. We have illustrated the potential of the approach in
a simulation study on a 7-reach irrigation canal.

Future work consists of further assessing the performance
of the proposed scheme, extending the system model to
include constraints on the minimal and maximal flow pos-
sible through undershot and overshot gates, assessing the
performance of the distributed MPC scheme using linear
prediction models on a nonlinear simulation model of the
canal, and, based on this assessment, further improving the

system model

solving the optimization problems at each control sample wi
use the ILOG CPLEX v10.0 quadratic programming solver
through the Tomlab v5.7 interface [14] to Matlab.

We compare the performance of the distributed MP({#

if necessary.
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with a corresponding control configuration of Fig. 3(b).

A. Scenario

The parameters used for the model of the irrigation canal
are shown in Table I. The tim&; between two consecutive [1]
control cycles is 240s. The controllers use as parameter&l
N =31, %¢ = 1, Yeterm = 1.107%. A prediction horizon
length of 31 is chosen to take into account the total delay3]
present in the irrigation canal [12]. The cost coefficiehist t 4]
the controllers use are chosen gs; = 10, pap,; = 1,
pui = 0.01, fori € {1,...,n}.

As scenario we consider a sudden increase in the watdr)
offtake of canal reach 3 dt = 30 of 0.1 m?/s.

B. Results (6]

Fig. 4(a) shows the changes in the set-points decided upon
by the controllers. Fig. 4(b) shows the closed-loop evotuti  [7]
of the deviations of the water levels from the reference
values. It can be seen that the inflow of canal reach 1 i?8]
increased right before the additional offtake increasegak
place to prevent having a too low water level after thel9]
additional offtake. It can also be observed that the denati
of the water levels after the offtake increase are minimal dyaiq)
to the changes in the set-points. We observe that after about
25 control cycles the set-points settle at a constant value,
while the deviations of the water levels from the referencegy)
are minimal, and that thus the controllers have performed
their tasks adequately. 12]

The costs computed over the full simulation using the
distributed MPC scheme ai®32.10~7. A centralized MPC  [13]
controller based on the same objectives obtains costs loger t
full simulation of1831.10~7. This difference in performance
is negligible, and hence, in this case in which the adi4]
sumptions made are valid, indeed, the distributed coetll

model predictive control (HD-MPC)”, and the project “Muligent Control
of Large-Scale Hybrid Systems” (DWV.6188) of the Dutch Tedbgg
Foundation STW.
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