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Abstract 

The need for improving the operation and control of infrastructure systems has created a 

demand on optimization methods applicable in the area of complex  networked systems 

operated by a multitude of actors in a setting of decentralized decision making. This paper 

briefly explores the applicability of multi-level optimization and multi-agent model 

predictive control in infrastructure system operation and stresses their importance for 

capacity and system management in the energy and transport sectors.  
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1. Introduction 

Our society and economy have come to rely on services that depend on networked 

infrastructure systems, like highway and railway systems, electricity, water and gas 

supply systems, telecommunication networks, etc. Malfunctioning and service outages 

entail substantial social costs and hamper economic productivity. Instead of ensuring 

robustness by installing redundant capacity, more intelligent control of the existing 

infrastructure capacity seems a more affordable and promising strategy to ensure critical 

infrastructures’ reliability of service. However, the multitude and variety of nodes and 

links in modern infrastructure networks as well as the multitude and variety of owners, 

operators, suppliers and users involved have created enormously complex systems. This 

complexity hampers the optimization of the overall system performance, due to our 

limited understanding of infrastructure systems as well as to practical limitations in 

steering the actors’ operational decision making.  

The process systems engineering (PSE) area defined by Grossmann and Westerberg 

(2000) is concerned with the improvement of decision making for the creation and 

operation of the chemical supply chain. As chemical process systems, at the level of 

individual plants and at the level of the industrial enterprise, are networked systems and 

the PSE field has enabled tremendous advances in their optimization, it is interesting to 

explore to what extent the methods from PSE may be applied to infrastructure system 

operations. The urgent need for improving the performance of infrastructures creates a 

great demand for innovative optimization and control methods.  

2. Infrastructure characterization 

The physical network of an infrastructure system and the social network of actors 

involved in its operation collectively form an interconnected complex network where 

the actors determine the development and operation of the physical network, and the 

physical network structure and behavior affect the behavior of the actors. An 

infrastructure can thus be seen as a complex socio-technical system, the complexity of 

which is defined by its multi-agent/multi-actor character, the multi-level structure of the 
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system, the multi-objective optimization challenge, and the adaptivity of agents and 

actors to changes in their environment. Their non-linear response functions in 

combination with the complex system structure often lead to unpredictable dynamic 

behavior of the system. 

Like industrial enterprise systems, infrastructure systems can be viewed as multi-level 

systems, whether hierarchically interconnected or decentralized, with a number of 

operational regimes at the various system levels. Usually, at each level of the 

decomposed system local performance objectives are defined which should, preferably, 

not be restricted to the optimization of local goals, but rather aim at optimally 

contributing to the overall goal. However, the relation between local and overall system 

performance objectives may be rather fuzzy, especially since the overall objective is 

often not defined in detail and concerned with a longer time horizon. The local 

objectives are generally more detailed, concerned with a shorter time horizon and often 

with the specific interests of an individual actor (e.g. a business unit). To facilitate an 

overall optimization of the performance of the system as a whole, a kind of coordinator 

may be required to supervise local decision making in its relation to the overall goal.  

Unlike the situation of an industrial enterprise, central coordination or supervision is 

lacking in the practical situation of many infrastructure industries in liberalised markets. 

Especially in these situations it is a challenging task to develop a method for 

decentralized optimisation that can be implemented by subjecting the actors to a proper 

incentive system.  

As a conceptual model of infrastructures as socio-technical systems we will use the 

concept of multi-agent systems composed of multiple interacting elements, Weiss, 

1999. The term agent can represent actors in the social network (e.g. travelers taking 

auto-nomous decisions on which route to follow to avoid road congestion or companies 

involved in the production of gas or the generation of power) as well as a component 

(e.g. a production plant, an end-use device, a transformer station) in the physical 

network. In all these cases we see that the overall multi-agent system has its own overall 

objective, while the agents have their own individual objectives. To safeguard adequate 

functioning of the infrastructure the actions of the individual agents must be steered to-

wards an acceptable overall performance of the system in terms of e.g. availability, re-

liability, affordability and quality of service. An indispensable form of system mana-

gement is capacity management, which deals with the allocation of scarce network 

capacity to the various suppliers and users (c.q. end-use appliances) of the system. 

3.  Optimization of multi-agent systems: infrastructure capacity 
management 

Capacity management at the operational level addresses day-to-day and hour-to-hour 

capacity-allocation issues, which relates to how the flows (of goods, gas, electricity) are 

directed over the network. In the gas sector, international trade flows through the 

national grid may not hamper an adequate supply of gas to national users by excess use 

of transport capacity or quality conversion capacity. In the transport sector, intelligent 

road capacity allocation principles are designed to achieve more balanced capacity 

utilization in time and space, i.e. to minimize congestion. In dynamic road pricing 

schemes price levels for tolls are dynamically varied over space and time depending on 

the traffic conditions in the network and the policy objectives of the road authority 

policy objectives. A challenging question is what kind of operational models are needed 

to accommodate optimal distributed dynamic pricing schemes. The problem of 

distributed dynamic pricing is not unique for the highway infrastructure. Similar issues 
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are found in the operation of next generation electric power systems with many small 

scale distributed generating units, such as gas turbines, photovoltaics, wind turbines, 

fuel cells or micro combined heat & power (micro-CHP) units. These distributed 

technologies have many advantages, e.g. high fuel efficiency, modular installation, low 

capital investment and relatively short construction time (Cardell, 2000). However, 

distributed generation in a competitive electricity market creates major uncertainties to 

the operation of the system: as (millions of) power users can switch to the role of power 

producers, the  amount and quality of power produced in such a distributed system can 

vary enormously. Similarly, wind power fluctuations can pose management problems 

related to the frequency stability and the desired voltage profile. As a consequence of 

distributed power generation new control techniques need to be developed and 

implemented in order to guarantee power availability and quality (such as frequency, 

bounds on deviations, stability, and elimination of transients for electricity networks, 

and so on), so as to meet the demands and requirements of the users. As the input 

patterns and demands may vary over time, the network control system needs to be 

equipped with an agent-based coordination framework. An agent-based approach is also 

of a great value for control of cascading failures in electricity grids (Hines, 2005). 

Analogous problems and solutions related to system management can be found in 

decentralized traffic control concepts (Negenborn, 2006).  

The value of an agent-based approach for industrial supply chain management is also 

evident, see Aldea (2004), Julka (2002). Industrial business processes such as inventory 

management, planning, scheduling, production and logistics are still often optimized in 

isolation without proper consideration of their impact on the overall performance at the 

enterprise level. A multi-agent system with intelligent agents can emulate business 

processes under a variety of business communication scenarios and makes it possible to 

evaluate various alternative strategies for their contribution to local and overall goals.  

4. Decentralized Decision Systems for infrastructure operation 

In a decentralized decision system the objectives and constraints of any decision maker 

may be determined in part by variables controlled by other agents. In some situations, a 

single agent may control all variables that permit it to influence the behavior of other 

decision makers as in traditional hierarchical control. The extent of the interaction may 

depend on the particular environment and time dimension: in some cases agents might 

be tightly linked, while in others they have little effect on each other, if any at all. For 

decision making in such systems two important aspects can be distinguished: a set of 

individual goals and ways of how to reach them, and a set of linkages allowing agents to 

interact.  

4.1. Multi-level optimization 

In a multi-level optimization problem several decision makers control their own degrees 

of freedom, each acting in a sequence to optimize own objective function. This problem 

can be represented as a kind of leader-follower game in which two players try to 

optimize their own utility function F(x,y) and f(x,y) taking into account a set of 

interdependent constraints. The leader optimizing F defines an optimal x, so that this 

term for the objective function of the follower is constant, and f(x,y) may be in principle 

replaced by f(y). However, due to the iterative structure of this decision process y can 

still be still represented as a function of x. For example, to influence the amount of 

electricity produced by small distributed generators in the imbalances market price-

based incentives may be used. Then, small distributed generators such as micro-CHP 

equipped households can decide on their supply of electricity to the distribution network 
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while still fulfilling their own electricity (and heat) demands. This can be formulated as 

a bi-level decision making problem with respect to the price signals to be designed to 

steer the distribution network- household interaction in the distributed electric power 

sector (Houwing, 2006). If distributed generation by households takes off, dynamic 

pricing schemes will be needed to influence decisions of households with respect to e.g. 

micro-CHP power level and amount of discharged heat, in order to maintain system 

balance at the distribution network level: 

 (Upper level) 

Min {objective of the electricity supplier w.r.t. operational costs}  s.t. 

constraints on frequency stability and voltage  

Subject to: 

 (Lower level) 

 Min {operational costs of household} s.t. network and physical constraints. 

 

Analogously, a dynamic pricing model with dynamic route and departure time model 

can be formulated as a bi-level programming problem, see Figure 1: 

 (Upper level) 

 Min {objective of the road authority e.g. congestion}  s.t. constraints on tolls 

Subject to: 

 (Lower level) 

 Max {utility function of travelers} s.t. network constraints 

where the upper level describes the overall road performance and the lower level the 

user-specific objective (utility) function. The aim of the road authority is to optimize 

system performance by choosing the optimal tolls for a subset of links, within realistic 

constraints and subject to the dynamic route and departure time choice, that is, the travel 

behavioral part. 

 

Figure 1. Schematic representation of bi-level decision problem examples found in energy and 

transport infrastructures 

Solving multi-level problems may pose formidable mathematical and computational 

challenges. Even in the linear case the bi-level programming problem is a non-convex 

optimization problem which is NP-hard. General multi-level programming problems 

with an arbitrary number of levels, in which the criteria of the leader and the follower 

can be nonlinear and/or discrete, are most challenging to solve. In recent years, 
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however, remarkable progress was made in developing efficient algorithms for this 

class of decision problems (see Bard, 1998). Still, solving the problems as encountered 

in dynamic road pricing and dynamic pricing of distributed power generation using 

conventional mathematical optimization techniques seems to be inefficient for complex 

networks. Therefore, it is useful to consider heuristic methods (e.g. genetic algorithms) 

to solve such complex problems in the operation of multi-agent multi-level infra-

structure systems. Applying multi-level optimization to decentralized decision making 

on infrastructure system operation is a promising approach to cope with a layered 

decision structure. In industrial plant operation, however, only a few applications of 

multi-level optimization were found; see Ryu (2004) and Heijnen (2005). 

4.2. Multi-Agent Model Predictive Control 

In this section we take a close look at a particular approach used in the PSE area to 

solve an optimal control problem, namely Model Predictive Control (MPC), see e.g. 

Maciejowski (2002). This method from the PSE area has become an important approach 

to finding optimization policies for complex, dynamic systems. MPC has found wide 

application in the process industry, and recently has also started to be used in the 

domain of infrastructure operation, e.g. for the control of road traffic networks, power 

networks, and railway networks. MPC approximates the dynamic optimal control 

problem with a series of static control problems, removing the dependency on time. 

Advantages of MPC lie in the fact that the framework handles operational input and 

state constraints explicitly in a systematic way. Also, an agent employing MPC can 

operate without intervention for long periods, due to the prediction horizon that makes 

the agent look ahead and anticipate undesirable future situations. Furthermore, the 

moving horizon approach in MPC can in fact be considered to be a feedback control 

strategy, which makes it more robust against disturbances and model errors. The main 

challenge when applying MPC to infrastructure operation stems from the large-scale of 

the control problem. Typically infrastructures are hard to control by a single agent. This 

is due to technical issues like communication delays and computational requirements, 

but also to practical issues like distributed ownership, unavailability of information 

from one subsystem to another and restricted control access. The associated dynamic 

control problem is therefore typically broken up into a number of smaller problems, see 

Figure 2.  

 
Figure 2. Single-agent versus multi-agent control of a complex network 

However, since the sub-problems are interdependent, communication and collaboration 

between the agents is a necessity. A typical multi-agent MPC scheme therefore involves 

for each agent the following steps: (1) obtain information from other agents and 

measure the current sub-system state; (2) formulate and solve a static optimization 

problem of finding the actions over a prediction horizon N from the current decision 
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step k until time step k+N. Since the sub-network is influenced by other sub-networks, 

predictions about the behavior of the sub-network over a horizon are more uncertain. 

Communication and cooperation between agents is required to deal with this; (3) 

implement the actions found in the optimization procedure until the beginning of the 

next decision step. Typically this means that only one action is implemented; (4) move 

on to the next decision step k+1, and repeat the procedure, see Camponogara (2002). 

Determining how agents have to communicate to ensure that the overall system 

performs as desired is a huge and urgent challenge (e.g. considering the problem of 

large transient flows in national electricity transmission grids as a result of large scale 

wind power generation abroad)  that still requires a substantial amount of research. 

Hines (2005) and Negenborn (2006) describe many possible approaches. 

5. Conclusions 

In this paper we have considered challenges for process system engineering in 

infrastructure system operation and control. The relevance of optimization models as 

decision-supporting tools is very high for many players in the world of infrastructure. In 

all systems that exhibit interactions and interdependencies between subsystems, where 

multiple functionality plays a role, where capacity allocation in a complex and dynamic 

environment is an issue, feasible concepts of decentralized optimization are called for. 

As a particular challenge we pointed out the application of multi-level optimization and 

model predictive control in a multi-agent setting of decentralized decision making on 

infrastructure system operation. Besides computational complexity, a formidable 

challenge here is posed by the design of communication and cooperation schemes that 

enable agents to come to decisions that are both acceptable locally and ensure an overall 

system performance in respect of social and economic public interests. The design of 

markets and an appropriate legislative and regulatory framework to steer individual 

actors’ decision making towards public goals and to enforce adequate communication 

and collaboration schemes may be beyond the world of PSE, but will certainly be 

inspired by applicable PSE optimization strategies. 
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