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Abstract

We consider the control of large-scale transportation networks, like road traffic networks, power distribution networks, water distribution

networks, etc. Control of these networks is often not possible from a single point by a single intelligent control agent; instead control has to be

performed using multiple intelligent agents. We consider multi-agent control schemes in which each agent employs a model-based predictive

control approach. Coordination between the agents is used to improve decision making. This coordination can be in the form of parallel or

serial schemes. We propose a novel serial coordination scheme based on Lagrange theory and compare this with an existing parallel scheme.

Experiments by means of simulations on a particular type of transportation network, viz., an electric power network, illustrate the performance

of both schemes. It is shown that the serial scheme has preferable properties compared to the parallel scheme in terms of the convergence

speed and the quality of the solution.
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1. Introduction

1.1. Transportation networks and their control

Transportation networks, like road traffic networks, power

distribution networks, water distribution networks, gas net-

works, etc. are usually large in size, consist of multiple subnet-

works, have many actuators and sensors, and exhibit complex

dynamics. These transportation networks can be considered at

a generic level, at which commodity is brought into the net-

work at sources, flows over links to sinks, and is influenced in

its way of flowing by elements inside the network. The sim-

ilarities between several types of transportation networks are

the motivation for studying these networks in a generic way.

Typical control goals for transportation networks involve

avoiding congestion of links, maximizing throughput, minimiz-

ing costs of control inputs, etc. In the daily operation of trans-

portation networks, network operators have to adjust the actu-

ators in the network to meet these control objectives. Control

from a single point by a single, centralized, control agent is of-

ten not possible due to technical or commercial issues. Techni-
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Email address: r.r.negenborn@tudelft.nl (R.R. Negenborn).
1 Bart De Schutter is also with the Marine and Transport Technology de-

partment of Delft University of Technology.

cal issues arise from, e.g., communication delays and too high

computational requirements. Some commercial issues are, e.g.,

unavailability of information from one network operator to an-

other, restricted control access, and costs of sensors. Moreover,

robustness and reliability of the network may become a prob-

lem in single-agent control, e.g., when the single control agent

breaks down.

For these reasons, transportation networks typically have to

be operated using a multi-agent, or distributed, control approach

(Weiss, 2000; Sycara, 1998; Siljak, 1991). In such an approach

the overall network consists of multiple smaller subnetworks.

Each of the subnetworks is controlled by an agent with only

limited information gathering and processing skills and more-

over limited action capabilities. It is noted that in particular

due to the commercial issues multi-agent control is not only

restricted to networks that span large geographical areas, but

may also be used for control of relatively small networks. E.g.,

in power networks typically the topology and system param-

eters of the network in one country are not made available to

surrounding countries, making multi-agent control necessary.
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1.2. Multi-agent model predictive control

1.2.1. Model predictive control

To determine which actions to take, an intelligent control

agent typically has some sort of model of the system it controls,

a set of constraints under which it has to perform the control,

and an objective function describing the goals of the control.

Using the model and the constraints the agent can to some extent

predict the consequences of its actions over a certain time span

in the future. Using in addition to this the objective function,

the agent can determine those actions that are optimal with

respect to its predictions. When such an approach to control is

used at each control step, i.e., in a receding horizon fashion, it

is called model predictive control (MPC) (Maciejowski, 2002;

Mayne et al., 2000).

The major advantage of MPC is its straightforward design

procedure. Given a model of the system, hard constraints can

be incorporated directly as inequalities and one only needs to

set up an objective function reflecting the control goal. Soft

constraints can also be accounted for in the objective by using

penalties for violations. Additional advantages of MPC are its

explicit way of integrating constraints and its straightforward

way of integrating forecasts. E.g., for transportation networks

MPC provides a convenient way to include capacity limits on

links, maximums on queue lengths, measurements from up-

stream sensors, profiles of demands, etc.

1.2.2. Single-agent MPC

In a single-agent setting, MPC has shown successful applica-

tion in the process industry over the last decades (Camacho and

Bordons, 1995; Morari and Lee, 1999), and is now gaining in-

creasing attention in many other fields, like food processing, au-

tomotive, and aerospace (Qin and Badgewell, 1997), and power

networks (Geyer et al., 2003), road traffic networks (Kotsialos

et al., 2006; Hegyi et al., 2005), sewer networks (Marinaki and

Papageorgiou, 2001), water networks (Wahlin, 2004), and rail-

way networks (De Schutter et al., 2002). MPC thus has shown

to be a promising control strategy, when a single-agent, cen-

tralized, control scheme can be implemented. However, when

this is not the case, due to technical or commercial reasons, a

multi-agent MPC scheme has to be employed.

1.2.3. Multi-agent MPC

The theoretical research in multi-agent MPC started in the

90s (Aicardi et al., 1992; Acar, 1992; Katebi and Johnson, 1997;

Jia and Krogh, 2001, 2002; Camponogara et al., 2002), with

applications to water distribution systems (Georges, 1999), de-

livery canals (Sawadogo et al., 1998), irrigation systems (El

Fawal et al., 1998), multi-reach canals (Gomez et al., 1998),

dynamic routing (Baglietto et al., 1999), cascading failures in

power networks (Hines et al., 2005), distributed vehicle coordi-

nation (Dunbar and Murray, 2006), and distributed emergency

voltage control (Beccuti and Morari, 2006).

In multi-agent MPC it is usually assumed that the system to

be controlled has been divided into subsystems, and that each

subsystem has been assigned an agent. Each of the agents uses
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Fig. 1. Two types of local computation and communication schemes between

two agents: a) serial, b) parallel. Solid arrows indicate information exchange.

Dotted arrows indicate time spans. Vertical dotted lines indicate the end

of a control cycle. Horizontal solid lines indicate local computations being

performed. A control cycle consists of a number of iterations, in each of

which each agent performs a single step.

MPC to determine its actions. In particular, at each control

cycle, each agent performs the following:

(i) It obtains a measurement of the current state of its sub-

system, and receives information from other agents.

(ii) It solves an optimization problem that finds over a certain

horizon the actions that result in the best subsystem be-

havior according to a specified objective. This typically

involves communication.

(iii) It implements the solution of the optimization problem

of step ii.

(iv) It moves on to the next control cycle.

We focus on the challenge in implementing step ii of such a

scheme. The actions that an agent takes influence both the evo-

lution of its own subsystem, and the evolution of the subsystems

connected to its subsystem. Since the agents in a multi-agent

setting usually have no global overview and can only access

a relatively small number of sensors and actuators, predicting

the evolution of a subsystem over a horizon involves even more

uncertainty than when a single agent is employed. Therefore,

usually communication is used to reduce this uncertainty, since

this allows agents to inform one another about their plans. Typ-

ically, at each control cycle, the agents perform a number of

iterations, within which each agent performs a local computa-

tion and communication step. The agents can in this way take

into account the plans of other agents and anticipate any un-

desirable situation. Through communication agents may obtain

agreement on taking actions that yield a good overall perfor-

mance.

1.2.4. Parallel versus serial schemes

There are many ways in which a multi-agent MPC scheme

can be implemented (Negenborn et al., 2006). For a given multi-

agent MPC scheme, the quality of the solution that the agents

determine and the convergence and rate of convergence to this

solution depends on various aspects, e.g., the particular imple-

mentation of the scheme, the way in which the agents perform

communication and local computations, the way in which in-

formation received from other agents is used, etc. In this paper

we focus on the second point, for which we distinguish between

schemes that work in parallel and schemes that work in serial,

see Fig. 1. In the literature on multi-agent MPC mainly parallel
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schemes have been proposed, e.g., (Hines et al., 2005; Cam-

ponogara et al., 2002; El Fawal et al., 1998; Georges, 1999), in

which all agents simultaneously perform a local step, then ex-

change information, then solve their next local step, and so on.

In this paper we propose a novel serial scheme, in which only

one agent at a time performs a local step, sends information to

a next agent, after which this next agent performs a local com-

putation step, sends information to a next agent, etc. Only after

all agents have made a local step, the next round of local steps

is started. We compare the serial scheme with a parallel scheme

and assess the performance of both schemes experimentally.

In experiments on a particular type of transportation network,

viz., a power network, we show that the proposed serial ap-

proach has preferable properties in terms of the convergence

speed and the quality of the solution.

1.3. Outline

This paper is organized as follows. In Section 2 we formal-

ize the control setting as consisting of interconnected model

predictive control problems. In Section 3 we develop a general

multi-agent MPC scheme for dealing with the interconnections

between the control problems. In Section 4 we discuss an exist-

ing parallel implementation of this scheme and propose a novel

serial implementation. In Section 5 we experimentally com-

pare and assess the performance of both schemes on a power

network.

2. Control setting

Assume that a transportation network is given with a parti-

tioning into n subnetworks, each controlled by a control agent

that has a dynamical model of its subnetwork.

2.1. Model of subnetwork dynamics

Let the dynamics of subnetwork i be given by a determinis-

tic linear discrete-time time-invariant model (possibly obtained

after symbolic or numerical linearization of a nonlinear model),

with noise-free outputs:

xi,k+1 = Aixi,k +B1,iui,k +B2,idi,k +B3,ivi,k

yi,k = Cixi,k +D1,iui,k +D2,idi,k +D3,ivi,k

(1)

where at time step k, for subnetwork i, xi,k ∈ R
ni,x are lo-

cal states, ui,k ∈ R
ni,u are local inputs, di,k ∈ R

ni,d are local

known disturbances, yi,k ∈ R
ni,y are local outputs, vi,k ∈ R

ni,v

are remaining variables influencing the local dynamical

states and outputs, and Ai ∈ R
ni,x×ni,x ,B1,i ∈ R

ni,x×ni,u ,B2,i ∈
R

ni,x×ni,d ,B3,i ∈ R
ni,x×ni,v , Ci ∈ R

ni,y×ni,x ,D1,i ∈ R
ni,y×ni,u ,D2,i ∈

R
ni,y×ni,d ,D3,i ∈ R

ni,y×ni,v determine how the different variables

influence the local state and output of subnetwork i. Note that

for completeness inputs ui,k are also allowed to influence out-

puts yi,k at time k. Such a situation with direct feed-through

terms typically appears when algebraic relations are linearized,

e.g., when linearizing equations describing instantaneous

(power) flow distributions.

The vi,k variables appear due to the fact that a subnetwork is

connected to other subnetworks. If vi,k is known by agent i, this

agent can compute the dynamics of subnetwork i independently

of the other subnetworks.

2.2. Model predictive control of a single subnetwork

Assume for now that the control agent of subnetwork i op-

erates individually and that it therefore does not communicate

with other agents. The agent employs MPC to determine which

actions to take. In MPC, an agent determines its local inputs

by computing over a prediction horizon of N steps optimal in-

puts according to an objective function, subject to a model of

the subnetwork and additional constraints. For notational con-

venience, in the following, a tilde over a variable is used to

denote variables over the horizon for the overall network, e.g.,

i.e., ãk = [ aT
k , . . . ,aT

k+N−1 ]T, or for a particular subnetwork i,

e.g., ãi,k = [ aT
i,k, . . . ,a

T
i,k+N−1 ]T.

Given the measured initial local state 2 at time k as xi,0, local

known disturbances over the horizon as d̃i,0, and locally pre-

dicted influences of the rest of the network over the prediction

horizon as ṽi,0, the following optimization problem is solved

by agent i:

min
ũi,k

Jlocal,i(x̃i,k+1, ũi,k, ỹi,k) =
N−1

∑
l=0

Jstage,i(xi,k+1+l ,ui,k+l ,yi,k+l)

(2)

subject to

xi,k+1+l = Aixi,k+l +B1,iui,k+l +B2,idi,k+l +B3,ivi,k+l (3)

yi,k+l = Cixi,k+l +D1,iui,k+l +D2,idi,k+l +D3,ivi,k+l (4)

for l = 0, . . . ,N −1

xi,k = xi,0 (5)

d̃i,k = d̃i,0 (6)

ṽi,k = ṽi,0, (7)

where Jstage,i(·) is a twice differentiable (e.g., quadratic) func-

tion that gives the cost per prediction step given a certain lo-

cal state, local input, and local output. A typical choice for the

stage cost is

Jstage,i(x̃i,k+1, ũi,k, ỹi,k) =











x̃i,k+1

ũi,k

ỹi,k
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ũi,k

ỹi,k
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x̃i,k+1

ũi,k

ỹi,k











,

where Q and f are a weighting matrix and vector respectively.

After agent i has solved the optimization problem and found the

actions over the horizon, it implements the actions determined

until the next control cycle, waits for the physical subnetwork

to transition to a new state, and starts the next control cycle.

2 The measured initial local state is in this case the exact initial local state,

since no measurement noise is considered.
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We assumed that the agent does not use communication and

that it can locally predict the influence of the rest of the net-

work over the prediction horizon ṽi,k, included in the control

problem as (7). However, agent i cannot know this influence

a priori, since actions taken by agent i influence the dynam-

ics of its own subnetwork and therefore also the dynamics of

a neighboring subnetwork, which thus changes ṽi,k. Thus con-

straint (7) cannot be added explicitly, but has to be dealt with

through the interconnecting constraints between control prob-

lems and communication between agents that enforces these

interconnecting constraints.

2.3. Interconnected control problems

The interconnections between control problems are modeled

using so-called interconnecting variables. A particular variable

of the control problem of agent i is an interconnecting variable

with respect to the control problem of agent j if the variable of

agent i refers to the same quantity as a variable in the control

problem of agent j. E.g., a flow going from subnetwork i into

subnetwork j is represented with an interconnecting variable

in the control problems of both agents.

Given the interconnecting variables of two agents referring

to the same quantity, it is convenient to define one of these

variables as an interconnecting input variable and the other

as an interconnecting output variable. On the one hand, an

interconnecting input variable win, ji of the control problem of

agent i with respect to agent j can be seen as an input caused

by agent j on the control problem of agent i. On the other

hand, an interconnecting output variable wout,i j of the control

problem of agent j with respect to the control problem of agent

i can be seen as the influence that agent j has on the control

problem of agent i. In general the interconnecting variables can

come from any domain, in the following, however, we consider

interconnecting variables win, ji ∈ R
n ji,win ,wout, ji ∈ R

n ji,wout .

Define the interconnecting inputs and outputs for agent i as

win,i = ṽi,k (8)

wout,i = Ei

[

x̃T
i,k+1 ũT

i,k ỹT
i,k

]T

, (9)

where Ei is an interconnecting-output selection matrix that con-

tains zeros everywhere, except for a single 1 per row corre-

sponding to a local variable that relates to an interconnecting-

input variable of another agent.

Remark 2.1 For the sake of simplicity of notation the subscript

k for the time step and the tilde for variables of the prediction

horizon are not used for the interconnecting variables.

The variables win,i,wout,i are partitioned such that

win,i =
[

wT
in, ji,1i, . . . ,w

T
in, ji,mi

i

]T

(10)

wout,i =
[

wT
out, ji,1i, . . . ,w

T
out, ji,mi

i

]T

, (11)

where Ni = { ji,1, . . . , ji,mi
} is the set of indexes of the mi sub-

networks connected to subnetwork i, i.e., the set of neighbors

of subnetwork i. The interconnecting inputs to the control prob-

lem of agent i with respect to agent j must be equal to the in-

terconnecting outputs from the control problem of agent j with

respect to agent i, since the variables of both control problems

model the same quantity. For agent i this thus gives rise to the

following interconnecting constraints:

win, ji = wout,i j (12)

wout, ji = win,i j, (13)

for j ∈ Ni.

An interconnecting constraint cannot be added explicitly to

the control problems of any of the individual agents, since each

interconnecting constraint depends on variables of two differ-

ent control problems. Instead the agents use communication to

determine in an iterative way which values to give to the inter-

connecting inputs and outputs.

3. General multi-agent MPC scheme

One way for agent i to deal with its interconnecting con-

straints is to just ignore each neighboring agent j ∈Ni and sim-

ply assume some values for the interconnecting outputs of that

agent j, which essentially means solving problem (2). How-

ever, since the actions that an agent computes are optimal only

with respect to the predicted values of the interconnecting input

variables win, ji for all j ∈Ni, just assuming some values for the

interconnecting output variables wout,i j of agent j introduces

high uncertainty, potentially deteriorating the performance of

the control. To reduce this uncertainty agent i has to come to

an agreement with agent j ∈ Ni on the values of its intercon-

necting output variables wout,i j. Each agent i obtains agreement

through iterations that inform the neighboring agents j ∈ Ni

about what agent i prefers the values of interconnecting inputs

to be.

To obtain this agreement, an agent i does not only compute

optimal local variables for its own subnetwork, but also opti-

mal interconnecting input variables win, ji. Moreover, the other

agents j ∈ Ni compute both their optimal local variables and

optimal interconnecting output variables wout,i j. Through ex-

change of these desired interconnecting variables, the values of

the interconnecting output and input variables should converge

to each other, and a set of local inputs that is overall optimal

should be found.

A general scheme that implements these ideas is obtained in

three steps: 1) formulating the combined overall control prob-

lem, i.e., aggregating the subproblems including the intercon-

necting constraints; 2) constructing an augmented Lagrange

formulation by replacing each interconnecting constraint with

an additional linear cost term, based on Lagrange multipliers,

and a quadratic penalty term (Boyd and Vandenberghe, 2004;

Bertsekas, 1982); 3 ) decomposing this formulation back into

subproblems for each agent.

3.1. Combined overall control problem

We define the combined overall control problem as the prob-

lem formed by the aggregation of the local control problems

without assuming the influence from the rest of the network

4



formulated through equation (7) know, but including the defi-

nition of the interconnecting inputs and outputs (8)–(9) and the

interconnecting constraints (12)–(13), i.e.,

min
x̃1,k+1,ũ1,k,ỹ1,k,...,x̃n,k+1,ũn,k,ỹn,k

n

∑
i=1

Jlocal,i(x̃i,k+1, ũi,k, ỹi,k,) (14)

subject to, for i = 1, . . . ,n,

win, ji,1i = wout,i ji,1 (15)

...

win, ji,mi
i = wout,i ji,mi

(16)

and the dynamics (3)–(4) of subnetwork i over the horizon, and

the initial constraints (5)–(6) of subnetwork i. Note that it is

sufficient to include in the combined overall control problem

formulation only the interconnecting input constraints (8) for

each agent i, since the interconnecting output constraints (9) of

agent i will also appear as interconnecting input constraints of

its neighboring agents.

3.2. Augmented Lagrange formulation

The overall control problem (14) is not separable into sub-

problems using only local variables x̃i,k+1, ũi,k, ỹi,k of one agent i

alone due to the interconnecting constraints (15)–(16). In order

to deal with the interconnecting constraints, an augmented La-

grangian formulation of this problem can be formulated (Boyd

and Vandenberghe, 2004; Bertsekas, 1982). Using such an ap-

proach, the interconnecting constraints are removed from the

constraint set and added to the objective function in the form

of additional linear cost terms, based on Lagrange multipliers,

and additional quadratic terms. The augmented Lagrange func-

tion is defined as

L(x̃1,k+1, ũ1,k, ỹ1,k, . . . , x̃n,k+1, ũn,k, ỹn,k,λin, j1,11, . . . ,λin, jn,mn n)

=
n

∑
i=1

(

Jlocal,i

(

x̃i,k+1, ũi,k, ỹi,k,
)

+ ∑
j∈Ni

(

λin, ji(win, ji −wout,i j)+
c

2

∥

∥

∥
win, ji −wout,i j

∥

∥

∥

2

2

)

)

,

(17)

where c is a positive constant and λin, ji is the Lagrange mul-

tiplier associated with the interconnecting constraint win, ji =
wout, ji.

By duality theory (Boyd and Vandenberghe, 2004; Bertsekas,

1982), the resulting optimization problem follows as maximiza-

tion over the Lagrange multipliers while minimizing over the

other variables,

max
λin, j1,11,

...
λin, jn,mn n

min
x̃1,k+1,ũ1,k,ỹ1,k,

...
x̃n,k+1,ũn,k,ỹn,k

L(x̃1,k+1, ũ1,k, ỹ1,k, . . . , x̃n,k+1, ũn,k, ỹn,k,

λin, j1,11, . . . ,λin, jn,mn n), (18)

subject to, for i = 1, . . . ,n, the dynamics (3)–(4) of subnetwork

i over the horizon, and the initial constraints (5)–(6) of subnet-

work i.

Under convexity assumptions on the objective functions and

affinity of the subnetwork model constraints it can be proved

that a minimum of the original problem (14) can be found

iteratively through repeatedly solving of the minimization part

of (18) for fixed Lagrange multipliers, followed by updating of

the Lagrange multipliers using the solution of the minimization,

until the Lagrange multipliers do not change anymore from one

iteration to the next (Bertsekas, 1982).

3.3. Distributing the solution approach

The iterations to compute the solution of the combined over-

all control problem based on the augmented Lagrange formu-

lation (17) include quadratic terms and can therefore not di-

rectly be distributed over the agents. To deal with this the non-

separable problem (17) can be approximated by solving n sep-

arated problems of the form:

min
x̃i,k+1,ũi,k,ỹi,k,

win, ji,1i,...,win, ji,mi
i,

wout, ji,1i,...,wout, ji,mi
i

Jlocal,i

(

x̃i,k+1, ũi,k, ỹi,k

)

+ ∑
j∈Ni

Jinter,i

(

win, ji,wout, ji,λ
(s)
in, ji,λ

(s)
out,i j

)

,

(19)

subject to the dynamics (3)–(4) of subnetwork i over the hori-

zon, and the initial constraints (5)–(6) of subnetwork i, where

the additional cost term Jinter,i(·) deals with the interconnect-

ing variables. At iteration (s), the variables λ
(s)
in, ji are the La-

grange multipliers computed by agent i for its interconnecting

constraints win, ji = wout,i j, and the variables λ
(s)
out,i j are the La-

grange multipliers for its interconnecting constraints wout, ji =

win,i j. The λ
(s)
out,i j variables are received by agent i through com-

munication with agent j, that computed these variables for its

interconnecting constraints with respect to agent i. The general

multi-agent MPC scheme that results from this comprises at

control cycle k the following:

(i) For i = 1, . . . ,n, agent i makes a measurement of the cur-

rent state of the subnetwork xi,0 and estimates expected

disturbances d̃i,0.

(ii) The agents cooperatively solve their control problems in

the following iterative way:

(a) Set the iteration counter s to 1 and initialize the

Lagrange multipliers λ
(s)
in, ji,λ

(s)
out,i j arbitrarily.

(b) Either serially or in parallel, for i = 1, . . . ,n, agent i

determines x̃
(s+1)
i,k+1 , ũ

(s+1)
i,k ,w

(s+1)
in, ji ,w

(s+1)
out,i j , for j ∈ Ni,

by solving:

min
x̃i,k+1,ũi,k,ỹi,k,

win, ji,1i,...,win, ji,mi
i,

wout, ji,1i,...,wout, ji,mi
i

Jlocal,i

(

x̃i,k+1, ũi,k, ỹi,k

)

+ ∑
j∈Ni

Jinter,i

(

win, ji,wout, ji,λ
(s)
in, ji,λ

(s)
out,i j

)

,

(20)

subject to the local dynamics (3)–(4) of subnetwork

i over the horizon and the initial constraints (5)–(6)

of subnetwork i.

(c) Update the Lagrange multipliers,

λ
(s+1)
in, ji = λ

(s)
in, ji + c(w

(s+1)
in, ji −w

(s+1)
out,i j ). (21)
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(d) Move on to the next iteration s+1 and repeat steps

ii.(a)–ii.(c). The iterations stop when the following

stopping condition is satisfied:

∥

∥

∥

∥

∥

∥

∥

∥

∥











λ
(s+1)
in, j1,11 −λ

(s)
in, j1,11

...

λ
(s+1)
in, jn,mn n −λ

(s)
in, jn,mn n











∥

∥

∥

∥

∥

∥

∥

∥

∥

∞

≤ ε,

where ε is a small positive scalar and ‖ ·‖∞ denotes

the infinity norm. Note that satisfaction of this stop-

ping condition can be determined in a distributed

way, because each individual component of the in-

finity norm depends only on variables of one par-

ticular agent Negenborn et al. (2007).

(iii) The agents implement the actions until the beginning of

the next control cycle.

(iv) The next control cycle is started.

Remark 3.1 The Lagrange multipliers can be initialized ar-

bitrarily, however, initializing them with values close to the

optimal Lagrange multipliers will increase the convergence of

the decision making process. Therefore, also initializing the

Lagrange multipliers with values obtained from the previous

decision-making step is beneficial, since typically these La-

grange multipliers will be good initial guesses for the new so-

lution. We refer to this as a warm start.

The schemes proposed in the literature implement step ii.(b)

in a parallel fashion, e.g., (Camponogara et al., 2002; El Fawal

et al., 1998; Georges, 1999). In the following we first discuss a

scheme that implements step ii.(b) in a parallel fashion and then

propose a novel scheme that implements it in a serial fashion.

We then assess the performance of both schemes experimen-

tally.

4. Serial versus parallel schemes

4.1. Parallel implementation

The parallel implementation is the result of using the aux-

iliary problem principle (Batut and Renaud, 1992; Kim and

Baldick, 1997; Royo, 2001) of approximating the non-separable

quadratic term in the augmented Lagrangian formulation of

the combined overall control problem. The parallel scheme in-

volves a number of parallel iterations in which all agents per-

form their local computing step at the same time.

Given the previous information wprev,i j = w
(s)
i j , and wprev, ji =

w
(s)
ji of the agents j ∈Ni of the last iteration s−1, agent i solves

problem (20) using the following additional objective function

term for the interconnecting constraints:

Jinter,i

(

win, ji,wout, ji,λ
(s)
in, ji,λ

(s)
out,i j

)

=





λ
(s)
in, ji

−λ
(s)
out,i j





T 



win, ji

wout, ji



+
c

2

∥

∥

∥

∥

∥

∥





win,prev,i j −wout, ji

wout,prev,i j −win, ji





∥

∥

∥

∥

∥

∥

2

2

+
b− c

2

∥

∥

∥

∥

∥

∥





win, ji −win,prev, ji

wout, ji −wout,prev, ji





∥

∥

∥

∥

∥

∥

2

2

.

This scheme uses only information computed during the last

iteration s− 1. The parallel implementation of step ii.(b) of

the general multi-agent MPC scheme therefore consists of the

following steps at decision step k, iteration s:

(ii) (b) For all agents i ∈ {1, . . . ,n}, at the same time, agent

i solves the problem (20) to determine x̃
(s+1)
i,k+1 , ũ

(s+1)
i,k ,

w
(s+1)
in, ji , w

(s+1)
out, ji , and sends to agent j ∈ Ni the com-

puted values w
(s+1)
out, ji .

The positive scalar c penalizes the deviation from the in-

terconnecting variable iterates that were computed during the

last iteration. This makes that the interconnecting variables

that agent i computes at the current iteration will stay close

to the interconnecting variables that neighboring agent j ∈ Ni

computed earlier when c is chosen larger. With increasing c,

it becomes more expensive for an agent to deviate from the

interconnecting-variable values computed by the other agents.

This results in a faster convergence of the interconnecting vari-

ables to values that satisfy the interconnecting constraints. How-

ever, it may still take some iterations to obtain optimal values

for the local variables. On the one hand a higher c results in

a higher number of iterations before reaching optimality, al-

though the interconnecting constraints will be satisfied quickly.

On the other hand, when c is smaller a large number of it-

erations will be necessary before reaching optimality, and the

interconnecting constraints will not be satisfied quickly.

As additional parameter this scheme uses a positive scalar

b. If b > c, then the term penalizes the deviation between the

interconnecting variables of the current iteration and the in-

terconnecting variables of the last iteration of agent i; it thus

gives the agent less incentive to change its interconnecting vari-

ables from one iteration to the next. When b ≥ 2c, and more-

over the overall combined problem is convex, it can be proved

that the iterations converge toward the overall minimum for

sufficiently small ε (Bertsekas and Tsitsiklis, 1997; Kim and

Baldick, 1997).

4.2. Serial implementation

The novel serial implementation that we propose is the re-

sult of using a block coordinate descent (Bertsekas and Tsit-

siklis, 1997; Royo, 2001) for dealing with the non-separable

quadratic term in the augmented Lagrange formulation of the

combined overall control problem (17). The approach mini-

mizes the quadratic term directly, in a serial way. Contrarily to

the parallel implementation, in the serial implementation one

agent after another minimizes its local and interconnecting vari-

ables while the other variables stay fixed.

Given the information win, prev,i j = w
(s+1)
in,i j ,wout, prev,i j =

w
(s+1)
out,i j computed at the current iteration s for each agent j ∈Ni

that has solved its problem before agent i in the current itera-

tion s, and given the previous information wprev,i j = w
(s)
i j of the
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last iteration s−1 for the other agents, agent i solves problem

(19) using the following additional objective function:

Jinter,i

(

win, ji,wout, ji,λ
(s)
in, ji,λ

(s)
out,i j

)

=





λ
(s)
in, ji

−λ
(s)
out,i j





T



win, ji

wout, ji



+
c

2

∥

∥

∥

∥

∥

∥





win, prev,i j −wout, ji

wout, prev,i j −win, ji





∥

∥

∥

∥

∥

∥

2

2

.

Thus, contrarily to the parallel implementation, the serial im-

plementation uses both information from the current iteration

and from the last iteration. The serial implementation imple-

ments step ii.(b) of the general scheme as follows at decision

step k, iteration s:

(ii) (b) For i = 1, . . . ,n, one agent after another, agent i

determines x̃
(s+1)
i,k+1 , ũ

(s+1)
i,k , w

(s+1)
in, ji , w

(s+1)
out, ji by solving

(20), and sends to each agent j ∈ Ni the computed

values w
(s+1)
out, ji .

The role of the scalar c is similar as for the parallel imple-

mentation, except for that c now penalizes the deviation from

the interconnecting variable iterates that were computed by the

agents before agent i in the current iteration and by the other

agents during the last iteration. Note that when for the parallel

scheme b = c the additional objective functions are the same,

except for the previous information used: the parallel imple-

mentation uses only information from the last iteration, the se-

rial also from the current.

5. Experiments

In this section we perform simulation experiments on a par-

ticular type of transportation network, viz., a power network, to

compare and assess the performance of the schemes of Section

4. A power network consists of all generating units, substa-

tions, and interconnecting power lines whose purpose is to pro-

vide the necessary energy to consumers. The frequency is one

of the main variables characterizing the system. The purpose

of load-frequency control is to keep power generation equal to

power consumption under consumption disturbances, such that

the frequency is maintained close to a nominal frequency of

typically 50 or 60Hz (Kundur, 1994). In a distributed setting,

agents have to obtain agreement on power flowing over lines

between subnetworks in order to be able to perform adequate

local frequency control.

A large number of control strategies has been developed

for load frequency control (Ibraheem et al., 2005). In the

70s, load-frequency control started being developed with con-

trol strategies based on centralized, non-MPC, control (see

(Quazza, 1966; Elgerd and Fosha, 1970; Fosha and Elgerd,

1970)). From the 80s on also, distributed, non-MPC, schemes

appeared (Kawabata and Kido, 1982; Park and Lee, 1984;

Aldeen and Marsh, 1990; Yang et al., 1998, 2002). Recently,

also MPC-based schemes have been proposed. A centralized

MPC scheme for load-frequency control was proposed in

(Rerkpreedapong et al., 2003). A decentralized MPC scheme

for load-frequency control was proposed in (Atic et al., 2003).

The latter approach is a decentralized approach, that does not

∆δ1 = wout,21

∆δ2 = win,21

∆ f1,∆δ1 ∆ f2,∆δ2

∆Pdist,1

∆Pgen,1

∆Pdist,2

∆Pgen,2

model of subnetwork 1 model of subnetwork 2

subnetwork 1 subnetwork 2

win,12 = ∆δ1

wout,12 = ∆δ2

Fig. 2. Illustration of the physical network and the variables of the subnetwork

models. In the top illustration a circle represents power generation and a

triangle power consumption.

take the interconnections between subnetworks explicitly into

account. In (Camponogara et al., 2002) a distributed MPC

scheme is proposed for load-frequency control assuming that

only once per control step information between agents can be

exchanged. Also in (Venkat et al., 2006) a distributed MPC

scheme is applied to a load-frequency control example. The

scheme uses distributed state estimation to provide nominal

stability and performance properties. We consider distributed

MPC using the parallel and serial scheme.

In a power network, each subnetwork has power generation

capabilities and power consumption, see Fig. 2. Each control

agent has to keep the frequency deviation within its subnetwork

close to zero under minimal control input, accessing only local

variables. For political and/or security reasons the agents only

know the topology of their own subnetwork. Furthermore, each

control agent can only sens the power consumption and change

the power generation in its own subnetwork. Therefore this

is a typical situation in which multi-agent control has to be

employed.

5.1. Control setup

5.1.1. Dynamical subnetwork models

The continuous-time dynamics of subnetwork i are described

by the following second-order system (Camponogara et al.,

2002):

d

dt
∆δi(t) = 2π∆ fi(t)

d

dt
∆ fi(t) = −

1

TPi

∆ fi(t)+
KPi

TPi

(

∆Pgen,i(t)−∆Pdist,i(t)+

∑
j∈Ni

KSi j

2π
(∆δ j(t)−∆δi(t))

)

yi(t) =





∆δi(t)

∆ fi(t)



 ,

where at time t, for subnetwork i ∈ {1, . . . ,n}, ∆δi is the angle

deviation, ∆ fi is the frequency deviation, ∆Pgen,i is the change

in power generation, ∆Pdist,i is a disturbance in the load, yi is

the measurement of the state, and KPi
,TPi

,KSi j
are constants.
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The values for the parameters are KPi
= 120, KSi j

= KS ji
= 0.5,

TPi
= 20, for i = 1, . . . ,n, j ∈ Ni. Because we assume that the

outputs yi measure the full state noise-free, we will without

loss of generality leave out the outputs yi and only focus on the

states in the following.

Defining the local control input ui,k = [∆Pg,i,k], local distur-

bances di,k = [∆Pd,i,k], local state xi,k = [∆δi,k, ∆ fi,k]
T, remain-

ing variables vi,k = [∆δ ji,1,k, . . . ,∆δ ji,mi
,k]

T, and discretizing the

continuous-time model using an Euler approximation (with a

step size of τ = 0.25s), the model can be written as:

xi,k+1 = Aixi,k +B1,iui,k +B2,idi,k +B3,ivi,k

where

Ai =







1 τ2π

τ
−KPi

KSi j

2πTPi

1− τ
1

TPi






B1,i =







0

τ
KPi

TPi







B2,i =







0

−τ
KPi

TPi






B3,i =







0 . . . 0

τ
KPi

KSi ji,1

2πTPi

. . . τ
KPi

KSi ji,mi

2πTPi






.

5.1.2. Interconnecting variables

The interconnecting inputs for agent i are defined as in (8),

and the interconnecting outputs for agent i are defined as in (9),

with

Ei =





































1 0 0

...
...

...

1 0 0

. . .
. . .

1 0 0

...
...

...

1 0 0





































.

5.1.3. Local control goals

Since agent i has to minimize the frequency deviation and

control input changes in its subnetwork, it uses the following

quadratic local objective function:

Jlocal,i

(

x̃i,k+1, ũi,k

)

=
N−1

∑
l=0





xi,k+1+l

ui,k+l





T



Qi,x 0

0 Qi,u









xi,k+1+l

ui,k+l





where

Qi,x =





0 0

0 100



 , Qi,u =
[

50

]

A quadratic function has the advantage that larger deviations

are penalized more, and moreover that the objective function

is convex.

Remark 5.1 Note that the defined subnetwork models, inter-

connecting variables, and local control goals lead to an overall

combined control problem (14) that is convex.

5.2. Simulations

5.2.1. Scenario

We consider a network divided into two subnetworks, each

controlled by a control agent, see Fig. 2. We simulate the net-

work in Matlab 7.1 and solve the optimization problems of the

controllers using the CPLEX v10 Barrier QP solver, through

the Tomlab interface to Matlab. The network is simulated in

discrete time steps of 0.25s, for kf = 20 steps, thus yielding a

total simulation time of to 5s. The subnetworks are initially in

steady state, until a consumption disturbance of ∆Pdist,2 = 1 per

unit (p.u.) occurs in subnetwork 2 after 0.5 seconds. At that time

the dynamics of the subnetworks become highly dependent on

each other, and the agents cannot make adequate predictions

on the evolution of their own subnetworks unless they obtain

agreement on the values of their interconnecting variables. In

the following we first consider the uncontrolled situation, and

then compare three controlled situations: 1) a hypothetical cen-

tralized agent uses the overall combined control problem to de-

termine its actions for all subnetworks; 2) the agents of the sub-

networks use the serial multi-agent MPC scheme; 3) the agents

of the subnetworks use the parallel multi-agent MPC scheme.

We first consider the performance of the resulting control over

all control cycles in the full simulation span of 5s for a partic-

ular setting of the parameters, and then focus on a particular

control cycle to consider the iterations within that control cycle

and gain more insight into how the parameters influence the

performance of the multi-agent controllers.

5.2.2. Full simulation evaluation criterion

To compare and assess the performance of the overall com-

bined, the serial, and the parallel scheme over the full simula-

tion period, costs are computed over the full simulation time

span, i.e.,

Jsimulation(·) =
n

∑
i=1

kf−1

∑
l=0

Jstage,i(x̄i,1+l , ūi,l , ȳi,l),

where the bar indicates that the value of the variable is the actual

and not predicted value, e.g., x̄i,k refers to the actual state of

subnetwork i at time k, and not the state predicted by an agent.

5.2.3. Uncontrolled simulation

Fig. 3 shows the evolution of the frequency deviation in both

subnetworks when no actions are taken, and Fig. 4 shows the

resulting power exported from subnetwork 1 to subnetwork 2.

Due to the increase in power consumption in subnetwork 2,

the frequency in subnetwork 2 decreases, since the generation

capacity of subnetwork 2 cannot directly provide the required

new amount of power. Subnetwork 1 responds by automati-

cally exporting some power to subnetwork 2, making that in

subnetwork 1 a shortage of power appears, causing a drop in

the frequency of subnetwork 1. This again triggers subnetwork

2 to export some power to subnetwork 1, but as can be seen

in the figure, the natural power flows over the interconnecting

line destabilize the frequency in both subnetworks. The perfor-

mance over the full simulation period is Jsimulation(·) = 9042.

8



0 1 2 3 4 5
−15

−10

−5

0

5

10

time (s)

∆
 f

 (
p

.u
.)

subnetwork 1

subnetwork 2

Fig. 3. Uncontrolled simulation of frequency deviation after a disturbance in

subnetwork 2.
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Fig. 4. Resulting power flowing from subnetwork 1 to subnetwork 2 for the

uncontrolled simulation.

5.2.4. Controlled simulation

Now consider the situation that appears when every 0.25s

new actions are determined by an overall MPC scheme based

on 1) a hypothetical centralized agent that uses the combined

overall control problem defined in (14), or 2) agents that use

the serial scheme with warm start, or 3) agents that use the

parallel scheme with warm start. For now we choose as param-

eters a prediction horizon of N = 5 (corresponding to a horizon

of 1.25s), c = 1, ε = 1e−4, b = 2c (which for overall convex

problems guarantees convergence). In Section 5.3 we discuss

the influence of different values for the parameters on the per-

formance.

Fig. 5 shows the controlled evolution of the frequency de-

viations, Fig. 6 shows the resulting power exported from sub-

network 1, and Fig. 7 shows the inputs that have been imple-

mented, obtained using each of the three control approaches.

We mentioned before, that the overall combined control prob-

lem is convex, and therefore good performance of the multi-

agent schemes is expected. Indeed, for the chosen parameters,

the difference between the performance of overall combined

control problem and the two distributed schemes is negligible;

the performance over the full simulation is Jsimulation(·) = 198

for each of the schemes, which is clearly an improvement over

the uncontrolled situation. Furthermore, each of the controllers

takes actions that in the end bring back the frequency devia-
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∆
 f
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p
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.)
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subnetwork 1, overall

subnetwork 2, overall

subnetwork 1, serial

subnetwork 2, serial

subnetwork 1, parallel

subnetwork 2, parallel

Fig. 5. Controlled simulation of frequency deviation using the overall com-

bined scheme, the serial scheme, and the parallel scheme. Note the signif-

icantly smaller range of ∆ f , compared with the range in the uncontrolled

evolution in Fig. 3.
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Fig. 6. Resulting power flowing from subnetwork 1 to subnetwork 2 for the

controlled simulations. Note the significantly smaller range of the change in

the power flow, compared with the range in the uncontrolled evolution in

Fig. 4.
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Fig. 7. Controlled evolution of inputs computed by overall combined scheme,

the serial scheme, and the parallel scheme.

tions and changes in power generation to zero and in this way

the agents stabilize the system. The agents have in a distributed

way obtained the performance of a centralized controller.

The number of iterations performed by the serial and paral-

lel scheme is shown in Fig. 8. Initially, when the disturbance

has not appeared yet, the agents require few iterations in their
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Fig. 8. Number of iterations required per control cycle of the serial and

parallel scheme.

control cycles making. After the disturbance at 0.5s has ap-

peared the agents require significantly more iterations, reflected

by the increasing number of iterations at time 0.75s. We notice

that the serial scheme requires fewer iterations than the paral-

lel scheme, explained by the fact that the serial schemes uses

information from both the previous and the current iteration.

5.3. A single control cycle

To gain more insight in the role of the parameters and in

the iterations that the serial and the parallel scheme perform

at a single control cycle we now focus on the iterations of

a single, representative, control cycle among the agents. We

consider the iterations of the serial and parallel scheme right

after a disturbance has taken place. Consider the situation in

which the state of subnetwork 1 is x1,0 = [0,0]T and the state

of subnetwork 2 is x2,0 = [0,0.5]T.

5.3.1. Control cycle evaluation criterion

To evaluate the solution over the prediction horizon deter-

mined by the different schemes at a single control cycle, the

inputs coming from the different schemes are implemented to

determine the resulting state trajectory, after which the cycle

performance is as

Jcycle(·) =
n

∑
i=1

N−1

∑
l=0

Jstage,i(x̄i,1+l ,ui,l , ȳi,l).

5.3.2. Varying c and prediction horizon N

We vary the parameters N and c, while keeping the stopping

tolerance ε = 1e−4, and b = 2c. For values of c ∈ {1,10,100},

the number of iterations required by the parallel scheme and

the number of iterations required by the serial scheme is shown

in Fig. 9. For a given value of c, the serial scheme requires

fewer iterations than the parallel scheme for all except a small

interval of prediction horizon lengths. For values of c close to

zero, the influence of the additional objective function Jinter,i of
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Fig. 9. For varying N and varying c, the number of iterations that the parallel

and the serial scheme require before stopping.
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Fig. 10. For varying N and varying c, the additional cost of the parallel and

the serial scheme compared to the overall optimal costs.

both the parallel and the serial scheme vanishes, making that

the difference between the two schemes vanishes as well.

When increasing the prediction horizon N, it is expected that

the number of iterations required increases as well, since with

a longer horizon the number of interconnecting variables in-

creases. We see in Fig. 9 that the number of iterations does

increase with an increasing prediction horizon length, although

only up to a certain prediction horizon length. Interestingly,

from a certain prediction horizon length the number of itera-

tions decreases again, when compared to a smaller prediction

horizon. This behavior is due to the inputs of the subnetworks

over the first prediction steps being relatively more important

for obtaining low costs, than the inputs at later prediction steps.

Therefore, obtaining satisfying interconnecting constraints for

the earlier prediction horizon steps involves more iterations.

From a certain prediction horizon length, the information that

the agents obtain from the communicated interconnecting in-

puts and outputs for later prediction horizon steps restricts the

values for the interconnecting variables of earlier prediction

horizon steps, thus resulting in faster convergence.

Fig. 10 shows the additional cost imposed by using the serial

or the parallel scheme instead of the overall control scheme. For
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Fig. 12. For varying ε and N, the additional cost of the parallel and the serial

scheme compared to the combined overall cost.

smaller prediction horizons, the serial and the parallel scheme

perform comparable to the overall scheme. For larger prediction

horizons the performance of the parallel scheme deteriorates

faster than the serial scheme.

5.3.3. Varying the stopping tolerance ε

With increasing stopping tolerance ε the stopping condition

will be satisfied within fewer iterations, at the price of a worse

solution. Indeed, this characteristic behavior is shown in Fig. 11

and Fig. 12. Fig. 11 shows for c = 10, b = 2c, varying N, and

varying ε , that with ε increasing fewer iterations are required,

while Fig. 12 shows that the additional cost of the solution

increases when compared to the overall combined scheme. The

cost of the serial scheme shows slower deviation from the cost

of the overall combined scheme than the cost of the parallel

scheme.

6. Conclusions and future research

In this paper we have considered multi-agent model pre-

dictive control for the control of large-scale transportation

networks, like road traffic networks, power networks, sewer

networks, etc. In particular, we have proposed a novel serial

scheme for agents to deal with the interconnections between

subnetworks. We compared this with an existing parallel

scheme and an centralized overall scheme. For the serial and

the parallel schemes, the performance of the solution obtained

converges toward the performance of the solution obtained by

the overall control problem, provided that the overall control

problem is convex. We have discussed the schemes theoreti-

cally and assessed their performance experimentally by means

of simulation studies on a power network.

Although the parallel scheme is more frequently used

throughout the literature, for the networks we have considered

the proposed serial scheme shows to have preferable proper-

ties in terms of solution speed, by requiring fewer iterations,

and solution quality, by providing performance closer to the

centralized overall control problem.

Future research consists of deriving analytical bounds on the

rate of convergence and assessing the performance of the serial

and parallel approach for networks with a larger size and differ-

ent topology. Furthermore, the methods will be extended to sit-

uations in which the problem of controlling the transportation

network cannot be formulated as a convex problem. In particu-

lar we will extend the methods to deal with networks modeled

as hybrid systems in which both continuous and discrete dy-

namics appear, a situation typically appearing when, e.g., con-

tinuous flows together with discrete actions are present.
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Appendix A. List of most frequent notations

n number of subnetworks

i index of an agent or subnetwork

Ni set of indexes of neighboring agents of agent i

j index of a neighboring agent, i.e., j ∈ Ni

ji,q index of qth neighbor of i

mi number of neighbors of i

k control cycle step

xi,k local state of i at step k

ui,k local input of i at step k

di,k local disturbance of i at step k

vi,k remaining variable of i at step k

yi,k local output variable of i at step k

Ai,B1,i,B2,i,B3,i matrices to describe linear time-invariant state equations

Ci,D1,i,D2,i,D3,i matrices to describe linear time-invariant output equations

N prediction horizon length

l sample step within prediction period

ãk = [ aT
k , . . . ,aT

k+N−1 ]T

ãi,k = [ aT
i,k, . . . ,a

T
i,k+N−1 ]T
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win, ji interconnecting input of i with respect to j

wout, ji interconnecting output of i with respect to j

Jlocal,i(·) local objective function

Jstage,i(·) local cost per prediction step

Q matrix for quadratic costs

f vector for linear costs

win,i = [ wT
in, ji,1i, . . . ,w

T
in, ji,mi

i ]T

wout,i = [ wT
out, ji,1i, . . . ,w

T
out, ji,mi

i ]T

Jinter,i(·) objective term to deal with interconnecting constraints

Ei interconnecting output selection matrix

(·)T transpose operator

λin, ji Lagrange multiplier associated with interconnecting

constraint win, ji = wout,i j

λout,i j Lagrange multiplier associated with interconnecting

constraint win, ji = wout,i j

‖ · ‖2 two norm

‖ · ‖∞ infinity norm

L(·) augmented Lagrange function

ε small positive constant

s iteration counter

c positive constant

b positive scalar

kf simulation finishing step
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