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Chapter 1

Introduction

In this chapter we present the background and the motivation for the research addressed in
this thesis. In Section 1.1 we f rst introduce the type of systems that we consider: trans-
portation networks in general, and power networks in particular. In Section 1.2 we then
discuss controlling such systems and motivate the use of multi-agent control structures. In
Section 1.3 the conceptual ideas of model predictive control are presented as strategy for
the control agents to determine which actions to take, and various issues to be addressed in
relation with model predictive control and multi-agent control structures for transportation
networks are discussed. In Section 1.4 we discuss opportunities for the use of multi-agent
model predictive control in the power networks of the future, and in Section 1.5 we conclude
the chapter with an overview and road map of this thesis, and a list of the contributions to
the state of the art.

Parts of this chapter have been published in [107].

1.1 Transportation networks

Transportation or infrastructure networks, like power distribution networks [82], traff c and
transportation systems [33], water distribution networks [21], logistic operations networks
[88], etc., are the corner stones of our modern society. A smooth, eff cient, reliable, and safe
operation of these systems is of huge importance for the economic growth, the environment,
and the quality of life, not only when the systems are pressed to the limits of their perfor-
mance, but also under regular operating conditions. Recent examples illustrate this. E.g.,
the problems in the USA and Canada [141], Italy [139], Denmark and Sweden [43], The
Netherlands, Germany, Belgium, and France [140], and many other countries [114, 148]
due to power outages have shown that as power network operation gets closer to its limits,
small disturbances in heavily loaded lines can lead to large black-outs causing not only huge
economic losses, but also mobility problems as trains and metros may not be able to oper-
ate. Also, as road traff c operation gets closer to its limits, unexpected situations in road
traff c networks can lead to heavy congestion. Not only the huge traff c congestion after
incidents such as bomb alerts are examples of this, also the almost daily road-traff c jams
due to accidents illustrate this convincingly.

Expanding the physical infrastructure of these networks could help to relieve the issues

1



2 1 Introduction

Figure 1.1: Generic transportation network. Commodity enters the network at sources (cir-
cles with an arrow pointing towards them), flows over links to other elements in
the network that alter the flows (at each circle, and leaves the network at sinks
(circles with an arrow pointing outward). Dotted lines represent connections
with other parts of the network.

in transportation networks, although at extremely high costs. As alternative to spending this
money on building new infrastructure, it is worth spending effort on investigating improved
use of the existing infrastructure by employing intelligent control techniques that combine
state-of-the-art techniques from f elds like systems and control engineering [6], optimization
[18], and multi-agent systems [147], with domain-specif c knowledge.

The examples of networks just mentioned are only some particular types of networks
within the much larger class of transportation networks. Common to transportation net-
works is that at a generic level they can be seen as a set of nodes, representing the compo-
nents or elements of the network, and interconnections between these nodes. In addition,
transportation networks have some sort of commodity, that is brought into the network at
source nodes, that f ows over links to sink nodes, and that is inf uenced in its way of f ow-
ing over the network by elements inside the network, as illustrated in Figure 1.1. Other
characteristics that are common to transportation networks are:

• they typically span a large geographical area;

• they have a modular structure consisting of many subsystems;

• they have many actuators and sensors;

• they have dynamics evolving over different time scales.

In addition to this, transportation networks often contain both continuous (e.g., f ow evolu-
tion) and discrete dynamics (e.g., on and off switching), and are therefore also referred to
as hybrid systems [143]. This mixture of characteristics makes that transportation networks
can show extremely complex dynamics.

Even though transportation networks differ in the details of commodity, sources, sinks,
etc., it is worth to consider them in a generic setting. On the one hand, methods developed
for generic transportation networks can be applied to a wide range of specif c domains,
perhaps using additional f ne-tuning and domain-specif c enhancements to improve the per-
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actions

measurements

control

system

structure

Figure 1.2: The relation between a general system and the control structure that controls
the system.

formance. On the other hand, approaches specif cally developed for a particular domain can
be applied to other domains after having transfered them to the generic framework.

1.2 Control structures

There are many users, controllers, players, actors, and operators involved in the evolution
of transportation networks. Each of these refers to entities that directly or indirectly change
the way commodity is f owing. Different users may have different objectives, and these ob-
jectives may be conf icting. Objectives that users may have involve avoiding congestion of
links, maximizing throughput, minimizing costs of control actions, minimizing travel times,
etc. An example of conf icting objectives in a road traff c network is given by the objectives
that the individual road users have on the one hand and road authority has on the other: The
individual road users want to minimize the travel time to their destination, whereas the road
authority wants to minimize overall network congestion [134]. An example in the domain
of power networks is given by the objectives that the individual households have on the
one hand and the government has on the other: The individual households aim at minimiz-
ing the costs on energy, whereas the government aims at maximizing usage of the perhaps
more expensive green energy. Also, in power networks, it may sometimes be benef cial
for the overall network performance to cut off certain parts of the network from electricity
consumption in a controlled way in order to prevent large black-outs [142], even though
individual consumers perhaps do not want this.

In order to formalize the operation of transportation networks, consider Figure 1.2. The
f gure illustrates the overall picture of a systemon the one hand and a control structureon
the other. The system is the entity that is under control, and the control structure is the
entity that controls the system. Hence, the control structure is the concept used to indicate
the structure that produces actuator settings. The control structure monitors the system by
making measurements and based on these chooses control actions that are implemented on
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the system. The system evolves subject to these actions to a new state, which is again mea-
sured by the control structure. The control structure consists of one or more components,
called control agents. These control agents try to determine settings for the actuators in-
side the system in such a way that their own objectives are met as closely as possible and
any constraints are satisf ed. In our case, the system consists of the transportation network,
and the components of the control structure consists of all the users, controllers, operators,
players, etc., from now on only referred to as the control agents.

The control structure is a very general concept and can have many different shapes. A
f rst important distinguishing feature between control structures is the number of control
agents that constitute the control structure. E.g., the control structure can consist of a single
control agent or multiple control agents. Some other properties in which control structures
can differ are:

• the access that the control agents have to the sensors and actuators in the network,

• the communication that the control agents have among one another,

• the way in which the control agents process sensor data to obtain actions,

• the authority relations between the control agents,

• the beliefs, desires, and intentions of the control agents,

• etc.

Def ning different types of control structures is diff cult due to the large amount of prop-
erties that they can have. However, some general types of control structures can be identi-
f ed, that have increasing complexity, that are commonly encountered in theory and practice,
and that will also be of particular interest in the subsequent chapters:

• When it is assumed that there is only one control agent, that has access to all ac-
tuators and sensors of the network and thus directly controls the physical network,
then this control structure is referred to as an ideal single-agentcontrol structure, as
illustrated in Figure 1.3(a). The control structure is referred to as an ideal structure,
since in principle such a control structure can determine actions that give optimal
performance.

• When there are multiple control agents, each of them considering only its own part of
the network and being able to access only sensors and actuators in that particular part
of the network, then the control structure is referred to as a multi-agent single-layer
control structure, as illustrated in Figure 1.3(b). If in addition the agents in the control
structure do not communicate with each other, the control structure is decentralized.
If the agents do communicate with each other, the control structure is distributed.

• When there are multiple control agents, and some of these control agents have author-
ity over other control agents, in the sense that they can force or direct other control
agents, then the control structure is a multi-layer control structure, as illustrated in
Figure 1.3(c) A multi-layer control structure typically is present when one control
agent determines set-points to a group of other control agents, that work in a decen-
tralized or distributed way. Due to the authority relationship between agents or groups
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control structure

control agent
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(a) Single-agent control structure. The single
control agent makes measurements of the sys-
tem and provides actions to the network.

measurements actionsactions measurements actions

control structure

measurements

control agent control agent control agent
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(b) Multi-agent single-layer control structure. Multiple control agents make
measurements and provide actions to the network. Communication between the
control agents is optionally present (dashed line).

measurements actionsactions measurements actionsmeasurementsmeasurements actions

control structure

control agent control agentcontrol agent

control agent
4

1 2 3

(c) Multi-layer control structure. A higher-layer control agent can make measurements and provide
actions to the network and can in addition direct or steer a lower control layer.

Figure 1.3: Some important types of control structures.
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of agents, the multi-layer control structure can also be referred to as a supervisory
control structure, or a hierarchical control structure.

1.2.1 Control structure design

Suppose that a particular network is given and that any control structure can be implemented
on it. The question that then arises is the question of how it can be determined what the best
control structure is. Unfortunately, theories for determining general control structures are
lacking. However, motivations for preferring one type of control structure over another can
be given.

Advantages of single-agent control structures are in general that they can deliver the
best performance possible, and that they have been studied extensively in the literature, in
particular for small-scale systems. However, there are several issues that complicate the use
of single-agent control structures for large-scale transportation networks such as:

• undesirable properties with respect to robustness, reliability, scalability, and respon-
siveness;

• technical issues related to communication delays and computational requirements;

• commercial, legal, and political issues related to unavailability of information and
restricted control access.

These reasons motivate the use of multi-agent control structures [135, 145, 147], which
are expected to be able to deal or at least relieve these issues. Multi-agent control structures
can in principle:

• improve robustness and reliability, since if one control agents fails, another can take
over, and improve responsiveness, since the control agents typically use only local
measurements and therefore can react quicker to changing situations;

• reduce communication delays, since the control agents operate locally and therefore
solve problems that may be smaller, and since coomunication typically takes place
among nearby control agents;

• deal with unavailability of information and restricted control access, since the con-
trol agents only require information of their own part of the network and since they
determine actions only for their own part of the network.

However, typically multi-agent control structures have a lower performance than the perfor-
mance of ideal single-agent control structures and implementing schemes that give desired
performance is far from trivial.

An advantage of the decentralized over the distributed multi-agent single-layer control
structures is that there is no communication between the controllers, resulting in lower com-
putational requirements and faster control. However, this advantage will typically be at the
price of decreased overall performance. The advantage of a distributed multi-agent single-
layer control structure is therefore that improved performance can be obtained, although
at the price of increased computation time due to cooperation, communication, and per-
haps negotiation among control agents. However, even though improved performance can
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be obtained, the performance will still typically be lower than the performance of an ideal
single-agent control structure.

The multi-agent multi-layer control structure provides the possibility to obtain a trade-
off between system performance and computational complexity. A higher layer considers
a larger part of the system and can therefore direct the lower control layer to obtain co-
ordination. Such a multi-layer control structure can thus combine the advantages of the
single-agent control structure with the multi-agent single-layer control structure, i.e., over-
all system performance with tractability. It is noted, however, that communication in a
multi-agent multi-layer control structure is typically more complex than in a single-agent
control structure and a multi-agent single-layer control structure.

Note that in practice often a particular control structure is already in place, and that the
control structure cannot be redesigned from scratch. The question in this case is not so
much the question of what control structure is best, but of how the currently existing control
structure can be changed, such that the performance is improved. Of course here it has
to be def ned what the performance is, and in a control structure with control agents with
conf icting objectives it may not be possible to reach consensus on this.

1.2.2 Assumptions for design and analysis

In this thesis we develop control strategies for several control structures. Due to the com-
plexity of transportation networks, we have to narrow the scope of control problems that we
will consider. Our focus will mostly be on the most fundamental of transportation network
control problems: the operational control of transportation networks, in which amounts of
commodity to be transported over the network are given, and controllers have to ensure that
transport over the network can take place at acceptable service levels, while satisfying any
constraints, both under normal and emergency operating conditions.

In order to make the analysis and the design of the control structures more tractable,
assumptions have to be made, both on the network and the control structure. Assumptions
relating to the network are made on the dynamics of the network, i.e., the way in which the
components in the network function. E.g., the dynamics can be assumed to evolve over con-
tinuous time or in discrete-time, they can be assumed to involve only continuous dynamics,
or both continuous and discrete dynamics, and they can be assumed to be instantaneous or
not. In each chapter we explicitly point out which particular assumptions are made on the
network.

With respect to the control structure, we assume in each of the following chapters that:

• the control agents are already present;

• the control agents control f xed parts of the network, and they can access actuators
and sensors in these parts of the network;

• the control agents know what qualitative behavior is desired for the parts of the net-
work they control;

• the control agents strive for the best possible overall performance of the network;

• the control agents can measure the state of the parts of the network that they control.
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Under such assumptions it remains to be decided on how the agents in the control structure
get from their measurements to actuator settings, i.e., what protocols, computations, and
information exchanges take place inside the control structure. Assumptions on these are
made in the subsequent chapters. In the following section we discuss the approach that we
propose to be used by the control agents in a multi-agent control structure for transportation
network control: model predictive control.

1.3 Model predictive control

To f nd the actions that meet the control objectives as well as possible, the control agents
have to make a trade-off between the different available actions. In order to make the best
decision and hence f nd the best actions, all relevant information about the consequences of
choosing actions should be taken into account. For power networks, typical information that
is available consists of forecasts on power consumption and exchanges [55], capacity limits
on transmission lines, dynamics of components like generators, capacitor banks, transform-
ers, and loads [82]. Furthermore, typically area-wide measurements of voltage magnitude
and angles across the network can be made to provide an up-to-date status of the situation
of the network. A particularly useful form of control for transportation network that in
principle can use all information available is model predictive control (MPC) [27, 93].

1.3.1 Single-agent MPC

Over the last decades MPC (also knowns as receding horizon control or moving horizon
control) has become an important strategy for f nding control policies for complex, dynamic
systems. MPC in a single-agent control structure has shown successful application in the
process industry [93, 102], and is now gaining increasing attention in f elds like amongst
others power networks [49, 61], road traff c networks [58], railway networks [36], steam
networks [94], supply chain management [146], food processing [130], mine planning [56],
heat-exchanger networks [54], greenhouse control [123], and drug delivery [22].

Concept

MPC is a control strategy that is typically used in a discrete-time control context, i.e., control
actions are determined in discrete control cycles of a particular duration which in itself is
expressed in continuous time units1. From the beginning of one control cycle until the
beginning of the next control cycle, the control actions stay f xed, i.e., a zero-order hold
strategy is employed.

In each control cycle the MPC control agent uses the following information, as illus-
trated in Figure 1.4:

• an objective functionexpressing which system behavior and actions are desired;

• a prediction modeldescribing the behavior of the system subject to actions;
1Although usually the term control sample step is used to indicate the discrete step at which a control agent

determines its actions, we refer to this as control cycle, since later on we will require control step to denote certain
steps inside multi-agent MPC strategies.
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Figure 1.4: Single-agent MPC.

• possibly constraintson the states, the inputs, and the outputs of the system (where the
inputs and the outputs of the system correspond to the actions and the measurements
of the control agent, respectively);

• possibly known information about future disturbances;

• a measurementof the state of the system at beginning of the current control cycle.

The objective of the control agent is to determine those actions that optimize the behav-
ior of the system and minimize costs as specif ed through the objective function. In order
to f nd the actions that lead to the best performance, the control agent uses the prediction
model to predict the behavior of the system under various actions over a certain predic-
tion horizon, starting from the state at the beginning of the control cycle. Once the control
agent has determined the actions that optimize the system performance over the prediction
horizon, it implements the actions until the beginning of the next control cycle, at which
point the control agent determines new actions over the prediction horizon starting at that
point, using updated information. Hence, the control agent operates in a receding or rolling
horizon fashion to determine its actions.

In general it is preferable to have a longer prediction horizon, since by considering a
longer prediction horizon, the control agent can better oversee the consequences of its ac-
tions. At some length, however, increasing the length of the prediction horizon may not
improve the performance, if transients in the dynamics may have become negligible. For
computational reasons, determining the actions over a very long horizon typically is not
tractable, and in addition due to potential uncertainty in the prediction model and in predic-
tions of future disturbances, a smaller prediction horizon is usually considered. Hence, in
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practice, the prediction horizon should be long enough to cover the most important dynam-
ics, i.e., those dynamics dominating the performance, and short enough to give tractable
computations. It should hereby also be noted that if a prediction horizon is used that is too
short, the system could arrive in states from which it cannot continue due to the presence of
constraints, e.g., on the actions. The prediction horizon should thus have such a length that
arriving in such states can be avoided.

MPC Algorithm

Summarizing, a control agent in a single-agent control structure using MPC to determine
its actions performs at each control cycle the following:

1. Measure the current state of the system.

2. Determine which actions optimize the performance over the prediction horizon by
solving the following optimization problem:

minimize the objective function in terms of actions over the prediction horizon
subject to the dynamics of the whole network over the prediction horizon,

the constraints on, e.g., ranges of actuator inputs and link capacities,
the measurement of the initial state of the network at the beginning

of the current control cycle.

3. Implement the actions until the next control cycle, and return to step 1.

Advantages and issues

Advantages of MPC are that in principle it can take into account all available information
and that it can therefore anticipate undesirable situations in the future at an early stage.
Additional advantages of MPC are [93]:

• its explicit way of handling constraints on actions, states, and outputs;

• its ability to operate without intervention for long periods;

• its ability to adapt to slow changes in the system parameters;

• its ability to control systems with multiple inputs and multiple outputs;

• its relatively easy tuning procedure;

• its built-in robustness properties.

However, there are also some issues that have to be addressed before a control agent
using an MPC strategy can be implemented successfully:

• the control goals have to be specif ed;

• the prediction model has to be constructed;
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• the measurement of the system state has to be available;

• a solution approach has to be available that can solve the MPC optimization problem;

• the solution approach has to be tractable.

Basic issues, e.g., stability and robustness, have extensively been studied for MPC in
single-agent control structures [102], in particular for linear time-invariant systems. For
other classes of systems there are still many open issues. E.g., tractability issues of MPC for
nonlinear and discrete-event systems, and for systems in which variables take on discrete
values, still deserve attention. E.g., in [106] we propose one approach to make the MPC
problem for a system modeled as a Markov decision process more tractable and to deal with
changing system dynamics by including experience using reinforcement learning. Another
class of systems for which there are still many open questions are hybrid systems, i.e.,
systems including both continuous and discrete dynamics. This class of systems currently
receives signif cant attention in MPC research and will be considered in more detail in
Chapters 3 and 4.

1.3.2 Multi-agent MPC

As mentioned in the previous section, in a multi-agent control structure, there are multiple
control agents, each of them controlling only its own subnetwork, i.e., a part of the overall
network. Multi-agent MPC issues have been investigated since the 90s in [1, 2, 12, 25, 28,
38, 41, 48, 53, 72, 74, 75, 77, 117, 129, 144].

In multi-agent MPC, multiple control agents in the control structure use MPC, but now
they f rst measure the subnetwork state, then they determine the best actions over the pre-
dicted subnetwork evolution, and then they implement actions. Although this may seem like
a straightforward extension of single-agent MPC at f rst sight, when considering the details
it is not.

The actions that an agent in a multi-agent control structure takes inf uence both the
evolution of the subnetwork it controls, and the evolution of the subnetworks connected to
its subnetwork. Since the agents in a multi-agent control structure usually have no global
overview and can only access a relatively small number of sensors and actuators, predicting
the evolution of a subnetwork over a horizon involves even more uncertainty than when a
single agent is employed. In addition, when a control agent in a multi-layer control structure
provides set-points to another agent, this supervisory control changes the way in which
the other agent chooses its actions, and thus the higher-layer control agent changes the
performance of the system. Hence, the interactions between the agents make multi-agent
MPC involved.

Under the assumption that the control agents strive for an optimal overall network per-
formance, the challenge in implementing such a multi-agent MPC strategy comes from
ensuring that the actions that the individual agents choose result in a performance that is
as good as when a hypothetical single-agent control structure in which all information is
available would be used.
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Figure 1.5: Multi-agent single-layer MPC.

Multi-agent single-layer MPC

In the multi-agent single-layer control structure each control agent only has information
gathering and action capabilities that are restricted to that part of the network that a particu-
lar control agent controls, as illustrated in Figure 1.5. The challenge in implementing multi-
agent single-layer MPC comes from predicting the dynamics of the subnetwork, since as
mentioned, its evolution is inf uenced by the other agents. The underlying problem of MPC
for multi-agent control structures can therefore be seen as optimization over a distributed
simulation.

Issues To make accurate predictions of the evolution of the subnetwork, a control agent
requires the current state of its subnetwork, a sequence of actions over the prediction hori-
zon, and predictions of the evolution of the interconnections with other subnetworks. The
predictions of the evolution of the interconnections with other subnetworks are based on the
information communicated with the neighboring control agents. In Chapter 2 we classify
how existing approaches implement this. One particular class of methods aims at achieving
cooperation among control agents in an iterative way in which in each control cycle control
agents perform several iterations consisting of local problem solving and communication.
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In each iteration agents obtain information about what the plans of neighboring agents are.
Ideally at the end of the iterations the agents have found actions that lead to overall optimal
performance. In Chapter 2 we discuss such schemes.

As is the case with MPC for single-agent control structures, having both continuous and
discrete dynamics causes computational problems. In transportation networks this combina-
tion is commonly encountered, and it is therefore relevant to study models that take this into
account. In Chapter 3 such models and MPC for multi-agent single-layer control structures
for these models are considered.

A further complicating issue arises when the subnetworks that the agents control are
overlapping. Existing strategies assume that the subnetworks that the control agents control
are non-overlapping. However, in some applications the subnetworks considered by the
control agents are overlapping. In Chapter 5 this issue is further addressed.
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Multi-agent multi-layer MPC

In the multi-layer multi-agent MPC case there are multiple control layers in the control
structure, i.e., there are authority relationships between the agents in the sense that some
agents provide set-points or directions to other agents. The agents at higher layers typically
consider a larger region of the network and consider slower time scales than agents in lower
layers. Figure 1.6 illustrates this.

MPC can also be used by a control agent in a higher layer of the control structure.
This higher-layer control agent can then coordinate the lower layer, which may consist of
control agents using multi-agent single-layer MPC, or of control agents that use alternative
control strategies. The higher-layer control agent then coordinates the lower control layer
by enforcing penalty terms, providing additional constraints, or providing set-points. The
advantage of the higher-layer control agent is in particular clear when the control agents of
the lower layer are working decentralized, i.e., not communicating with one another.

Issues An important issue to be addressed when designing MPC for multi-agent multi-
layer control structures is the choice of the prediction model that the higher-layer control
agent uses. A higher-layer control agent has to be able to make relevant predictions of the
physical system, but since the physical system is under control of the lower-control layer, the
lower control layer has to be taken into account by the higher-layer control agent as well. In
addition, the prediction model that the higher-layer control agent uses will typically involve
both continuous and discrete elements, since it has to consider a larger part of the network
than lower-layer agents. This makes the resulting MPC control problem more complex, and
eff cient ways have to be found to solve it eff ciently. In Chapter 4 we address these issues.

1.4 Power networks

In this thesis we develop MPC for multi-agent control structures. In order to illustrate
the performance of the developed techniques we use problems from the domain of power
networks.

1.4.1 Physical power networks

Power networks [82, 92, 128] are large transportation networks consisting of a large num-
ber of components. The dynamics of the power network as a whole are the result of the
interactions between the individual components. The generators produce power that is in-
jected into the network on the one side, while the loads consume power from the network
on the other. The distribution of the power in the network is dictated by Kirchhoff’s laws
and inf uenced by the settings of the generators, loads, transformers, and potentially also by
capacitor banks and FACTS devices. This ensemble of components together produces an
evolution over time of active and reactive power, and voltage magnitudes and angles. Power
networks do not only exhibit continuous dynamics, but also discrete dynamics. Discrete
dynamics in power networks appear due to discrete events triggered by on and off switch-
ing of generators and loads, breaking of transmission lines, discrete switching logic inside
transformers, saturation effects in generators, etc. Hence, power networks are large-scale
hybrid systems with complex dynamics.



1.4 Power networks 15

1.4.2 Future power networks

Power networks are evolving towards a new structure. Conventionally, in power networks,
power was generated in several large power generators. This power was then transported
through the transmission and distribution network to the location where it was consumed,
e.g., households and industry. Power f ows were relatively predictable, and the number of
control agents was relatively low. Due to the ongoing deregulation in the power generation
and distribution sector in the U.S. and Europe, the number of players involved in the gener-
ation and distribution of power has increased signif cantly. In the near future the number of
source nodes of the power distribution network will even further increase as also large-scale
industrial suppliers and small-scale individual households will start to feed electricity into
the network [73].

As a consequence, the structure of the power distribution network is changing from a
hierarchical top-down structure into a much more decentralized system with many generat-
ing sources and distributing agencies. This multi-player structure thus results in a system
with many interactions and interdependencies. In addition, the following interesting devel-
opments are taking or will take place:

• At a European scale the electricity networks of the individual countries are becom-
ing more integrated as high-capacity power lines are constructed to enhance system
security [132]. The national network operators will have to cooperate and coordinate
more at a European scale to operate the power network in a desirable way.

• At a national scale power does not any longer only f ow from the transmission network
in the direction of the distribution network and onwards to the industrial sites and
cities, but can also f ow from the industrial sites and cities to the distribution network
and into the transmission network [73]. The network f ows will vary more and it will
therefore be necessary to improve the coordination of decentralized local controllers,
and to improve the cooperation between power regions.

• At the local scale loads at consumption nodes become controllable and it becomes
possible to store energy using batteries [73]. In addition, groups of households can
become independent of the large electricity suppliers by arranging energy exchanges
among each other.

Hence, to still guarantee basic requirements and service levels, such as voltage levels, fre-
quency, bounds on deviations, stability, elimination of transients, etc., and to meet the de-
mands and requirements of the users, new control techniques have to be developed and
implemented. These control techniques have to be adaptive and online as the input patterns
and demands may vary over time.

1.4.3 Opportunities for multi-agent control

The developments outlined above offer many new opportunities for multi-agent control.
In this thesis we deal in particular with and propose new solutions for control problems
inspired by the following power domain control problems:

• distributed load-frequency control of non-overlapping power areas (Chapters 2 and
3);
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• distributed FACTS devices control for security of overlapping power areas (Chapter
5);

• supervisory emergency voltage control for coordination of a layer of decentralized
controllers (Chapter 4);

• decentralized control of electricity and heat usage in households (Chapter 3).

The f rst three problems aim at improving the operational control of power networks, ensur-
ing adequate system performance under normal and emergency operating conditions. Here,
system security is the main issue, and economical objectives are less important. The last
problem aims more at economical optimization, and assumes the system operations to be
reliable.

1.5 Overview of this thesis

1.5.1 Thesis outline

In this thesis current issues in model predictive control (MPC) in multi-agent control struc-
tures with applications to control problems in power networks are discussed and new solu-
tions are proposed. This thesis is organized as follows:

• In Chapter 2 communication and decision making schemes for multi-agent MPC
are discussed, with a particular focus on serial versus parallel schemes. A novel se-
rial scheme for multi-agent MPC is proposed and compared with an existing parallel
scheme. The emphasis is on networks modeled as interconnected linear time-invariant
subnetworks, a basic, yet important class of networks. The theory developed is ap-
plied to the load-frequency control problem in power networks.

• In Chapter 3 multi-agent MPC for networked hybrid systems is studied. Translating
discrete phenomena like saturation into systems of inequalities is discussed, and an
extension of the schemes of Chapter 2 for dealing with interconnected linear time-
invariant subnetworks with both real and integer inputs is proposed. A decentralized
MPC controller for household optimization is constructed, and the load-frequency
control problem of Chapter 2 is extended by including discrete switching of power
generation.

• In Chapter 4 the focus is on multi-layer multi-agent control. Creating object-oriented
prediction models to construct models of complex systems is discussed, and a medium-
layer MPC controller is proposed that uses such a model to determine set points for a
lower decentralized control layer. The theory is applied to a voltage collapse problem
in a nine-bus dynamic power network.

• In Chapter 5 higher-layer multi-agent MPC for controlling networks in which the
subnetworks are overlapping is proposed. Conventional approaches assume non-
overlapping subnetworks, in which control objectives and system dynamics can be
clearly assigned to individual subnetworks. An extension of a recently developed
scheme for multi-agent MPC is proposed for situations in which the subnetworks are
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overlapping. The developed scheme is used for FACTS-controlled optimal power
f ow control.

• Chapter 6 summarizes the results of this thesis and outlines directions for future
research.

1.5.2 Road map

Figure 1.7 illustrates a grouping of the chapters in related subjects and an ordering in which
the chapters can be read. It is suggested to read the chapters in the order as they appear
in the thesis. Chapter 1 contains a general introduction to the topics in this thesis, and is
therefore suggested to be read f rst. Chapters 2 and 3 focus both on issues related to control
by control agents that have equal authority relationships, and therefore operate in a single
layer. In addition, the schemes discussed in these chapters assume that subnetworks are
non-overlapping. Chapters 4 and 5 focus on issues related to control by control agents with
different authority relationships, and therefore operate in multiple layers. In addition, in
Chapter 5 it is assumed that subnetworks are overlapping. It is therefore suggested to read
Chapters 2 and 3 before Chapters 4 and 5. Chapter 6 summarizes the results of this thesis
and gives directions for future research. This chapter can be read after the other chapters.
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1.5.3 Contributions

Main contributions

The main contributions of the research described in this PhD thesis with respect to model
predictive control and multi-agent systems are the following:

• A serial scheme for multi-agent single-layer MPC has been proposed for intercon-
nected linear time-invariant systems in [109, 112], and for a class of interconnected
linear hybrid systems in [108] (see also Chapters 2 and 3).

• A coordinating MPC control strategy using an object-oriented prediction model has
been proposed in [113], and using a linearized object-oriented prediction model in
[110] (see also Chapter 4).

• A parallel scheme for multi-agent single-layer MPC for nonlinear overlapping sub-
networks has been proposed in [69] (see also Chapter 5).

With respect to power network control our main contributions are:

• A solution approach for distributed load-frequency control has been proposed for con-
tinuous problems in [109, 112], and for hybrid problems in [108] (see also Chapters
2 and 3).

• A decentralized MPC controller for optimization of energy consumption in house-
holds has been proposed in [68] (see also Chapter 3).

• Two solution approaches for coordinating decentralized controllers for emergency
voltage control have been proposed in [110] and [113] (see also Chapter 4).

• A solution approach for FACTS-based security control in overlapping power areas
has been proposed in [69] (see also Chapter 5).

Contributions to the state-of-the-art

Besides our main contributions, the research involved in this PhD thesis has resulted in
additional contributions to the state-of-the-art in the following ways:

• A unif ed framework of multi-agent MPC strategies has been proposed in [107] (see
also Chapter 2).

• A parallelization of the serial multi-agent MPC scheme has been proposed in [111].

• The integration of multi-level, in particular bi-level, control and multi-agent MPC has
been discussed in [90].

• Challenges for process system engineering in transportation network control have
been identif ed in [89].

• An MPC controller for Markov decision processes using experience to decrease com-
putational requirements has been proposed in [106].



Chapter 2

Serial versus parallel schemes

In this chapter we consider multi-agent single-layer MPC, in which the network is divided
into several non-overlapping subnetworks, and each subnetwork is controlled by one control
agent, as shown in Figure 1.5. The agents have to locally choose those actions that give an
overall optimal performance. In Section 2.1 we introduce the assumptions that we make
on the network and control structure. In Section 2.2 we then formulate the MPC problem
considering only one particular control agent, assuming that it knows how the surrounding
network behaves. In Section 2.3 we relax this assumption and discuss how interconnections
between control problems of different agents are formalized and how the multi-agent single-
layer MPC approaches can differ in dealing with these interconnections. In Section 2.4
we focus on particular types of schemes, viz. synchronous, multi-iteration, parallel, and
serial schemes. We propose a novel serial scheme based on Lagrange theory, and compare
this scheme with a related parallel scheme. In Section 2.5 we propose the application of
the approaches to the load-frequency control problem of power networks. A benchmark
network is def ned and through experimental simulation studies on this network we illustrate
the performance of the parallel and the serial scheme.

Parts of this chapter have been published in [89, 107, 109] and presented in [112].

2.1 Network and control setup

2.1.1 Network dynamics

As discussed in Chapter 1, transportation networks are large-scale systems with complex
dynamics. In order to analyze them, assumptions have to be made on the dynamics, i.e., on
the way the networks behave. Therefore, assume a network that is divided into n subnet-
works, where each subnetwork consists of a set of nodes and the interconnections between
these nodes. Assume furthermore that the dynamics of subnetwork i ∈ {1, . . . ,n} are given
by a deterministic linear discrete-time time-invariant model (possibly obtained after sym-
bolic or numerical linearization of a nonlinear model in combination with discretization):

xi(k+ 1) = A ixi(k)+ B1,iui(k)+ B2,idi(k)+ B3,ivi(k) (2.1)
yi(k) = Cixi(k)+ D1,iui(k)+ D2,idi(k)+ D3,ivi(k), (2.2)

19
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Figure 2.1: From continuous time to discrete time.

where at time step k, for subnetwork i, xi(k) ∈ R
nxi are the local states, ui(k) ∈ R

nui are the
local inputs, di(k) ∈ R

ndi are the local known exogenous inputs, yi(k) ∈ R
nyi are the local

outputs, vi(k) ∈ R
nv are the remaining variables inf uencing the local dynamical states and

outputs, and A i ∈ R
nxi×nxi , B1,i ∈ R

nxi×nui , B2,i ∈ R
nxi×ndi , B3,i ∈ R

nxi×nvi , Ci ∈ R
nyi×nxi ,

D1,i ∈ R
nyi×nui , D2,i ∈ R

nyi×ndi , D3,i ∈ R
nyi×nvi determine how the different variables inf u-

ence the local states and outputs of subnetwork i. The vi(k) variables appear due to the fact
that a subnetwork is connected to other subnetworks. Hence, the vi(k) variables represent
the inf uence of other subnetworks on subnetwork i. If the values of vi(k) are f xed, then the
dynamics of subnetwork i are decoupled from the other subnetworks.

Remark 2.1 For completeness inputs ui(k) are also allowed to inf uence outputs yi(k) at
time k. A situation in which such direct feed-through terms typically appear is when al-
gebraic relations are linearized, e.g., when linearizing equations describing instantaneous
(power) f ow distributions. 2

Remark 2.2 In the subnetwork description that we consider here, all variables involved take
on values in the real domain. This assumes that no discrete inputs, due to, e.g., switches, are
present. In addition, in the subnetwork description that we consider here, the dynamics are
assumed linear. Therefore, discrete behavior, e.g., due to saturation or discrete logic, cannot
be included. In Chapter 3 we discuss issues related to including such discrete elements. 2

Remark 2.3 In general the dynamics of the networks take place in continuous time. For
computational reasons, however, it is convenient to assume that the continuous-time dy-
namics are adequately represented by discrete-time dynamics. Hence, instead of specifying
and computing the dynamics of the network for each continuous-time instant t ∈ [0,∞), the
dynamics are only specif ed and computed at discrete time or control cycle steps k, each
representing T continuous-time time units, as shown in Figure 2.1. In Chapter 4 we discuss
issues related to dealing with continuous-time dynamics in more detail. 2

Remark 2.4 In general, the dynamics of the subnetworks are nonlinear. In Chapter 4 we
discuss in more detail how to obtain linear models from nonlinear models by linearization.

2

2.1.2 Control structure

We consider a multi-agent single-layer control structure as introduced in Section 1.3.2. Each
of the subnetworks i ∈ {1, . . . ,n} is controlled by a control agent i that:

• has a prediction model Mi of the dynamics of subnetwork i that matches the subnet-
work dynamics given by (2.1)–(2.2);



2.2 MPC of a single subnetwork 21

• can measure the state xi(k) of its subnetwork;

• can determine settings ui(k) for the actuators of its subnetwork;

• can obtain exogenous inputs di(k+ l) of its subnetwork over a certain horizon of length
N, for l = {0, . . . ,N};

• can communicate with neighboring agents, i.e., the agents controlling the subnet-
works j ∈Ni , where Ni = { j i,1 , . . . , j i,mi} is the set of indexes of the mi subnetworks
connected to subnetwork i, also referred to as the neighborsof subnetwork or agent i.

Remark 2.5 The agents have no authority relations over one another, i.e., there is no agent
that can force another agent to do something, and each agent has only information about its
own subnetwork. In Chapter 4 we discuss how supervisory agents that can steer or direct
other agents can be used. 2

Remark 2.6 The multi-agent control structure studied here may be used not only for con-
trol of networks that span large geographical areas, but also for control of relatively small
networks, when restrictions on acting and sensing make single-agent control impossible. 2

2.2 MPC of a single subnetwork

Assume for now that the control agent of subnetwork i operates individually, that it therefore
does not communicate with other agents, and that it knows how the surrounding network
behaves. Below we will relax these assumptions.

The control agent employs MPC to determine which actions to take. In MPC, an agent
determines its actions by computing optimal actions over a prediction horizon of N control
cycles according to an objective function, subject to a model of the subnetwork, the behavior
of the surrounding network, and additional constraints.

The MPC strategy of agent i at time k consists of measuring the initial local state1 x̄i(k),
determining local exogenous inputs over the horizon d̄i(k + l), for l = {0,. . .,N − 1}, and
predicting inf uences of the rest of the network over the prediction horizon v̄i(k + l), for
l = {0, . . . ,N − 1}. Here, for notational convenience, the bar over variables indicates that
the values of these variables are known. In addition, below the tilde over variables is used
to denote variables over the prediction horizon, e.g., ãi(k) = [ ai(k)T, . . . ,ai(k+ N − 1)T ]T.
Control agent i then solves the following optimization problem:

min
x̃i(k+1),ũi(k),ỹi(k)

Jlocal,i (x̃i(k+ 1), ũi(k), ỹi(k)) =
N−1

∑
l=0

Jstage,i(xi(k+ 1 + l),ui(k+ l),yi(k+ l))

(2.3)

1The measured initial local state is in this case the exact initial local state, since no measurement noise is
considered.
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subject to

xi(k+ 1 + l) = A ixi(k+ l)+ B1,iui(k+ l)+ B2,i d̄i(k+ l)+ B3,ivi(k+ l) (2.4)
yi(k+ l) = Cixi(k+ l)+ D1,iui(k+ l)+ D2,i d̄i(k+ l)+ D3,ivi(k+ l) (2.5)
vi(k+ l) = v̄i(k+ l) (2.6)

for l = 0, . . . ,N − 1
xi(k) = x̄i(k), (2.7)

where Jstage,i is a twice differentiable function that gives the cost per prediction step given a
certain local state, local input, and local output. A typical choice for the stage cost is:

Jstage,i (xi(k+ 1),ui(k),yi(k)) =





xi(k+ 1)
ui(k)
yi(k)





T

Qi





xi(k+ 1)
ui(k)
yi(k)



+ fT
i





xi(k+ 1)
ui(k)
yi(k)



 , (2.8)

where Qi and f i are a positive def nite weighting matrix and a vector, respectively. After
control agent i has solved the optimization problem and found the N actions over the hori-
zon, it implements the actions ui(k) until the next control cycle, the control cycle k moves
to k+ 1, and the control agent performs the MPC strategy at that control cycle by setting up
and solving the MPC optimization problem for k+ 1.

We have assumed here through (2.6) that the agent does not use communication and that
it can by itself locally predict the inf uence of the surrounding network over the prediction
horizon, i.e., it knows vi(k+ l), for l = 0, . . . ,N − 1. However, control agent i cannot know
this inf uence a priori, since actions taken by control agent i inf uence the dynamics of
its own subnetwork and therefore also the dynamics of a neighboring subnetwork j ∈ Ni ,
which therefore changes the decision making of neighboring agent j and, hence, changes the
actions that control agent j chooses, which change the dynamics of subnetwork j , and thus
changes vi(k+ l). Therefore, (2.6) cannot be added explicitly. To relax the assumption that
this is possible, constraints between control problems and communication between control
agents has to be used. Below we discuss this in more detail.

2.3 Interconnected control problems

The interconnections between control problems are modeled using so-called interconnect-
ing variables. A particular variable of the control problem of agenti is an interconnecting
variable with respect to the control problem of agent j if the variable of agent i corresponds
to the same physical quantity as a variable in the control problem of agent j . E.g., a f ow
going from subnetwork i into subnetwork j is represented with an interconnecting variable
in the control problems of both agents.

Given the interconnecting variables of two agents corresponding to the same quantity,
it is convenient to def ne one of these variables as an interconnecting input variable and
the other as an interconnecting output variable. On the one hand, interconnecting input
variables win, ji (k) of the control problem of agent i with respect to agent j at control cycle
k can be seen as inputs caused by agent j on the control problem of agent i. On the other
hand, interconnecting output variables wout,i j (k) of the control problem of agent j with
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di

ui

vi

xi
yi

d j

u j

v j

x j
y j

win, ji

wout, ji win,i j

wout,i j

Figure 2.2: Illustration of the relation between the models and interconnecting variables of
control agents i and j.

respect to the control problem of agent i can be seen as the inf uence that agent j has on the
control problem of agent i. Figure 2.2 illustrates this. We consider interconnecting variables
win, ji (k) ∈ R

nwin, ji and wout, ji (k) ∈ R
nwout, ji .

Def ne the interconnecting inputs and outputs for the control problem of agent i over a
prediction horizon at control cycle k as:

w̃in,i(k) = ṽi(k) (2.9)

w̃out,i(k) = K̃ i
[

x̃i(k+ 1)T ũi(k)T ỹi(k)T]T , (2.10)

where K̃ i is an interconnecting output selection matrix that contains zeros everywhere, ex-
cept for a single 1 per row corresponding to a local variable that relates to an interconnecting
output variable.

The variables w̃in,i(k), w̃out,i(k) are partitioned such that:

w̃in,i(k) =
[

w̃in, j i,1i(k)T, . . . , w̃in, j i,mi i
(k)T

]T
(2.11)

w̃out,i(k) =
[

w̃out, j i,1i(k)T, . . . ,w̃out, j i,mi i
(k)T]T . (2.12)

The interconnecting inputs to the control problem of agent i with respect to agent j must
be equal to the interconnecting outputs from the control problem of agent j with respect to
agent i, since the variables of both control problems model the same quantity. For agent i
this thus gives rise to the following interconnecting constraints:

w̃in, ji (k) = w̃out,i j (k) (2.13)
w̃out, ji (k) = w̃in,i j (k), (2.14)

for all j ∈Ni .
An interconnecting constraint depends on variables of two different control agents.

Therefore, a particular control agent will always miss information that it requires to include
the interconnecting constraint explicitly in its MPC control problem formulation. Hence,
the agent has to use communication with another agent to exchange information that it uses
to determine which values it should give to the interconnecting inputs and outputs. Below,
we survey how schemes for multi-agent single-layer MPC differ in the type of information
exchanged and the moments at which information exchange takes place.
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2.3.1 Types of information exchange

The challenge is to f nd a suitable way for the control agents to deal with the interconnecting
variables w̃in, ji (k) and w̃out, ji (k). In order to make a prediction of the evolution of the
subnetwork, values of the interconnecting variables have to be known or assumed over
the prediction horizon. There are several approaches to dealing with the interconnecting
variables, each yielding different types of information that is exchanged:

1. Ignore the inf uence of the interconnecting variables. This approach is used in a
completely decentralized setting. A control agent ignores the presence of other sub-
networks completely. This type of control scheme can be used when interconnecting
variables have negligible effect on the subnetwork dynamics. An advantage of this
approach is the absence of communication overhead. However, if the inf uence of
the interconnecting variables turns out not to be negligible, control performance will
degenerate.

2. Use constant values for the values of the interconnecting variables over the full pre-
diction horizon based on a local measurement made or obtained from a neighbor-
ing agent. This approach may be useful when the interconnecting variables change
slowly. This approach may also be used to monitor the interconnecting variables on-
line and to switch to a different way of dealing with the interconnecting variables
when the variables start changing signif cantly. An advantage of this approach is rela-
tively fast control, since the control agents only exchange information at the beginning
of each control cycle once and after that solve their control problems decentralized. A
disadvantage of this approach is that if the values of the interconnecting variables ex-
changed at the beginning of a control cycle are not valid over the complete prediction
horizon, the performance of the control will decrease.

3. Use predictions of the values of the interconnecting variables over the full prediction
horizon as obtained from a neighboring agent [28, 48, 75]. An advantage of this
approach is that there is only communication at the beginning of a control cycle,
after which the control agents solve their control problems decentralized. However,
the neighboring agent providing the predictions has to make sure that the predictions
are correct. In practice, if the subnetwork of the neighboring agent relies on other
neighboring subnetworks this will be diff cult to ensure. Iterations as discussed below
in Section 2.3.2 are then necessary.

4. Use upper and lower bounds on the values of the interconnecting variables, as ob-
tained from a neighboring agent. This assumes that neighboring agents do not com-
municate exact trajectories, but instead bounds on the values of the interconnecting
variables. By enforcing these bounds, an agent can compute worst-case optimal in-
puts. The agent providing the bounds also has to make sure that its actual trajectory
stays within the bounds it has communicated. So-called compatibility constraints can
do this for certain linear-time invariant systems [37]. Hence, an advantage of this ap-
proach is that control agents do not have to make accurate predictions of the values of
interconnecting variables. However, the resulting control may be conservative, since
the control agents determine worst-case optimal inputs. In addition, if a control agent
requires accurate values for the interconnecting variables in order to make accurate
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predictions of the evolution of its subnetwork, only using upper and lower bounds
may give bad predictions, and consequently, bad performance.

5. Use a model that predicts the values of the interconnecting variables based on dy-
namics of neighboring subsystems [37]. When this is used a control agent knows the
dynamics or part of the dynamics that generate the values of the interconnecting vari-
ables [37]. This is, e.g., the case when the local agent has a copy of the subnetwork
models used by its neighbors. These models will depend on variables of the neigh-
boring subnetworks, like inputs, and perhaps interconnecting variables of neighbors
of neighbors. An advantage of this approach is that more about the interconnecting
variables is known. A disadvantage of this approach can be increased computational
time required to determine the predictions.

6. Use a model about the evolution of the interconnecting variables that has been learned
given available information from neighboring agents. This approach can be employed
if the agent does not have a model of the subnetwork that generates the interconnect-
ing variables. Instead it may employ learning techniques and build up experience to
learn a model. An advantage of this approach is that the control agent may exploit the
model learned from experience to improve its performance. However, learning such
a model in the f rst place is challenging.

7. Use knowledge about the objective function of neighboring agents together with mod-
els of the dynamics of the neighboring system [79]. The control agent can use this
information to compute which actions the neighbors will take [79]. It can determine
the actions that will be applied to that subsystem and consequently determine the evo-
lution of the values of the interconnecting variables. Knowledge about the objectives
of neighboring subnetworks can be used to make local decisions that are not counter-
acting the objectives of other control agents. Hence, an advantage of this approach is
that a control agent can anticipate what other control agents are going to do and there-
fore possibly increase the eff ciency of the decision making. A disadvantage of this
approach is that one controller effectively is solving the control problems of multiple
subnetworks. Hence, the computational requirements will increase signif cantly, even
more than when approach 5 is used. In an approach that somehow communicates the
computed actions to the neighboring subnetworks this could become an advantage
however.

2.3.2 Timing of information exchange

Schemes for multi-agent MPC do not only differ in the type of information exchanged, but
also in the moment at which information exchange takes place, as shown in Figure 2.3. The
schemes are distinguished by the following characteristics:

1. Synchronousor asynchronous, i.e., do agents have to wait for one another when it
comes to sending and receiving information and determining which actions to take,
or can they send and receive information and determine which action to take at any
time.
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asynchronous

synchronous

multiple iterations

serial

parallel

single iteration

agent 2
agent 1

agent 1
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time
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time

Figure 2.3: Different communication schemes between two agents. Arrows indicate infor-
mation exchange. Dotted lines indicate actions being implemented. Horizontal
lines indicate optimization problems being solved.

2. Singleor multiple iterations, i.e., do agents decide on their actions after sending and
receiving information once, or do agents decide on their actions after a number of
information exchanges.

3. Parallel or serial, i.e., are multiple agents performing computations at the same time,
or is there only one agent at a time performing its computations.

Asynchronous schemes have as advantage over synchronous schemes that agents do not
have to wait for other agents to solve their problems and decide on which actions to take.
However, agents will have to include newly received information from neighboring agents
at any time while solving their own optimization problems. No multi-agent MPC methods
can do this at present.

Single-iteration schemes have as advantage over multiple-iteration schemes that the
amount of communication between agents is less, since information is exchanged only
once after an agent has solved its problem, and that time required to make a decision is
less, since only one iteration is done. Multiple-iteration schemes have as advantage over
single-iteration schemes that it is more likely that interconnecting constraints are satisf ed at
the end of the iterations. In addition, over the iterations agents obtain implicit information
about the objectives of their neighbors. Multiple-iteration schemes therefore have a larger
potential to achieve overall optimal performance than single-iteration schemes.

Serial schemes have as advantage over parallel schemes that agents use the most up-to-
date information from their neighbors. In parallel schemes, the information that is received
is usually outdated. However, in serial schemes only one agent is performing computations
at a time and therefore decision making is potentially slower than when a parallel scheme is
used.

In the literature, several aspects of synchronous single-iteration parallel schemes have
been considered, e.g., in [37, 75, 79]. For certain linear time-invariant systems stability
can be proved when a so-called contracting stability constraint is placed on the f rst state
of each subsystem [75]. Stability results for settings where the evolution of interconnecting
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variables does not depend on neighbors of neighbors are given in [37, 79]. Synchronous
multiple-iterations serial and parallel schemes have been considered in [28, 48, 74]. Condi-
tions for convergence of iterations to local solutions and global solutions are given in [28].
A Lagrange-based scheme for the parallel case is employed in [48].

In the following we relax the assumption made in Section 2.2 that the control agent
operates individually and knows what the inf uence of the neighboring agents is going to be.
We extend the scheme of Section 2.2 to take into account the neighbors through an iterative
procedure. The procedure uses as information predictions over the full horizon as obtained
from neighboring agents, and employs multiple iterations in a synchronous fashion, aiming
for satisfaction of the interconnecting constraints.

2.4 Lagrange-based multi-agent single-layer MPC

For feasible overall solutions, the interconnecting constraints as def ned in (2.13)–(2.14)
have to be satisf ed at the moment that control agents decide on which action to take. As
discussed above, when one agent solves its optimization problem it has to assume trajecto-
ries for the interconnecting variables of its neighboring subnetworks over the horizon. If the
neighboring control agents do not respect the assumed trajectories that they communicated,
it is unlikely that such a trajectory will appear in the true system evolution. The neighboring
control agents will only have an incentive to respect their communicated trajectories if these
trajectories yield optimal inputs for their own subsystems.

Even if the agents make an agreement in advance to respect the trajectories communi-
cated, in practice they may not be able to implement this agreement. The reason for this
is that at the time of trajectory generation the agents did not know what the values of the
interconnecting variables of the other agents will be. Therefore, they may require infeasi-
ble inputs to local subsystems to respect the communicated trajectories. To deal with this,
a scheme can be used in which the agents perform a number of iterations to come to an
agreement on interconnecting variable trajectories that are acceptable to all agents, instead
of holding on to the f rst trajectories communicated.

In each iteration each agent optimizes both over its actions and over the predictions of
trajectories of neighboring subnetworks. In this way, each agent is sure that the predicted
trajectories it assumes are optimal for its own subsystem. After each of the agents has in this
way determined its own optimal actions and predicted interconnecting variables trajectory, it
communicates the predicted interconnecting variable trajectories to the neighboring agents.
This basically means that each agent tells its neighboring agents how it would like to see
the interconnecting variables of those agents evolve over the horizon.

Ideally, the interconnecting variable trajectories that those neighboring agents receive
will exactly correspond to their predictions of their interconnecting variable trajectories if
they would implement their optimal input sequences. However, it is more likely that the
received trajectories will not correspond to their predicted trajectories, as discussed before.
To encourage the agents to come to an agreement on the predicted interconnecting variable
trajectories a penalty term is added to the objective function of each agent. By updating the
penalty terms over a series of iterations using the information received from neighboring
agents, convergence may be obtained under appropriate assumptions, as we will discuss
below.
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To derive a scheme that implements these ideas we consider the following steps:

1. Formulate the combined overall control problem, i.e., aggregate the subproblems in-
cluding the interconnecting constraints;

2. Construct an augmented Lagrange formulation by replacing each interconnecting
constraint with an additional linear cost term, based on Lagrange multipliers, and
a quadratic penalty term [19, 23];

3. Decompose this formulation again into subproblems for each agent.

We now focus on these steps in more detail.

2.4.1 Combined overall control problem

We def ne the combined overall control problem as the problem formed by the aggrega-
tion of the local control problems without assuming that the inf uence from the rest of the
network formulated through (2.6) is known, but including the def nition of the interconnect-
ing inputs and outputs (2.9)–(2.10) and the interconnecting constraints (2.13)–(2.14). After
def ning:

X̃(k+ 1) = [x̃1(k+ 1)T, . . . , x̃n(k+ 1)T]T

Ũ(k) = [ũ1(k)
T, . . . , ũn(k)

T]T

Ỹ(k) = [ỹ1(k)
T, . . . , ỹn(k)

T]T,

the control problem at control cycle k is def ned as:

min
X̃(k+1),Ũ(k),Ỹ(k)

n

∑
i=1

Jlocal,i(x̃i(k+ 1), ũi(k), ỹi(k)) (2.15)

subject to, for i = 1, . . . ,n,

w̃in, j i,1i(k) = w̃out,i j i,1(k) (2.16)
...

w̃in, j i,mi i
(k) = w̃out,i j i,mi

(k) (2.17)

and the dynamics (2.4)–(2.5) of subnetwork i over the horizon, and the initial constraint
(2.7) of subnetwork i. Note that it is suff cient to include in the combined overall control
problem formulation only the interconnecting input constraints (2.9) for each agent i, since
the interconnecting output constraints (2.10) of agent i will also appear as interconnecting
input constraints of its neighboring agents.

2.4.2 Augmented Lagrange formulation

The overall control problem (2.15) is not separable into subproblems using only local vari-
ables x̃i(k+1), ũi(k), ỹi(k) of one agent i alone due to the interconnecting constraints (2.16)–
(2.17). In order to deal with the interconnecting constraints, an augmented Lagrange for-
mulation of this problem can be formulated [19, 23]. An augmented Lagrange formulation
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combines a penalty formulation with a Lagrange formulation and therefore can provide
improved convergence [18]. Using such a formulation, the interconnecting constraints are
removed from the constraint set and added to the objective function in the form of addi-
tional linear cost terms, based on Lagrange multipliers, and additional quadratic terms. The
augmented Lagrange function is def ned as:

L(X̃(k+ 1), Ũ(k), Ỹ(k),W̃in(k),W̃out(k), Λ̃in(k))

=
n

∑
i=1

(

Jlocal,i (x̃i(k+ 1), ũi(k), ỹi(k),)

+ ∑
j∈Ni

(

λ̃in, ji (k)
(

w̃in, ji (k)− w̃out,i j (k)
)

+
γc
2

∥

∥

∥
w̃in, ji (k)− w̃out,i j (k)

∥

∥

∥

2

2

)

)

, (2.18)

where

W̃in(k) = [w̃in, j1,11(k)
T, . . . ,w̃in, jn,mnn(k)

T]T

W̃out(k) = [w̃out, j1,11(k)
T, . . . , w̃out, jn,mnn(k)

T]T

Λ̃in(k) = [λ̃in, j1,11(k)
T, . . . , λ̃in, jn,mnn(k)

T]T,

and where γc is a positive constant, and λ̃in, ji (k) are the Lagrange multipliers associated
with the interconnecting constraints w̃in, ji (k) = w̃out, ji (k).

By duality theory [19, 23], the resulting optimization problem follows as maximization
over the Lagrange multipliers while minimizing over the other variables, i.e.:

max
Λ̃in(k)











min
X̃(k+1),Ũ(k),Ỹ(k),

W̃in(k),W̃out(k)

L
(

X̃(k+ 1), Ũ(k), Ỹ(k),W̃in(k),W̃out(k), Λ̃in(k)
)











, (2.19)

subject to the dynamics (2.4)–(2.5) of subnetwork i over the horizon, and the initial con-
straint (2.7) of subnetwork i, for i = 1, . . . ,n.

Under convexity assumptions on the objective functions and aff nity of the subnetwork
model constraints it can be proved that a minimum of the original problem (2.15) can be
found iteratively by repeatedly solving the minimization part of (2.19) for f xed Lagrange
multipliers, followed by updating the Lagrange multipliers using the solution of the mini-
mization, until the Lagrange multipliers do not change anymore from one iteration to the
next [19]. These convexity assumptions are satisf ed for the linear model (2.1)–(2.2) that
we assume, in combination with a linear local objective function, or in combination with a
quadratic local objective function as def ned in (2.8). In Section 2.5 we show an example of
such a model with a quadratic local objective function.

2.4.3 Distributing the solution approach

The iterations to compute the solution of the combined overall control problem based on
the augmented Lagrange formulation (2.18) include quadratic terms and can therefore not
directly be distributed over the agents. To deal with this, the non-separable problem (2.18)
can be approximated by solving n separated problems, each of which is based on local
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dynamics, local objectives Jlocal,i , and an additional cost term Jinter,i . The problem for the
control agent controlling subnetwork i is def ned as follows:

min
x̃i(k+1),ũi(k),ỹi(k),

w̃in, ji,1 i(k),...,w̃in, ji,mi
i(k),

w̃out, ji,1 i(k),...,w̃out, ji,mi
i(k)

Jlocal,i (x̃i(k+ 1), ũi(k), ỹi(k))

+ ∑
j∈Ni

Jinter,i

(

w̃in, ji (k), w̃out, ji (k), λ̃in, ji (k)
(s), λ̃out,i j (k)

(s)
)

,

(2.20)

subject to the dynamics (2.4)–(2.5) of subnetwork i over the horizon, and the initial con-
straint (2.7) of subnetwork i. As we will see below, the structure of the additional cost term
Jinter,i differs depending on the type of communication scheme used. At iteration s, the vari-
ables λ̃in, ji (k)(s) are the Lagrange multipliers computed by agent i for its interconnecting
constraints w̃in, ji (k) = w̃out,i j (k), and the variables λ̃out,i j (k)(s) are the Lagrange multipliers
for its interconnecting constraints w̃out, ji (k) = w̃in,i j (k). The λ̃out,i j (k)(s) variables are re-
ceived by agent i through communication with agent j , which computed these variables for
its interconnecting constraints with respect to agent i. The general multi-agent MPC scheme
that results from this comprises at control cycle k the following steps:

1. For i = 1, . . . ,n, agent i makes a measurement of the current state of the subnetwork
x̄i(k) = x(k) and estimates the expected exogenous inputs d̄i(k+ l), for l = 0, . . . ,N−1.

2. The agents cooperatively solve their control problems in the following iterative way:

(a) Set the iteration counter s to 1 and initialize the Lagrange multipliers λ̃in, ji (k)(s),
λ̃out,i j (k)(s) arbitrarily.

(b) Either serially or in parallel, for i = 1, . . . ,n, agent i determines x̃i(k + 1)(s),
ũi(k)(s), w̃in, ji (k)(s), w̃out,i j (k)(s), for j ∈Ni , by solving:

min
x̃i(k+1),ũi(k),ỹi(k),

w̃in, ji,1 i(k),...,w̃in, ji,mi
i(k),

w̃out, ji,1 i(k),...,w̃out, ji,mi
i(k)

Jlocal,i (x̃i(k+ 1), ũi(k), ỹi(k))

+ ∑
j∈Ni

Jinter,i

(

w̃in, ji (k), w̃out, ji (k), λ̃in, ji (k)
(s), λ̃out,i j (k)

(s)
)

,

(2.21)

subject to the local dynamics (2.4)–(2.5) of subnetwork i over the horizon and
the initial constraint (2.7) of subnetwork i.

(c) Update the Lagrange multipliers,

λ̃in, ji (k)
(s+1) = λ̃in, ji (k)

(s)+γc

(

w̃in, ji (k)
(s)− w̃out,i j (k)

(s)
)

. (2.22)

(d) Move on to the next iteration s+ 1 and repeat steps 2.(b)–2.(c). The iterations
stop when the following stopping condition is satisf ed:

∥

∥

∥

∥

∥

∥

∥







λ̃in, j1,11(k)(s+1) − λ̃in, j1,11(k)(s)

...
λ̃in, jn,mnn(k)(s+1) − λ̃in, jn,mnn(k)(s)







∥

∥

∥

∥

∥

∥

∥

∞

≤ γǫ,term, (2.23)
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where γǫ,term is a small positive scalar and ‖ ·‖∞ denotes the inf nity norm. Note
that satisfaction of this stopping condition can be determined in a distributed
way, because each individual component of the inf nity norm depends only on
variables of one particular agent [111].

3. The agents implement the actions until the beginning of the next control cycle.

4. The next control cycle is started.

Remark 2.7 The Lagrange multipliers can be initialized arbitrarily; however, initializing
them with values close to the optimal Lagrange multipliers will increase the convergence
of the decision making process. Therefore, also initializing the Lagrange multipliers with
values obtained from the previous decision-making step is benef cial, since typically these
Lagrange multipliers will be good initial guesses for the new solution. We refer to this as a
warm start. 2

The schemes proposed in the literature implement step 2.(b) in a parallel fashion, e.g.,
[28, 41, 48]. In the following we f rst discuss a scheme that implements step 2.(b) in a
parallel fashion and then we propose a novel scheme that implements it in a serial fashion.
We then assess the performance of both schemes experimentally.

2.4.4 Serial versus parallel schemes

Parallel implementation

The parallel implementation is the result of using the auxiliary problem principle[14, 81,
127] of approximating the non-separable quadratic term in the augmented Lagrange formu-
lation of the combined overall control problem. The parallel scheme involves a number of
parallel iterations in which all agents perform their local computing step at the same time.

Given for the agents j ∈ Ni , the previous information w̃in,prev,i j (k) = w̃in,i j (k)(s−1) and
w̃out,prev, ji (k) = w̃out, ji (k)(s−1) of the last iteration s− 1, agent i solves problem (2.21) using
the following additional objective function term for the interconnecting constraints:

Jinter,i

(

w̃in, ji (k), w̃out, ji (k), λ̃in, ji (k)
(s), λ̃out,i j (k)

(s)
)

=

[

λ̃in, ji (k)(s)

−λ̃out,i j (k)(s)

]T [
w̃in, ji (k)
w̃out, ji (k)

]

+
γc
2

∥

∥

∥

∥

[

w̃in,prev,i j (k)− w̃out, ji (k)
w̃out,prev,i j (k)− w̃in, ji (k)

]∥

∥

∥

∥

2

2

+
γb −γc

2

∥

∥

∥

∥

[

w̃in, ji (k)− w̃in,prev, ji (k)
w̃out, ji (k)− w̃out,prev, ji (k)

]∥

∥

∥

∥

2

2
.

This scheme uses only information computed during the last iteration s− 1. The parallel
implementation of step 2.(b) of the general multi-agent MPC scheme therefore consists of
the following steps at decision step k, iteration s:

2 (b) For all agents i ∈ {1, . . . ,n}, at the same time, agenti solves the problem (2.21)
to determine x̃i(k + 1)(s), ũi(k)(s), w̃in, ji (k)(s), w̃out, ji (k)(s), and sends to agent
j ∈Ni the computed values w̃out, ji (k)(s).
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The positive scalar γc penalizes the deviation from the interconnecting variable iterates
that were computed during the last iteration. This causes that when γc is chosen larger, the
interconnecting variables that agent i computes at the current iteration will stay close to the
interconnecting variables that neighboring agent j ∈ Ni computed earlier. With increasing
γc, it becomes more expensive for an agent to deviate from the interconnecting-variable
values computed by the other agents. This results in a faster convergence of the intercon-
necting variables to values that satisfy the interconnecting constraints. However, it may still
take some iterations to obtain optimal values for the local variables. A higher γc results in
a higher number of iterations before reaching optimality, although the interconnecting con-
straints will be satisf ed quickly. A lower γc results in a lower number of iterations before
reaching optimality and interconnecting constraints that are satisf ed. However, when γc is
chosen too small, a larger number of iterations will again be necessary, since it will take a
longer time for the interconnecting constraints to be satisf ed.

As additional parameter this scheme uses a positive scalar γb. If γb > γc, then the term
penalizes the deviation between the interconnecting variables of the current iteration and the
interconnecting variables of the last iteration of agent i; it thus gives the agent less incentive
to change its interconnecting variables from one iteration to the next. When γb ≥ 2γc,
and moreover the overall combined problem is convex, it can be proved that the iterations
converge toward the overall minimum for suff ciently small γǫ,term [20, 81].

Serial implementation

The novel serial implementation that we propose is the result of using block coordinate
descent[20, 127] for dealing with the non-separable quadratic term in the augmented La-
grange formulation of the combined overall control problem (2.18). This approach mini-
mizes the quadratic term directly, in a serial way. Contrarily to the parallel implementation,
in the serial implementation one agent after another minimizes its local and interconnecting
variables while the other variables stay f xed.

Given the information w̃in,prev,i j (k) = w̃in,i j (k)(s), w̃out,prev,i j (k) = w̃out,i j (k)(s) computed
at the current iteration s for each agent j ∈ Ni that has solved its problem beforeagent i

in the current iteration s, and given the previous information w̃prev,i j (k) = w̃(s−1)
i j (k) of the

last iteration s− 1 for the other agents, agent i solves problem (2.20) using the following
additional objective function:

Jinter,i

(

w̃in, ji (k), w̃out, ji (k), λ̃in, ji (k)
(s), λ̃out,i j (k)

(s)
)

=

[

λ̃
(s)
in, ji (k)

−λ̃
(s)
out,i j (k)

]T
[

w̃in, ji (k)
w̃out, ji (k)

]

+
γc
2

∥

∥

∥

∥

[

w̃in,prev,i j (k)− w̃out, ji (k)
w̃out,prev,i j (k)− w̃in, ji (k)

]∥

∥

∥

∥

2

2
.

Thus, contrarily to the parallel implementation, the serial implementation uses both infor-
mation from the current iteration and from the last iteration. The serial implementation
implements step 2.(b) of the general scheme as follows at decision step k, iteration s:

(ii) 2 For i = 1, . . . ,n, one agent after another, agenti determines x̃i(k+1)(s), ũi(k)(s),
w̃in, ji (k)(s), w̃out, ji (k)(s) by solving (2.21), and sends to each agent j ∈ Ni the
computed values w̃out, ji (k)(s).
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subnetwork 1
subnetwork 2

generation

load

generation

load

transmission
line

Figure 2.4: Example of two subnetworks, each with loads and power generation facilities.
Power flows over the transmission line between the subnetworks. The load-
frequency control problem involves adjusting the generation in each subnetwork
such that the frequency deviation is maintained close to zero under load distur-
bances.

The role of the scalar γc is similar as for the parallel implementation, except that for the
serial implementation γc penalizes the deviation from the interconnecting variable iterates
that were computed by the agents before agent i in the current iteration and by the other
agents during the last iteration. Note that when for the parallel scheme γb = γc the addi-
tional objective functions are the same for the parallel and the serial scheme, except for the
previous information used: the parallel implementation uses only information from the last
iteration, the serial also from the current.

In the next section we experimentally assess the performance of the parallel and the
serial scheme and discuss which of the two schemes yields a better performance.

2.5 Application: Load-frequency control

In this section we propose the use of the techniques for multi-agent single-layer MPC dis-
cussed above for a particular problem in power networks. The problem that we consider is
load-frequency control[82]. The frequency is one of the main variables characterizing the
power network. The purpose of load-frequency control is to keep power generation close to
power consumption under consumption disturbances, such that the frequency is maintained
close to a nominal frequency of typically 50 or 60 Hz [82]. At an international level power
networks become more interconnected and in addition power f ows become more unpre-
dictable, e.g., due to large-scale unpredictable power generation using wind turbines. In
order to assure correct load-frequency control in the future, current control strategies will
be replaced by more advanced strategies that automatically and online determine how the
actuators in the network have to be set. Since at an international level countries are not will-
ing to give away access to actuators and sensors in their own subnetworks, they will have to
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Figure 2.5: The overall network, consisting of 13 subnetworks.

install controllers that cooperatively control the overall network.
A large number of control strategies has been developed for load-frequency control [70].

In the 70s, load-frequency control started being developed with control strategies based on
centralized, non-MPC control (see [42, 47, 125]). From the 80s on also, distributed, non-
MPC schemes appeared [3, 78, 119, 151, 152]. Recently, also MPC-based schemes have
been proposed. A centralized MPC scheme for load-frequency control was proposed in
[126]. A decentralized MPC scheme for load-frequency control was proposed in [8]. The
latter approach is a decentralized approach that does not take the interconnections between
subnetworks explicitly into account. In [28] a distributed MPC scheme is proposed for load-
frequency control assuming that only once per control step information between agents can
be exchanged. Also in [144] a distributed MPC scheme is applied to a load-frequency
control example. The scheme uses distributed state estimation to provide nominal stability
and performance properties. We consider distributed MPC using the parallel and serial
scheme of Section 2.4.4, which explicitly take into account the interconnections between
subnetworks, and use multiple iterations of information exchange before deciding on which
actions to take.

2.5.1 Benchmark system

Our benchmark network consists of subnetworks with consumption and generation capa-
bilities, as illustrated in Figure 2.4 for two subnetworks. We consider a network divided
into 13 subnetworks as shown in Figure 2.5. Each subnetwork is controlled by one control
agent. This control agent has to keep the frequency deviation within its subnetwork close to
zero under minimal generation changes. Each control agent can only make measurements
and set actuators in its own subnetwork.

We consider rather simplif ed dynamics for the subnetwork models, that do however
include the basic elements of power injection, power consumption, and power f ow over
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constant value
ηK,i 120
ηS,i j 0.5
ηS, j i 0.5

ηT,i (s) 20

Table 2.1: Values of the parameters of the subnetworks, for i∈ {1, . . . ,n} and j∈Ni .

power lines, and that do show the basic characteristics of the load-frequency control prob-
lem. Let the continuous-time linearized dynamics of subnetwork i be described by the
following second-order dynamics, as taken from [28]:

dx∆δ,i

dt
(t) = 2πx∆ f ,i(t)

dx∆ f ,i

dt
(t) = −

1
ηT,i

x∆ f ,i(t)+
ηK,i

ηT,i
u∆Pgen,i(t)−

ηK,i

ηT,i
d∆Pdist,i(t)

+
ηK,i

ηT,i

(

∑
j∈Ni

ηS,i j

2π
(x∆δ, j(t)− x∆δ,i(t))

)

yi(t) =

[

x∆δ,i(t)
x∆ f ,i(t)

]

,

where at time t, for subnetwork i, x∆δ,i(t) is the incremental phase angle deviation in rad,
x∆ f ,i(t) is the incremental frequency deviation in Hz, u∆Pgen,i(t) is the incremental change
in power generation in per unit (p.u.), d∆Pdist,i(t) is a disturbance in the load in p.u., yi(t)
are the measurements of the states, and ηK,i is the subnetwork gain, ηT,i is the subnetwork
time constant in s, ηS,i j is a synchronizing coeff cient of the line between subnetwork i and
j . The values for these constants are given in Table 2.1. Since we assume that the outputs
yi(t) measure the state variables noise-free, we will without loss of generality leave out the
outputs yi(t) and only focus on the states xi(t) in the following.

Remark 2.8 For subnetwork i the derivative dx∆ f ,i
dt (t) depends on x∆δ, j(t), for j ∈ Ni ,

which are variables of the subnetworks j ∈ Ni . The variables x∆δ, j(t) will therefore cause
an interconnecting constraint between the control problems of agents i and j . 2

Def ning the local control input ui(k) = u∆Pgen,i(k), the local exogenous input di(k) =
d∆Pdist,i(k), the local states xi(k) = [x∆δ,i(k), x∆ f ,i(k)]T, the remaining variables vi(k) =
[x∆δ, j i,1(k), . . . ,x∆δ, j i,mi

(k)]T, and discretizing the continuous-time model using an Euler ap-
proximation (with a step size of Tp = 0.25 s), the dynamics of subnetwork i can be written
as:

xi(k+ 1) = A ixi(k)+ B1,iui(k)+ B2,idi(k)+ B3,ivi(k), (2.24)

where

A i =

[

1 Tp2π

∑ j∈Ni

(

Tp
−ηK,iηS,i j

2πηT,i

)

1 − Tp
1

ηT,i

]

B1,i =

[

0
Tp

ηK,i
ηT,i

]
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B2,i =

[

0
−Tp

ηK,i
ηT,i

]

B3,i =

[

0 0 . . . 0
Tp

ηK,iηS,i j i,1
2πηT,i

Tp
ηK,iηS,i j i,2

2πηT,i
. . . Tp

ηK,iηS,i j i,mi
2πηT,i

]

.

2.5.2 Control setup

The agents use the multi-agent single-layer MPC approach as discussed in Section 2.4.3.
In order to implement this scheme, the prediction model, the interconnecting variables, the
control objectives, and possibly additional constraints have to be specif ed:

• Prediction model. Agent i uses as prediction model Mi (2.24) over the time span from
k+ 1 until k+ N.

• Interconnecting variables. The interconnecting inputs for agent i are def ned as in
(2.9), and the interconnecting outputs for agent i are def ned as in (2.10), with:

K̃ i =



























1 0 0
...

...
...

1 0 0
. . . . . .

1 0 0
...

...
...

1 0 0



























,

such that the interconnecting inputs are x∆δ, j(k+ 1 + l), and the interconnecting out-
puts are x∆δ,i(k+ 1 + l), for j ∈Ni and l = 0, . . . ,N − 1.

• Local control objectives. Since agent i has to minimize the frequency deviation and
the control input changes in its subnetwork, it uses the following quadratic local ob-
jective function:

Jlocal,i (x̃i(k+ 1), ũi(k)) =
N−1

∑
l=0

[

xi(k+ 1 + l)
ui(k+ l)

]T [
Qi,x 0

0 Qi,u

][

xi(k+ 1 + l)
ui(k+ l)

]

where

Qi,x =

[

0 0
0 100

]

, Qi,u = 10.

A quadratic function has the advantage that larger deviations are penalized more, and
moreover that the objective function is convex.

• Additional constraints. Upper and lower bounds are imposed on the changes in power
generation and on the changes in angle and frequency:

umin,i ≤ ui(k+ l) ≤ umax,i

xi,min ≤ xi(k+ 1 + l) ≤ xi,max ,

for l = 0, . . . ,N − 1, and umin,i = −0.3, umax,i = 0.3, xi,min = [−10,−10]T, xi,max =
[10,10]T.

The def ned subnetwork models, interconnecting variables, local control objectives, and
additional constraints lead to an overall combined control problem (2.15) that is convex.
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Figure 2.6: Uncontrolled simulation of frequency deviationafter a small disturbance in sub-
network 5.

2.5.3 Simulations

We simulate the network in Matlab v7.3 [98]. The network is simulated in discrete time
steps of 0.25 s, for kf = 20 steps. Every 0.25 s the control agents measure the state of their
subnetwork after which they either employ the serial or the parallel scheme to determine
which action to take next. As reference for the performance a hypothetical single agent that
uses the overall combined control problem (2.15) is employed. Each of the schemes uses a
warm start when possible, i.e., when the solution from a previous control cycle is available.
Iterations are stopped when the stopping condition (2.23) is satisf ed, or when a maximum
number of 5000 iterations has been performed.

The MPC problems solved by the individual control agents at each iteration are quadratic
programming problems with linear constraints. These problems are eff ciently solved by the
ILOG CPLEX v10 Barrier QP solver [71], which we use through the Tomlab v5.7 [66] in-
terface in Matlab v7.3 [98].

To assess the performance of the schemes discussed above, we f rst illustrate the un-
controlled behavior of the network after a disturbance for a particular scenario, then we
consider the performance of the schemes over the full simulation span for a particular set-
ting of the parameters, and then we focus on how the parameters γc and γǫ,term inf uence the
performance of the schemes at a single control cycle.

Scenario without control

It is easy to verify by inspection of the eigenvalues of the overall network that the network
is unstable when no control is employed. To illustrate this instability, we f rst consider the
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following uncontrolled scenario. The subnetworks start in steady state, i.e., xi(0) = [0,0]T,
for i = {1, . . . ,n}). A disturbance d∆Pdist,i(k) = 1.10−2 is imposed at k = −1 in subnetwork
5.

Figure 2.6 shows the evolution of the frequency deviation right after the disturbance
has appeared, i.e., starting from k = 0, in a number of representative subnetworks when
no control actions are taken. Clearly, without control agents acting on the generation, the
dynamics of the network directly after the disturbance become unstable, and the magnitudes
of the oscillations of the frequency deviations increase quickly after the fault.

Performance of control over the full simulation span

We now consider the performance that the parallel and serial schemes discussed in this
chapter can achieve for particular values of the control parameters. We compare the perfor-
mance of the serial and parallel scheme with each other and with a hypothetical centralized
control agent that solves the overall combined MPC problem.

We consider 50 scenarios in which a randomly chosen disturbance d∆Pdist,i from the
domain [−1.10−2,1.10−2] appears in a randomly chosen subnetwork i ∈ {1, . . . ,13}. In each
scenario, we let time step k = 0 correspond to the time step right after the disturbance has
appeared. Hence, we consider the performance of the control agents with respect to dealing
with the consequences of the disturbance.

To compare the performance of the schemes over the full simulation period, costs are
computed over the full simulation as:

Jsim =
n

∑
i=1

kf−1

∑
l=0

Jstage,i (x̄i(1 + l), ūi(l), ȳi(l)) ,

where the bar indicates that the value of the variable is the actual value as appearing in the
evolution of the network, and not the predicted value as predicted by a control agent during
its optimization. E.g., x̄i(k) refers to the actual state of subnetwork i at time k, and not to
the state predicted by a control agent. No penalty term is included for violation of the upper
or lower bounds on the variables.

As parameters we here consider as specif c setting for the length of the prediction hori-
zon N = 5, and for the values of the parameters of the schemes γc = 1, γǫ,term = 1e−4,
and γb = 2γc, which for overall convex problems guarantees convergence toward an over-
all optimal solution. Below we will further discuss the inf uence of different values of the
parameters on the performance of the control.

Table 2.2 shows over all scenarios the average results of the schemes, consisting of
the average performance Jsim,avg, the average number of iterations required Niter,avg, and
the total computation time in seconds2. We observe that the average performance Jsim,avg
that is obtained over a full simulation by the serial and the parallel scheme are very close
to each other. In addition the performance of these multi-agent schemes is very close to

2For computing the total computation time required for the parallel and the serial scheme, only the time spent
on solving the optimization problems is summed, since the time involved in setting up the optimization problems
is negligible. The simulations are implemented in a central simulation environment. Hence, the parallel scheme is
in fact executed in a serial fashion. Therefore, the computation time of a single iteration is taken as the maximum
computation time required for solving either of the local optimization problems. Since the simulations are executed
in a central simulation environment also no communication delays are accounted for.
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scheme Jsim,avg Niter,avg Tcomp,avg
centralized 0.2746 - 0.3

serial 0.2746 129 16.6
parallel 0.2746 335 5.9

Table 2.2: Results of the schemes over all experiments. The table shows over all 50 scenar-
ios the average performance Jsim,avg, the average number of iterations Niter,avg,
and the average total computation time Tcomp,avg(s). The results have been ob-
tained for parameter settings N= 5, kf = 20, γc = 1, γǫ,term= 1.10−4, and starting
from 50 different initial states, each of which are a state appearing right after a
random disturbance between -0.01 and 0.01 p.u. in one of the subnetworks has
occurred.

the performance of the centralized scheme. Hence, the controls agents have obtained the
performance of the centralized control agent in a distributed way.

We also observe from Table 2.2 that the serial scheme on average requires fewer itera-
tions Niter,avg per simulation than the parallel scheme. This can be explained by the fact that
the serial scheme uses information from both the previous and the current iteration, whereas
the parallel scheme only uses information from a previous iteration.

In Table 2.2 we also observe that the total computation time in seconds per simulation
on average Tcomp,avg is larger for the serial scheme than for the parallel scheme. This is
explained by the fact that in the serial scheme only one agent at a time performs a computa-
tion step within an iteration, whereas in the parallel scheme multiple control agents perform
computations at the same time. Compared to the centralized scheme, the parallel and serial
scheme have a larger total computation time than the centralized scheme.

Below we will discuss these results further, after illustrating the inf uence of different
parameter values on the performance of the parallel and serial scheme.

Iterations at a single control cycle

To illustrate the operation of the serial scheme at a particular control cycle, consider Figure
2.7. The f gure illustrates the typical behavior of values of interconnecting variables going
toward each other over the iterations at a particular control cycle for a network consisting
of two subnetworks. In this network, the values of xi are unconstrained.

The f gure illustrates for a particular interconnecting input variable of agent 1 over the
prediction horizon and the corresponding interconnecting output variable of agent 2 over
the prediction horizon, the values that both agents would like their interconnecting variable
to take on. After each local computation step, these values are communicated to the other
agent, which uses these to update its interconnecting objective function. As the iterations
progress the values of the interconnecting input and the corresponding interconnecting out-
put converge to each other, indicating that the values go toward satisfying interconnecting
constraints. In addition, since in our case the combined overall problem is convex, the val-
ues converge to the solution that would have been obtained with a centralized control agent
that would have access to all actuators and sensors in the network.

Depending on the value of the parameter γǫ,term the iterations will terminate sooner or
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(b) After 5 iterations.
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(c) After 15 iterations.
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(d) After 25 iterations.
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(f) At convergence.

Figure 2.7: Convergence of the values for interconnecting input variables of agent 1 (solid
line with circle) and the corresponding interconnecting output variables of
agent 2 (solid line with cross), each corresponding to the variables x∆δ,1(k+ l)
over a prediction horizon of 6 steps, hence, for l= 1,2, . . . ,6. Over the itera-
tions the values converge to the overall optimal solution (dashed line).
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later, and depending on the value of the parameter γc the values of the interconnecting
variables will converge sooner or later to values for which the interconnecting constraints
are satisf ed. Below we go into this in more detail.

Parameter sensitivity at a single control cycle

To gain more insight into the role of the parameters γc and γǫ,term and into the iterations that
the serial and the parallel scheme perform, we illustrate the performance of the schemes
for a particular representative control problem at a particular control cycle under varying
parameter values. The control problem that we consider is the MPC control problem that
the agents have to solve right after a disturbance d∆Pdist,i of magnitude 1.10−2 has occurred
in subnetwork 5.

To evaluate the solution over the prediction horizon determined by the different schemes
at a single control cycle, the inputs coming from the different schemes are implemented to
determine the resulting state trajectory, after which the cycle performance Jcycle is deter-
mined as:

Jcycle =
n

∑
i=1

N−1

∑
l=0

Jstage,i (x̄i(1 + l),ui(l), ȳi(l)) .

No penalty term is included for violations of the bound constraints.

Varying the penalty coefficient We f rst vary the parameter γc, while keeping γǫ,term f xed
at 1.10−6. For varying values of the parameter γc we determine the cycle performance Jcycle
at each intermediate iteration. Hence, after each iteration, the actions that the control agents
would then choose are used to evaluate the cycle performance Jcycle over the prediction
horizon.

Figures 2.8 and 2.9 illustrate how the cycle performance Jcycle of the control agents
using the serial and the parallel scheme changes over the iterations, under various values for
γc. We clearly observe that as the number of iterations increases, the performance of the
solution that the control agents have determined increases as well.

We observe in Figure 2.8 that, indeed, on the one hand for very small values of the
penalty term γc, the convergence is slow, whereas on the other hand, for larger values of the
penalty term γc, the convergence is faster. However, we observe in Figure 2.9 that, indeed,
when the penalty term γc is chosen too large, the convergence slows down again.

For a given value of γc, the serial scheme requires fewer iterations and converges faster
than the parallel scheme. This behavior is best observed for larger values of γc in Figure 2.9.
The difference in the number of iterations required is due to the fact that the serial scheme
uses information earlier than the parallel scheme. For smaller values of γc, as those shown
in Figure 2.8, the inf uence of the additional objective function Jinter,i of both the parallel and
the serial scheme vanishes, making that the difference between the two schemes vanishes as
well.

Varying the stopping tolerance Given a value for γc we determine the cycle performance
Jcycle that the control agents obtain at termination using various values for the stopping
tolerance γǫ,term. We vary γǫ,term in the set {1.10−8,1.10−7, . . . ,1,10}.
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Figure 2.8: The performance of solutions after each iteration for smaller values ofγc.
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Figure 2.10: The cycle performance versus the number of iterations for N= 5, γc = 100,
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Figure 2.10 shows the results for varying γǫ,term, while keeping γc f xed at 100. We
observe that with a decreasing value of the stopping tolerance γǫ,term, more iterations are
required before the stopping condition is satisf ed. We also observe that if an appropriate
value for γǫ,term is chosen, convergence toward the centralized solution is obtained within a
reasonable bound.

It is noted that there is minimal performance that is achieved when γǫ,term becomes
larger than a certain value. In Figure 2.10 this is observed for the parallel scheme, which
for values of γǫ,term larger than 0.1 achieves the same performance.

When comparing the serial scheme with the parallel scheme, we observe that the se-
rial scheme outperforms the parallel scheme in convergence speed and performance. Fur-
thermore, Figure 2.10 illustrates that over the iterations the performance of both schemes
converges toward the performance of the centralized overall scheme.

Discussion

The experiments reported in this section represent a relatively small portion of all experi-
ments that could have been done, involving multiple combinations of network topologies,
scheme parameters, prediction horizons, etc. Nonetheless, the results obtained here give an
indication of the potential of the approaches discussed in this chapter.

It is noted that both schemes discussed only communicate information common to the
control problems of several agents; all other data is only used locally. Agents have only a
prediction model of their own subnetwork. This gives f exibility and security, since other
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agents do not have to know the exact parameters of a particular subnetwork, and in fact the
subnetwork may be changed, without having to inform other agents.

The time required to complete the iterations at one control cycle in these experiments is
typically larger than a real-time online implementation would allow. However, as Figures
2.8 and 2.9 illustrate, after already a few iterations a relatively good solution can have been
obtained, and thus if necessary the iterations could be stopped earlier.

In our experiments we have seen that the serial scheme can outperform the parallel
scheme in terms of convergence speed in terms of iterations and the performance obtained.
However, we also observed that the serial scheme requires more computation time in sec-
onds in order to perform its computations, when compared to the parallel scheme.

If the time required for one serial iteration is reduced, the serial scheme may also out-
perform the parallel scheme in total computation time required. Our idea to achieve this
is to parallelize the serial scheme, either only within an iteration, or also over iterations.
Parallelization can be done when the topology of subnetworks can be seen as a tree. This
tree structure of the network makes that control problems of control agents can be solved
(partially) in parallel, thus reducing total computation time. Groups of agents operating in
parallel may be constructed. Within each group, the serial scheme may be employed [111].

It should be noted that the overall network that the control agents control in this section
is highly unstable. As we have seen, a small disturbance in the overall network gives large
oscillations if not controlled properly. For this reason, it is important for the control agents
to obtain very accurate values of the interconnecting variables over the prediction horizon.
For applications in which the local subnetwork dynamics and objectives do not depend as
much on the values of the interconnecting variables decision making speed can be increased
by lowering the value of the stopping tolerance γǫ,term.

The dynamics used in this section for representing the power networks dynamics are
highly simplif ed, and the values representing the deviations therefore can also not directly
be related to physical values. The linear dynamics assumed are typically valid only over
small prediction horizons. However, for our purpose of showing the performance of the
control schemes, this is not an issue. More advanced linear models may be used in combi-
nation with the schemes considered above to more adequately represent the actual network
physics.

2.6 Summary

In this chapter we have considered multi-agent single-layer MPC for the control of trans-
portation networks. We have started with formalizing the dynamics of the subnetworks and
the control structure. Then, we have formulated the MPC problem for an individual con-
trol agent, assuming that it knows how its surrounding network behaves. Subsequently, we
have relaxed this assumption and introduced interconnections between control problems.
We have surveyed how these interconnections can be dealt with by discussing the various
ways of information exchange and moments at which information exchange takes place.
Then, we have focused on a particular type of schemes and have proposed a novel serial
scheme, which we have compared with a related parallel scheme. Although under convex-
ity assumptions on the overall combined control problem the schemes converge to overall
optimal solutions, it remains to be investigated what the rate of convergence is, how the rate
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of convergence can be improved, and how this scheme can be extended to other classes of
models.

We have proposed the application of the schemes for a load-frequency control prob-
lem. Through experimental studies on a network consisting of 13 subnetworks, we have
compared the serial scheme with the parallel and a centralized overall scheme. For the se-
rial and the parallel schemes, the performance of the solution obtained converged toward
the performance of the solution obtained by the overall control problem, provided that the
overall control problem is convex.

The results of the experiments illustrate that the proposed serial scheme generally has
preferable properties in terms of the solution quality and the number of iterations required.
However, the parallel scheme requires less time. Through parallelization the total com-
putation time required per iteration by the serial scheme may be made more eff cient, ulti-
mately resulting in a scheme that requires also fewer total computation time than the parallel
scheme.

In Chapter 3 we extend the serial method to situations in which the problem of control-
ling the transportation network cannot be formulated as a convex problem. In particular we
extend the method to deal with networks modeled as hybrid systems in which both contin-
uous and discrete dynamics appear, a situation typically appearing when, e.g., continuous
f ows together with discrete actions are present.

In Chapter 4 we discuss how a supervisory control layer can control the control agents
of a lower control layer, that are organized as, e.g., the structure considered in this chapter.
The supervisory control layer takes into account the dynamics of both the lower control
layer and the underlying physical network.

In Chapter 5 we consider how an even higher supervisory control layer can control
the control agents in a lower control layer. The control agents in the higher control layer
do not take into accounts the dynamics of the lower layer, but only consider steady-state
characteristics. A scheme related to the schemes addressed in this chapter is used to obtain
coordination among the control agents controlling subnetworks that are overlapping and
may have nonlinear steady-state characteristics.





Chapter 3

Networked hybrid systems

In Chapter 2 we have considered multi-agent control of transportation networks involving
only continuous variables and dynamics. In this chapter we consider multi-agent control
of hybrid systems, i.e., distributed control of systems with both continuous and discrete
dynamics. In Section 3.1 we introduce hybrid systems, illustrate how transportation net-
works can be seen as hybrid systems, and discuss which issues have to be dealt with when
developing multi-agent single-layer MPC approaches for such systems. In Section 3.2 we
focus on formulating prediction models of hybrid systems and discuss how transformations
can be used to recast descriptions of hybrid systems into systems of linear mixed-integer
constraints. In Section 3.3 we then apply these transformations to construct a model of a
particular hybrid system. In Section 3.4 we focus on multi-agent control of interconnected
hybrid systems and propose an extension of the serial multi-agent single-layer MPC scheme
of Chapter 2.

In this chapter we apply the discussed techniques to two applications. In Section 3.3 we
consider a decentralized multi-agent single-layer MPC approach for optimization of energy
consumption in households. In Section 3.5 we propose an extension of the serial multi-agent
approach of Chapter 2 for load-frequency control with discrete generation switching.

Parts of this chapter have been published in [68, 108].

3.1 Transportation networks as hybrid systems

Many of the transportation networks of our interest can be seen as hybrid systems. Hybrid
systems [4, 104, 143] arise when continuous dynamics are combined with discrete dynam-
ics. The following examples show how particular transportation networks can be seen as
hybrid systems:

• In power networks, the transients and the evolution of the voltage and power levels
and the demands of generators and users yield continuous dynamics, whereas the acti-
vation or deactivation of generators, lines, or users corresponds to discrete dynamics.

• In road traff c networks the f ow of the cars through the network can be modeled
with continuous dynamics, and elements such as ramp metering, traff c signals, lane
closures, route directions, etc., yield discrete dynamics on the system.

47
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• In water networks the evolution of the water levels can be modeled with continuous
dynamics, whereas opening and closing of dams, and activating or deactivating of
pumps yield discrete dynamics.

More generally speaking, hybrid dynamics are the result of the discrete dynamics caused
by, e.g., saturation effects, discrete switching of actuators, discrete controller logic, priorities
on control, reaching of physical bounds, etc., in combination with the continuous dynamics
of, e.g., f ows, pressures, speeds, levels, etc.

Conventional control approaches usually either consider only continuous or only dis-
crete dynamics. The control approaches that do consider discrete and continuous dynam-
ics simultaneously are mostly based on a centralized control paradigm, since multi-agent
control has mostly been approached either from a computer science point of view, which
focuses on discrete dynamics, or from a control engineering point of view, which focuses
on continuous dynamics. Structured control design methods for large-scale hybrid systems
are therefore lacking.

In a multi-agent single-layer MPC control structure the network is divided into n sub-
networks, each controlled by a single control agent, cf. Section 1.3.2. Each of the control
agents uses MPC to determine which actions to take. Each agent hereby uses a prediction
model to predict the evolution of its subnetwork under various actuator settings over a cer-
tain prediction horizon. For transportation networks that are hybrid systems, all or some of
the subnetworks will be hybrid systems. Issues that we address in the following sections are
related to:

• Formalizing the hybrid behavior into suitable mathematical models. The control
agents have to use prediction models that on the one hand adequately represent the
hybrid dynamics, while on the other hand give MPC problems that can be solved
eff ciently, e.g., by making it possible to use state-of-the-art commercially available
optimization problem solvers.

• Making control agents choose local actions that give performance that is as close as
possible to overall optimal network performance, when the subnetworks of the con-
trol agents are hybrid systems. When the subnetwork that a control agent controls
is a hybrid system, the corresponding prediction model will typically contain both
continuous and discrete variables. This has as consequence that the MPC optimiza-
tion problem of a particular control agent will be nonconvex, and that therefore also
the overall combined control problem def ned in Section 2.4 will be nonconvex. Ap-
proaches as discussed in Section 2.4 for coordinating control agents may not give
satisfactory performance, and a way has to be found to improve this.

We f rst focus on the f rst issue, i.e., modeling of hybrid systems, by discussing how
transformations can be used to transform discrete logic into mixed-integer equality and
inequality constraints. We then employ these transformations for designing a prediction
model used by a decentralized multi-agent single-layer MPC control structure to control
household energy consumption. Next, we consider the second issue, i.e., multi-agent control
of interconnected hybrid systems, by extending the serial approach of Section 2.4 to deal
with hybrid subnetworks. The approach is experimentally assessed on a load-frequency
control problem in which generation can be changed in discrete quantities.
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Figure 3.1: Schematic representation of a hybrid automaton.

3.2 Modeling of hybrid systems

There are many ways in which models of hybrid systems can be constructed. Typically
the continuous dynamics are represented by systems of differential or difference equations
and the discrete dynamics are represented by automata or f nite state machines [29, 30].
Combining these two types of models results in hybrid automata [143], a type of model that
can represent a large class of hybrid systems.

Figure 3.1 depicts an example of a such a hybrid automaton. Each node represents a
modeof the system. The modes represent the discrete operating points, i.e., q0, q1, and q2.
In this case, each mode is governed by its own continuous dynamics, given by a system of
differential equations, e.g., dx

dt = f (q1,x) for mode q1. The system can stay in a particular
mode as long as the continuous state stays inside the invariant set of that mode, e.g., x ∈
Inv(q1). The system can also transition to a different mode, and in fact has to transition to
a new mode if the continuous state x is no longer inside the invariant set. The system can
only transition from one mode to another, if the transition between these modes is enabled.
The guard set G indicates for which states x the transition from one mode to another is
enabled. The reset set R indicates which values the states can take on when a transition is
made to a new mode. If each sequence of continuous state and mode transitions is uniquely
determined only by the initial continuous state and mode, then the hybrid automaton is
deterministic. Otherwise, the hybrid automaton is non-deterministic.

Hybrid automata have a large expressibility, in the sense that they can in principle repre-
sent the dynamics of any hybrid system. However, this expressibility comes at the price of
increased diff culties for analytical studies, simulation, etc. By making assumptions on the
possible mode transitions, the dynamics inside the modes, and the guard and the reset sets,
different types of models can be def ned. Each of these types of models will have different
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characteristics when it comes to the easiness of performing time-domain simulations, the
possibility for analytical analysis, and the range of hybrid systems that can be represented.
Some types of models that can be considered as special cases of hybrid automata are timed
Petri-nets [34], mixed-logical dynamic models [16], piecewise-aff ne models [133], max-
min-plus scaling models [35], etc. The equivalence of some of these types of models is
shown in [57].

3.2.1 Models for MPC control

In the description of dynamics of hybrid systems discrete logic statements are commonly
encountered, e.g., in the form of if-then or if-then-else rules. For a deterministic hybrid
automaton an example of a discrete logic statements is “if x /∈ Inv(q1) and x ∈ G(q1,q2),
then q = q2 and x∈ R(q1,q2)”. This statement means that if continuous state x is not in the
invariant set of q1 anymore and x is in the guard set G guarding the transition from q1 to q2,
that then the transition to mode q2 is made, and the continuous state obtains a value from the
reset set associated with that transition. Discrete logic can be dealt with when formulating
the prediction model of a control agent in the following ways:

• Software can be used that simulates the system, including the discrete logic. This
software accepts a starting state and a series of inputs, and delivers an ending state
and a series of outputs. Hence, the software is the prediction model of the system.
The control agent can include this prediction model using nonlinear constraints in
its MPC optimization problem. It can then use nonlinear optimization techniques to
solve the nonlinear MPC optimization problem.

• The discrete logic can be transformed into linear equality and inequality constraints.
The prediction model of the system will then consist of a system of linear equality and
inequality constraints, in the case that the dynamics given f xed discrete dynamics are
linear. The control agent can include this prediction model using mixed-integer linear
constraints in its MPC optimization problem. It can then use mixed-integer linear or
quadratic programming techniques to solve the MPC optimization problem.

In Chapter 4 we discuss the f rst approach. Below, we discuss the second approach, f rst
from a more theoretical point of view in Section 3.2.2, then from a more applied point of
view in Section 3.3.

3.2.2 From discrete logic to linear mixed-integer constraints

In [16, 149] it is shown how discrete logic statements can be transformed into linear mixed-
integer equality and inequality constraints, i.e., constraints involving both variables that take
on values from a continuous set of values, and variables that take on values from a discrete
set of values. As in [16], we denote by x ∈ R

n continuous variables and by δ ∈ {0,1} a
binary logical variable. In addition, we denote by [exp] a logic statement, which has as
value the evaluation of an expression exp to true or false. So, [ f (x) ≤ 0] evaluates to true
when f (x) ≤ 0, and to false otherwise.

It would be convenient if these logic statements could be transformed into linear mixed-
integer constraints, since optimization problem solvers that know how to deal with these
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constraints are available. Some useful transformations from logic statements into linear
mixed-integer inequality constraints are given by [16]:

[ f (x) ≤ 0]∧ [δ = 1] is true iff f (x)− δ ≤ −1 +γm(1 − δ) (3.1)
[ f (x) ≤ 0]∨ [δ = 1] is true iff f (x) ≤ γMδ (3.2)

∼ [ f (x) ≤ 0] is true iff f (x) ≥ γǫ,mach (3.3)
[ f (x) ≤ 0] ⇒ [δ = 1] is true iff f (x) ≥ γǫ,mach + (γm −γǫ,mach)δ (3.4)

[ f (x) ≤ 0] ⇔ [δ = 1] is true iff
{

f (x) ≤ γM(1 − δ)
f (x) ≥ γǫ,mach + (γm −γǫ,mach)δ,

(3.5)

where f : R
nx → R is linear, x ∈ X , X is a given bounded set, γǫ,mach is a small positive

constant, e.g., the machine precision, which indicates when a constraint is considered to be
violated, and where

γM = max
x∈X

f (x) (3.6)

γm = min
x∈X

f (x). (3.7)

Remark 3.1 Formally ∼ [ f (x) ≤ 0] is true iff f (x) > 0. However, for numerical reasons
optimization problem solvers cannot deal with such a strict inequality. Therefore in (3.3)
the strict inequality f (x) > 0 is approximated by the inequality f (x) ≥ γǫ,mach. In practice,
for a suff ciently small value of γǫ,mach this approximation is typically acceptable. 2

As we will see in Section 3.3, as a byproduct of transforming logic statements into
mixed-integer constraints, constraints involving products of logical variables and constraints
involving products of continuous and logical variables may appear. Although these products
are not linear, they can be transformed into linear inequalities. E.g., the product term δ1δ2
can be replaced by an auxiliary binary variable δ3. The value of variable δ3 should be 1,
when the values of both δ1 and δ2 are 1, and 0 otherwise. This behavior can be expressed in
a logic statement and corresponding linear inequalities as follows [16]:

[δ3 = 1] ⇔ ([δ1 = 1]∧ [δ2 = 1]) is true iff







−δ1 + δ3 ≤ 0
−δ2 + δ3 ≤ 0

δ1 + δ2 − δ3 ≤ 1.
(3.8)

Also, the product term δ f (x), for a linear function f : R
nx → R and δ ∈ {0,1}, can be

transformed into linear inequalities. The product term δ f (x) is replaced by an auxiliary
variable z. The value of variablez should be f (x) when the value of δ is 1, and 0 otherwise.
This behavior can be expressed and transformed into linear inequality constraints as follows
[16]:

([δ = 1] ⇒ [z= f (x)])∧ (∼ [δ = 1] ⇒ [z= 0]) is true iff















z≤ γMδ
z≥ γmδ

z≤ f (x)−γm(1 − δ)
z≥ f (x)−γM(1 − δ),

(3.9)

where γM and γm are as def ned in (3.6)–(3.7). Note that in fact the relations (3.8) and (3.9)
transform if-then-else statements into linear inequality constraints.
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3.2.3 Mixed-logical dynamic models

A prediction model M based on the transformations discussed above can be cast into mixed-
logical dynamic form to obtain a compact representation of the hybrid dynamics as follows
[16]:

x(k+ 1) = Ax(k)+ B1u(k)+ B2δ(k)+ B3z(k)

y(k) = Cx(k)+ D1u(k)+ D2δ(k)+ D3z(k)

E2δ(k)+ E3z(k) ≤ E1u(k)+ E4x(k)+ E5,

where

x(k) =

[

xc(k)
xb(k)

]

y(k) =

[

yc(k)
yb(k)

]

u(k) =

[

uc(k)
ub(k)

]

,

are the state, output, and input, respectively, separated into continuous components and
binary components, i.e., xc(k) ∈ R

nxc , xb(k) ∈ R
nxb , nx = nxc + nxb , yc(k) ∈ R

nyc , yb(k) ∈
R

nyb , ny = nyc + nyb , uc(k) ∈ R
nuc , ub(k) ∈ R

nub , nu = nuc + nub . In addition, δ(k) are the
binary variables and z(k) are the auxiliary continuous variables.

3.3 Application: Household energy optimization

In this section we consider a decentralized multi-agent single-layer MPC approach for con-
trolling energy in households. We discuss distributed energy resources, formalize the hybrid
dynamics of a household in a model, and show how this model can be used for MPC control.

3.3.1 Distributed energy resources

Distributed energy resources, comprising distributed power generators, electricity storage
units, and responsive loads, can play a crucial role in supporting the European Union’s key
policy objectives of market liberalization, combating climate change, increasing the amount
of electricity generated from renewable sources, and enhancing energy saving. Large-scale
diffusion of distributed energy resources will have a profound impact on the functioning of
the electricity infrastructure: It will bring radical changes to the traditional model of gener-
ation and supply as well as to the business model of the energy industry [67]. Drivers for
distributed energy resources are the generation and sale of electric energy and accompany-
ing goods, such as CO2 emission rights, and the provision of ancillary services for network
operators.

Distributed generation of electricity, e.g., via photo-voltaics, wind turbines, or combined
heat and power plants, has a good chance of pervading the electricity infrastructure in the
future [67, 120]. Distributed generation offers environmental benef ts (e.g., due to the use
of renewable energy sources and the eff cient use of fossil fuels), reduced investment risks,
fuel diversif cation and energy autonomy, and increased energy eff ciency (e.g., due to fewer
line losses and co-generation options). In addition, several electricity storage technologies
are under development, e.g., lithium-ion batteries and plug-in hybrid electric vehicles [91].
Furthermore, options for load response are foreseen for the future power system [24].
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Figure 3.2: Households and an external energy supplier. Households can buy and sell en-
ergy to and from an external energy supplier or to and from neighboring house-
holds.

With an increase in distributed energy resources combined with more ICT and intel-
ligence in the power network, the options for consumers with respect to energy demand
response increase. In this section, we focus on residential distributed energy resources.
Households with distributed energy resources operate more independently of energy sup-
pliers, they can devise new contractual arrangements with suppliers and network managers,
and they can buy and sell power among one another, and to and from their supplier, as
shown in Figure 3.2. As a f rst step toward developing control structures that are installed
in households for optimizing energy usage, we consider an individual household, not tak-
ing into account the possibility of energy exchange with neighboring households, i.e., we
consider a decentralized multi-agent single-layer control structure1.

3.3.2 System description

The system under study consists of a household interacting with its energy supplier, as
depicted in Figure 3.3. As in conventional households, the household can buy electricity
and gas from its energy supplier. In addition to this, the household can sell electricity to the
energy supplier. The household can produce this electricity using a micro combined heat
and power (µCHP) unit [120]. This unit can simultaneously produce heat and power for the
household. It is typically located in a basement, underneath a sink, hanging from a wall, or
outside. It can provide various energy needs, such as space and water heating, electricity,
and, possibly, cooling.

We assume that the µCHP unit in the household is based on Stirling technology [120].
The unit provides electricity to an electricity storage unit, and heat to a heat storage unit. The
µCHP unit consists of a Stirling engine prime mover, conversion unit 1, and an auxiliary
burner, conversion unit 2. Conversion unit 1 converts natural gas zg,1(k) (in kWh) into

1The control agent that we will develop for control of a household could be located in a physical device such
as the Qbox, which will soon become commerically available. See the website of Qurrent, the manufacturer of the
Qbox, at http://www.qurrent.com/.

http://www.qurrent.com/
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Figure 3.3: Conceptual overview of the system under study [68].

electricity produced ze,p(k) (in kWh) and heat produced zh,p,1(k) (in kWh), with a f xed
ratio. The conversion unit can operate in partial or full mode and has a minimum activation
constraint. Conversion unit 2 converts natural gas zg,2(k) (in kWh) to provide additional heat
zh,p,2(k) (in kWh). For energy eff ciency reasons conversion unit 2 should be used as backup
heat generator only. Therefore, priority has to be given to conversion unit 1. Conversion
units 1 and 2 are equipped with built-in f xed controllers that are designed to keep the level
of the heat storage unit xh,s(k) (in kWh) between certain upper and lower bounds.

The generated heat is supplied to a heat storage unit in the form of hot water. We
consider an aggregated heat demand for the household, and therefore make no distinction
between heat storage units for, e.g., space heating and sanitation heating. It is therefore also
appropriate to assume that there is a single large heat storage unit. Such a conf guration is
commercially available2. The level of the heat storage unit is indicated by the energy xh,s(k)
(in kWh) in the heat storage unit. Heat consumption dh,c(k) (in kWh) takes heat from the
storage unit, and therefore lowers the level of the heat storage unit xh,s(k). The level of the
heat storage unit changes over time depending on the heat produced by the conversion units
and the heat consumed.

2See, e.g., Gledhill Water Storage, http://www.gledhill.net/.

http://www.gledhill.net/
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The generated electricity can be stored in a battery, e.g., a lithium-ion battery, of which
the level is indicated by the energy in the battery xe,s(k) (in kWh). Electricity can f ow to
and from the battery, represented by ze,in(k) (in kWh) and ze,out(k) (in kWh), respectively. In
addition to storing electricity, electricity can be used directly by the household for consump-
tion, indicated by de,c(k) (in kWh), or it can be sold to the supplier through export, indicated
by ue,exp(k) (in kWh). Electricity can also be imported from the supplier through import,
indicated by ue,imp(k) (in kWh). The level of the electricity storage unit changes over time
depending on the electricity produced by conversion unit 1, the electricity imported from or
exported to the energy supplier, and the electricity consumed by the household.

System dynamics

Below we formalize the dynamics of the household. As we will see, these dynamics are
hybrid, and the transformations from Section 3.2.2 can be used to obtain a prediction model
consisting of only linear mixed-integer equality and inequality constraints.

Conversion unit 1 Conversion unit 1 can operate at partial generation or full genera-
tion. The control inputs are therefore u1,part(k) ∈ {0,1} and u1,full(k) ∈ {0,1}, where input
u1,full(k) can only be used when u1,part(k) = 1. Depending on the control inputs, the con-
version unit uses a different amount of gas zg,1(k). Conversion unit 1 converts this gas into
electricity ze,p(k) and heat zh,p,1(k). The gas used zg,1(k), the electricity provided to the
internal network ze,p(k), and the heat provided to the heat storage unit zh,p,1(k) are given by:

zg,1(k) = ηg,partu1,part(k)+ (ηg,max −ηg,part)u1,full(k)

ze,p(k) = ηezg,1(k)

zh,p,1(k) = (ηtot −ηe)zg,1(k),

where ηg,part (in kWh) is the gas used when the conversion unit operates partially, ηg,max (in
kWh) is the gas used when the conversion unit operates at its maximum, ηe is the electric
eff ciency of the unit, and ηtot is the total eff ciency of the unit, i.e., the electric and the heat
eff ciency together.

When the conversion unit is in operation the dynamics of the household will be different
from when the conversion unit is not in operation. In order to model logic rules relying on
such information, a device-in-operation variable that indicates when conversion unit 1 is in
operation is used. Based on the actuator setting u1,part(k), which takes on binary values 0
and 1, the device-in-operation indicator δdio,1(k) ∈ {0,1} is def ned as:

[δdio,1(k) = 1] ⇔ [u1,part(k) = 1],

which can be directly transformed into the linear equality constraint:

δdio,1(k) = u1,part(k).

Using the device-in-operation variable δdio,1(k), the constraint that the full generation can
only be switched on after the partial generation u1,full(k) has been switched on is modeled
with the inequality constraint:

u1,full(k)− δdio,1(k) ≤ 0.
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Conversion unit 1 has a minimum activation constraint to avoid fast wear and tear of the
device due to frequent on and off switching. The minimum activation constraint specif es
that when the device has been switched on it has to stay in operation for at least ηact,min ∈N

+

time units, with N
+ the positive natural numbers. In order to model the minimum activation

constraint, introduce the counter xact(k) ∈ [0,xact,max] (with xact,max a f nite upper bound on
the maximum time that a device can be in operation), which counts the number of time units
that the device has been in operation so far. The evolution of this variable is given by the
relation:

xact(k+ 1) =

{

xact(k)+ 1 if δdio,1(k) = 1
0 otherwise.

Using (3.9) this relation can be transformed into mixed-integer inequality constraints.
If the activation xact(k) is 0, then the conversion unit is allowed to stay switched off or

to be switched on. However, if the activation xact(k) is larger than 0, then the conversion
unit is not allowed to be switched off, until the activation xact(k) has reached the minimum
activation ηact,min. Hence, as long as xact(k) is larger than 0 and smaller than ηact,min, the
value of input u1,part(k) should stay at its maximum, i.e., 1. After the activation xact(k) has
reached the minimum activation, the input u1,part(k) is allowed to have a different value
again. To model this, introduce a constraint on the minimum value of u1,part(k) as follows:

u1,part,min(k) ≤ u1,part(k), (3.10)

with u1,part,min(k) ∈ {0,1}. Using the activation variable xact(k) and this constraint we
can enforce the minimum activation constraint by adjusting the lower limit u1,part,min(k)
of u1,part(k) with the relation:

[1 ≤ xact(k) ≤ ηact,min − 1] ⇔ [u1,part,min(k) = 1].

To transform this relation we introduce auxiliary binary variables δ1(k), δ2(k), and δ3(k) for
which it holds that:

[1 ≤ xact(k)] ⇔ [δ1(k) = 1]

[xact(k) ≤ ηact,min − 1] ⇔ [δ2(k) = 1]

[δ3(k) = 1] ⇔ [δ1(k) = 1]∧ [δ2(k) = 1].

Hence, when δ3(k) is equal to 1, then xact(k) is larger than 0, although it has not yet passed
the minimum activation ηact,min, implying that the conversion unit should be kept in opera-
tion. To transform these three relations into mixed-integer inequality constraints, (3.5) and
(3.8) are used.

Variable δ3(k) is 1 if the device should be kept in operation, and 0 otherwise. This
behavior is exactly the same behavior as variable u1,part,min(k) should have. Therefore,
u1,part,min(k) = δ3(k), and the constraint that the conversion unit can only be switched off
after an activation of ηact,min is enforced by substituting δ3(k) for u1,part,min(k) in (3.10).

A f xed controller is installed in conversion unit 1. This f xed controller is installed to
guarantee a minimum level of heat in the heat storage unit. The f xed controller switches
the conversion unit on when the level of the heat storage unit xh,s(k) is lower than a lower
limit ηh,s,lim,min,1, and switches it off when the level of the heat storage unit xh,s(k) is larger
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than an upper limit ηh,s,lim,max,1. Let u1,part,tmp(k)∈ {0,1} denote the actuator setting that the
f xed controller would choose if the minimum activation constraint would not be present.
The f xed controller determines the value for this variable as follows:

u1,part,tmp(k) =







1 for xh,s(k) ≤ ηh,s,lim,min,1
u1,part(k− 1) for ηh,s,lim,min,1 < xh,s(k) < ηh,s,lim,max,1
0 for xh,s(k) ≥ ηh,s,lim,max,1.

To transform this relation auxiliary variables δ4(k), δ5(k), δ6(k), and δ7(k) are def ned such
that:

[δ4(k) = 1] ⇔ [xh,s(k) ≤ ηh,s,lim,min,1]

[δ5(k) = 1] ⇔ [xh,s(k) ≥ ηh,s,lim,max,1]

[δ6(k) = 1] ⇔ [δ4(k) = 0]∧ [δ5(k) = 0]

δ7(k) = δ6(k)u1,part(k− 1).

Using (3.5) and (3.8) these relations are transformed into linear mixed-integer constraints.
Given the values for these auxiliary variables, the f xed controller determines the value for
u1,part,tmp(k) as:

u1,part,tmp(k) = 1.δ4(k)+ 0.δ5(k)+ δ7(k).

In determining the actual setting for conversion unit 1, the f xed controller has to respect
the minimum activation constraint. Therefore, the value that the f xed controller of conver-
sion unit 1 chooses as input u1,part(k) to the actuator of conversion unit 1 is not the value of
u1,part,tmp(k) directly, but the value determined as follows:

u1,part(k) =

{

1 if the conversion unit is not allowed to switch off
u1,part,tmp(k) otherwise,

which can be written as:

u1,part(k) = 1.δ3(k)+ (1 − δ3(k))u1,part,tmp(k),

where δ3(k) is def ned through the minimum activation constraints. This relation can be
transformed into linear mixed-integer constraints using (3.8).

Conversion unit 2 Conversion unit 2 has as control input u2(k) ∈ [0,u2,max]. Depending
on the control input, it uses a different amount of gas zg,2(k) and provides a different amount
of heat zh,p,2(k) to the heat storage unit. The gas used zg,2(k) and the heat provided zh,p,2(k)
are given by:

zg,2(k) = u2(k) (3.11)
zh,p,2(k) = ηtotzg,2(k). (3.12)

A device-in-operation variable δdio,2(k) ∈ {0,1} indicating when conversion unit 2 is in
operation is def ned as:

[u2(k) ≥ γǫ,mach] ⇔ [δdio,2(k) = 1].
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This relation can be converted into linear mixed-integer inequality constraints using (3.5).
The device-in-operation variable δdio,2(k) is used to enforce that conversion unit 2 is in
operation only when conversion unit 1 is in operation through the following constraints:

δdio,2(k)− δdio,1(k) ≤ 0. (3.13)

A f xed controller is installed in conversion unit 2, similar to the f xed controller as in
conversion unit 1. The f xed controller of conversion unit 2 determines an auxiliary actuator
setting u2,tmp(k) ∈ {0,1} as follows:

u2,tmp(k) =







1 for xh,s(k) ≤ ηh,s,lim,min,2
u2,tmp(k− 1) for ηh,s,lim,min,2 < xh,s(k) < ηh,s,lim,max,2
0 for xh,s(k) ≥ ηh,s,lim,max,2.

To transform this relation, auxiliary variables δ9(k), δ10(k), δ11(k), and δ12(k) are def ned
such that:

[δ9(k) = 1] ⇔ [xh,s(k) ≤ ηh,s,lim,min,2]

[δ10(k) = 1] ⇔ [xh,s(k) ≥ ηh,s,lim,max,2]

[δ11(k) = 1] ⇔ [δ9(k) = 0]∧ [δ10(k) = 0]

δ12(k) = δ11(k)u2,tmp(k− 1).

Using (3.5) and (3.8) these relations are transformed into linear mixed-integer constraints.
The f xed controller now determines the value for the auxiliary actuator setting u2,tmp(k) as:

u2,tmp(k) = 1.δ9(k)+ 0.δ10(k)+ δ12(k).

The auxiliary actuator setting u2,tmp(k) is used by the f xed controller to determine the actual
input for conversion unit 2 as:

u2(k) = u2,tmp(k)ηfracu2,max,

where ηfrac is the part of the maximum output u2,max that is activated when conversion unit
2 is switched on by the f xed controller.

Electricity and heat storage units The electricity and heat storage units are used to store
energy. The storage units have a limited capacity. The level of the electricity storage unit
xe,s(k) is determined by the amount of electricity ze,in(k) that goes into the storage unit,
and the amount of electricity ze,out(k) that is taken out. It is assumed that the charging and
discharging of the battery is without energy loss. The dynamics of the level of the electricity
storage unit are given by:

xe,s(k+ 1) = xe,s(k)+ ze,in(k)− ze,out(k).

The level of the heat storage unit xh,s(k) is inf uenced by the heat production of conver-
sion units 1 and 2, i.e., zh,p,1(k) and zh,p,2(k), resepectively. The heat storage unit dynamics
are given by:

xh,s(k+ 1) = xh,s(k)+ zh,p,1(k)+ zh,p,2(k)− dh,c(k).
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The levels of the electricity and heat storage units are limited by minimum and maxi-
mum values, i.e.:

xe,s,min ≤ xe,s(k) ≤ xe,s,max

xh,s,min ≤ xh,s(k) ≤ xh,s,max.

Power balance A power balance relating the power output of conversion unit 1 ze,p(k), the
input ze,in(k) and output ze,out(k) of the electricity storage unit, the electricity consumption
de,c(k), and electricity bought ue,imp(k) or sold ue,exp(k) to the energy supplier, has to hold.
This power balance is given by:

0 = ze,p(k)+ ue,imp(k)+ ze,out(k)− ue,exp(k)− ze,in(k)− de,c(k).

3.3.3 MPC problem formulation

We now use the derived model as prediction model M for a control agent controlling the en-
ergy f ows of a household. The control agent has the task to automatically determine which
actions should be taken in order to minimize the operational costs of fulf lling residential
electricity and heat requirements, while maintaining the level of the heat storage unit be-
tween a desired upper and lower limit, and respecting the operational constraints, including
a minimal activation of 2 time units. The control agent uses an MPC strategy such that the
control agent can:

• optimize the usage of the heat and electricity storage units;

• take into account the decision freedom due to electricity import and export possibili-
ties, and generation of energy by itself;

• incorporate predictions on residential electricity and heat demands;

• incorporate models of the dynamics and constraints of installed generators and storage
units.

MPC scheme

At each control cycle k the control agent makes a measurement of the system state consisting
of values for the level of the heat storage unit xh,s(k), the level of the electricity storage
unit xe,s(k), and the activation counter xact(k). Then the control agent determines values
for the control inputs u1,full(k), ue,imp(k), and ue,exp(k) by solving the MPC optimization
problem that minimizes an objective function, subject to the prediction model M and initial
constraints. Note that with respect to the conversion units, the control agent only determines
u1,full(k), since the values for u1,part(k) and u2(k) are determined by the f xed controllers
installed in the conversion units.

Objective function The main objective of the control agent is to minimize the daily op-
erational costs of residential energy use. These costs depend on the price pf (euro/kWh) for
gas consumption, the price pimp(k) (euro/kWh) at which electricity can be bought, and the
price pexp (euro/kWh) at which electricity can be sold. Note that in principle, the prices for
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gas, electricity import and electricity output vary over the day. However, as a f rst step we
assume that the price for gas consumption and power export are constant, whereas the price
for importing electricity varies over the day.

In addition to minimizing the daily operational cost, the control agent should also main-
tain the level of the heat storage unit between the desired upper and lower limit. This
goal is included as a soft constraint by penalizing an auxiliary variable zaux(k+ l) ≥ 0, for
l = {1, . . . ,N}, with a large positive cost psoft. This auxiliary variable zaux(k+ l) is def ned
such that:

zaux(k+ l) =







xh,s(k+ l)−ηh,s,lim,max for xh,s(k+ l) ≥ ηh,s,lim,max
0 for ηh,s,lim,min < xh,s(k+ l) < ηh,s,lim,max
ηh,s,lim,min − xh,s(k+ l) for xh,s(k+ l) ≤ ηh,s,lim,min,

which in combination with the minimization of the term psoftzaux(k+ l) can also be written
as:

ηh,s,lim,min − zaux(k+ l) ≤ xh,s(k+ l) ≤ ηh,s,lim,max + zaux(k+ l).

The cost function at control cycle k over a prediction horizon of N control cycles, in-
cluding the cost for the soft constraints, is def ned as:

J =
N−1

∑
l=0

(

pf
(

zg,1(k+ l)+ zg,2(k+ l)
)

+ pimp(k+ l)ue,imp(k+ l)

− pexpue,exp(k+ l)+ psoftzaux(k+ 1 + l)
)

.

Note that psoft should not be chosen too larger, since otherwise minimizing zaux(k+ l) has
too much weight.

Prediction model The prediction model M that the control agent uses is based on the rela-
tions that describe the system model as given in Section 3.3.2, specif ed over the prediction
horizon. Hence, the prediction model M consists of a large system of linear mixed-integer
equality and inequality constraints. The values of the parameters of the prediction model
are given in Table 3.1.

Initial constraints The initial constraints for k = 1 are:

xe,s(k) = x̄e,s(k)

xh,s(k) = x̄h,s(k)

xact(k) = x̄act(k)

u1,part(k− 1) = ū1,part(k− 1)

u2,tmp(k− 1) = ū2,tmp(k− 1),

where the variables with a bar are known, e.g., through measurements.
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parameter value parameter value
u2,max 4.9383 ηg,max 1.8333
xact,max 1.106 ηg,part 0.9167
xe,s,max 2 ηtot 1.0125
xe,s,min 0 ηh,s,lim,max 8.1278
xh,s,max 9.1728 ηh,s,lim,max,1 6.9667
xh,s,min 0 ηh,s,lim,max,2 5.2250
γǫ,mach 1.10−8 ηh,s,lim,min 2.3222
ηact,min 2 ηh,s,lim,min,1 4.0639

ηe 0.15 ηh,s,lim,min,2 2.9028
ηfrac 0.6

Table 3.1: Values of the parameters of the household system.
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Figure 3.4: Energy demand data for average Dutch household on January 29. One time
unit corresponds to 15 minutes.

Solving the optimization problem The MPC optimization problem is a mixed-integer
linear programming problem. It is linear, since the objective function and all constraints are
linear and it is mixed integer, since the problem involves continuous and discrete variables.
For solving the optimization problem at each control cycle we use the ILOG CPLEX v10.0
[71] linear mixed-integer programming solver through the Tomlab v5.7 interface [66] in
Matlab v7.3 [98].

3.3.4 Simulations

To illustrate the operation of the proposed controller, we perform experiments for a particu-
lar winter day, January 29, 2006. For this day, average residential electricity and aggregated
heat demand prof les have been created with 2006 data from ‘EnergieNed’, the Dutch Feder-
ation of Energy Companies. Figures 3.4(a) and 3.4(b) show the heat and electricity demand
prof les of an average household on this day. Given such information, the control agent of
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Figure 3.5: Electricity import price per kWh for January 29, 2006. One time unit corre-
sponds to 15 minutes.

the household determines every 15 minutes new actions by solving its MPC problem at that
time. To set up the control problem prices for electricity import, electricity export, and gas
consumption have to be calculated f rst.

Price calculation

The variable electricity import price pimp(k) is calculated as follows. The Dutch Cen-
tral Bureau of Statistics states a total electricity tariff for small consumers for 2006 of
194 euro/MWh3 (household class: single tariff, 3000 kWh). The variable part of the total
tariff (including energy and VAT taxes) is around 90 % of the total tariff4, so this becomes
0.1746 euro/kWh. The variable supply part of the total tariff accounts for 32 % of the to-
tal tariff3. For this variable supply part we have substituted Dutch power exchange values
taken from the Amsterdam Power Exchange data. In this way import prices as shown in
Figure 3.5 were derived. For the value of the feedback tariff pexp we have taken average
‘EnergieNed’ data for 2006, which gives 0.0601 euro/kWh.

The gas price pf is determined as follows. At the website of the Dutch Central Bureau of
Statistics, a total gas tariff for small consumers of 552 euro/1000 m3 is given (for consumer
class: 2000 m3). According to the ECN website, 91 % of the gas tariff is variable (including
taxes). This leads to a gas price of 0.50232 euro/m3.

Simulations

Below we f rst illustrate the operation of the proposed MPC control agent for a particular
setting of the prediction horizon length N. After that, we vary the length of the prediction
horizon to see how this inf uences the performance over a day. We will then not only con-
sider a household with f xed controllers in the conversion units installed, but also a house-
hold without these f xed controllers. This gives more freedom to the MPC control agent and
is expected to improve the performance.

3See http://www.cbs.nl/, Dutch central bureau of statistics.
4See http://www.energie.nl/, Energy Research Center of The Netherlands (ECN).

http://www.cbs.nl/
http://www.energie.nl/
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Figure 3.6: (a) Activation time xact(k) of conversion unit 1. The dotted horizontal line indi-
cates the minimal activation time. (b) Evolution ofδ1, δ2, andδ3.

In principle the longer the prediction horizon is, the better the performance becomes.
However, in practice the time required to solve the mixed-integer optimization problem
restricts the length of the prediction horizon that can practically be used. To illustrate the
operation of the proposed approach, we therefore below f rst consider a prediction horizon
with length N = 16. The initial values for the simulation of the household are taken as:

x̄e,s(k) = 0
x̄h,s(k) = 5.806
x̄act(k) = 0

ū1,part(k− 1) = 0
ū2,tmp(k− 1) = 0.

Results forN = 16

Figure 3.6(a) shows the activation time of conversion unit 1. Conversion unit 1 is switched
on 5 times throughout the day, and stays in operation at least 2 time units. Hence, the
constraints on the minimal activation time of 2 time units is respected. Figure 3.6(b) shows
the evolution of the variables δ1(k), δ2(k), and δ3(k) throughout the day. It is easy to verify
that indeed, when conversion unit 1 is brought into operation, δ3(k) becomes 1, and when
conversion unit 1 has been in operation for at least 2 time units, δ3(k) becomes 0 again.

Figure 3.7 shows the level of the heat storage unit. The f xed controllers installed in
the conversion units should switch on the conversion units depending on the level of the
heat storage unit. Figure 3.8(a) depicts the binary variables δ4(k), δ5(k), δ6(k), and δ7(k),
which are used to indicate when conversion unit 1 should be switched on partially. In
addition, Figure 3.8(b) shows the binary values used for determining the actuator values
of conversion units 1 and 2. It is observed that, indeed, when the level of the heat storage
unit reaches one of the lower limits, the respective conversion unit is switched on, whereas
when the level reaches one of the upper limits, the respective conversion unit is switched
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horizontal lines indicate physical upper and lower bounds.
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Figure 3.8: (a) Evolution ofδ4(k), δ5(k), δ6(k). (b) Evolution of the binary variables asso-
ciated with the actuators of conversion units 1 and 2.
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Figure 3.10: Performance Jsim for varying prediction horizon lengths N, both for the sce-
nario in which the fixed controllers is installed, and for the scenario in which
the fixed controllers are not installed.

off. Hence, the f xed controllers installed in the conversion units operate as they should. In
addition, the MPC control agent decides to switch conversion unit 1 into full operation a
number of times. When this happens, the MPC control agent has ensured that conversion
unit 1 is already operating partially. Figure 3.9 shows the gas consumed by the conversion
units, resulting from the actuator settings as chosen by the f xed controllers and the MPC
control agent.

Results for varying prediction horizon lengths

We now consider the performance of the MPC control agent under varying lengths of the
prediction horizon N. We consider two scenarios: the scenario considered so far, i.e., the
scenario in which the MPC control agent controls the household including f xed controllers
in the conversion units, and a scenario in which the f xed controllers in the conversion
units are not present. In this second scenario, the MPC control agent has more decision
freedom, since it can in the second scenario determine by itself when conversion unit 1 and
conversion unit 2 should be switched on or off. Note that although the MPC control agent
has this additional decision freedom, the prioritizing constraint for using conversion unit 1
before conversion unit 2, the constraint that conversion unit 1 should operate partially before
switching to full operation, and the minimum activation time constraint for conversion unit
1 are still present.

Figure 3.10 shows the cost Jsim def ned over the full simulation period for varying pre-
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diction horizon lengths5. For both scenarios, there is a general trend that as the prediction
horizon length increases, the performance increases as well. However, since the control
agent does not take into account the energy consumption patterns and electricity price f uc-
tuations after its prediction horizon, it can choose actions that are not optimal over the full
simulation. Therefore, in our case it is not strictly necessary that the performance increases
with a longer prediction horizon. We also observe this in Figure 3.10. From the f gure we
also observe that if the f xed controllers are not present, that then, indeed, the MPC control
agent can expoit the the increased decision freedom. This results in a higher performance
for the scenario in which the f xed controllers are not installed.

Discussion

With a longer prediction horizon, the number of binary variables increases linearly. This
also implies that the computations involved in solving the corresponding MPC optimiza-
tion problem increase. The household system that we consider does not go to a stable or
steady state, since the electricity and heat consumption continuously keep varying. There-
fore, in principle the prediction horizon should be taken over the same time span as in-
formation about consumption and prices are available. However, due to the computational
requirements, this is currently not practical. In order to make computations involving pre-
diction horizons of larger lengths approaches have to be investigated that somehow reduce
the number of binary variables and possibly aggregate information regarding energy usage
at prediction steps further away.

In this section we have considered energy control of an individual household, as a f rst
step toward cooperative energy control of several interconnected households. The next step
could consist of modeling interconnections between households, and developing a scheme
that makes control agents of individual households obtain agreement on the values of the
variables involved in modeling these interconnections. In the next section we go more into
the issues involved in dealing with such interconnections.

3.4 Control of interconnected hybrid subnetworks

In the previous section we have assumed that the subnetworks, viz. the households, are
independent of each other. In this section we do not make this assumption anymore, but
instead allow for the subnetworks to be interconnected. Let therefore a transportation net-
work be divided into n subnetworks. The subnetworks are interconnected as in Section
1.3.2, hence, typically the interconnections are physical links between subnetworks over
which commodity f ows from one subnetwork into another. Assume that each subnetwork
has a control agent assigned to it. If the overall combined MPC control problem is con-
vex, then the agents can use the multi-agent single-layer MPC approaches of Section 1.3.2.

5In order to compare the performance of the control for the two case studies a shrinking horizon [137] has
been taken. In the shrinking horizon approach, initially the original prediction horizon N is taken, but as soon as
predictions would go over the actual simulation time span, the prediction horizon will be reduced. If no shrinking
horizon is taken, then comparing the performance for varying N based on the performance over 1 day is not fair,
since the control agent using a larger N will at the end of the day already takes into account what will happen the
next day, whereas the control agent using a smaller N will not consider this, since it optimizes over a shorter term.
This will have an inf uence on the actions chosen at the end of the day and therefore on the performance.
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In that case, the control agents locally determine in a number of iterations control actions
that are overall optimal. However, when the subnetworks are hybrid systems and modeled
with both continuous and discrete variables, then the overall control problem will not be
convex. It is then the question what diff culties arise due to this nonconvexity, and how the
approaches of Section 1.3.2 can be extended to give at best solutions that are close to or
equal to overall optimal solutions, and at least solutions that are feasible solutions.

3.4.1 Hybrid subnetwork models

In Section 3.2 we have developed means to transform the dynamics of hybrid systems into
linear mixed-integer equality and inequality constraints, i.e., mixed-logical dynamic mod-
els. Here, we consider a subclass of this type of models, namely those models for which the
discrete dynamics are caused by inputs that can take on values from a discrete set only. In
addition, we assume that all other variables, including the interconnecting variables between
subnetworks, are continuous variables. Note that this type of models is an extension of the
type of models considered in Chapter 2, since we now allow discrete inputs. An example
of a situation in which the considered type of models appears in transportation networks
is, e.g., in road traff c networks a situation in which local actions consist of discrete speed
limit settings and interconnecting constraints between subnetworks are expressed in terms
of continuously modeled car f ows. In power networks an example of such a situation is,
e.g., a situation in which local actions consist changing of power generation or consumption
in discrete quantities and interconnecting constraints between subnetworks involve contin-
uous amounts of power f owing between the subnetworks.

Remark 3.2 There are two different types of discrete inputs:

1. discrete inputs that have a direct meaning as a quantity since they are represented
as numbers, typically taking on values from a set of integer or real numbers, e.g.,
{0,0.2, . . . ,1.0};

2. discrete inputs that only have a symbolic meaning, taking on values from a set of
symbolic values, e.g., {red,yellow,green}.

Although these are different types of discrete inputs, note that, however, the second class of
discrete inputs can typically be transformed into the f rst class of inputs, and vice versa. 2

Hence, assume that a network is divided into n subnetworks and that the dynamics
of each subnetwork i ∈ {1, . . . ,n} are given by a deterministic linear discrete-time time-
invariant model, with noise-free outputs:

xi(k+ 1) = A ixi(k)+ B1,iui(k)+ B2,idi(k)+ B3,ivi(k)
yi(k) = Cixi(k)+ D1,iui(k)+ D2,idi(k)+ D3,ivi(k),

(3.14)

where at time step k, for subnetwork i, xi(k) ∈ R
nxi are local states, ui(k) ∈ Ui (with Ui

a f nite set of discrete values) are local inputs, di(k) ∈ R
ndi are known local exogenous

inputs, yi(k) ∈ R
nyi are local outputs, vi(k) ∈ R

nvi are remaining variables inf uencing the
local dynamical states and outputs, e.g., variables of neighboring subnetworks, and A i ∈
R

nxi×nxi , B1,i ∈ R
nxi×nui , B2,i ∈ R

nxi×ndi , B3,i ∈ R
nxi×nvi , Ci ∈ R

nyi×nxi , D1,i ∈ R
nyi×nui ,

D2,i ∈R
nyi×ndi , and D3,i ∈R

nyi×nvi determine how the different variables inf uence the local
state and output of subnetwork i.
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3.4.2 Non-convergence due to the discrete inputs

Suppose that we would setup the MPC control problems as in Section 1.3.2, but now based
on the model including discrete inputs, i.e., (3.14). This means that the optimization prob-
lems become mixed-integer programming problems. In addition, for f xed values of the
integer variables, the optimization problems are convex.

If we would use the schemes of Section 1.3.2 to solve the multi-agent control problem
based on the models including the discrete inputs, it may be the case that the agents cannot
come to agreement on the values of the interconnecting variables, while choosing locally
optimal discrete inputs. A non-converging sequence can arise of values of the interconnect-
ing variables on which the agents do not reach agreement.

In the original approaches, i.e., the serial and the parallel multi-agent single-layer MPC
schemes with convex overall MPC problems, a control agent i receives the information from
each neighboring agent j ∈Ni regarding the values that neighboring agent j would like the
interconnecting variables with respect to agent i to have. Then, control agent i processes
this information by updating its interconnecting objective function Jinter,i , and determines
which values for the discrete inputs and interconnecting variables it prefers itself.

In the continuous case, the new values for the inputs and interconnecting variables will
usually be slightly different from the values communicated in earlier iterations. However,
when the inputs are discrete, the values for the inputscannot slightly change, but only in
discrete jumps. Hence, when a neighboring agent j suggests slightly different values for the
interconnectingvariables, control agent i will f rst include these values in its interconnecting
objective function. After control agent i has solved its optimization problem using these
new values, it will typically have obtained slightly changed values for the interconnecting
variables, while having obtained values for the discrete inputs that are the same as the values
at the previous iteration. So, the values of the discrete inputs will typically not change at
each iteration, but only when the interconnecting objective function Jinter,i has reached such
a level that switching to different discrete inputs is benef cial.

The relatively large jumps in the values of the discrete inputs have as a consequence
that the values for the interconnecting variables can signif cantly change as well. A control
agent will therefore then suggest rather different values for the interconnecting variables
to its neighboring agents. This may cause that for another control agent after some more
iterations a certain threshold of the interconnecting objective function has been reached,
making it better for that agent to switch the values of its discrete inputs. Due to this mecha-
nism, a series of discrete jumps in the values of discrete inputs can emerge that prevents the
iterations from terminating. We will see an example of this behavior in Section 3.5.

3.4.3 Possible extensions of the original schemes

There are several ways in which the original schemes of Section 1.3.2 could be extended in
order to break such a series of non-converging discrete jumps. Below we discuss some of
these alternatives, based on straightforward extensions of the original schemes. We consider
the following extensions:

1. Increasing the accuracy threshold The accuracy threshold γǫ,term is used in the stop-
ping condition to determine when the iterations should stop. It is linked to the maximum
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allowable violation of the interconnecting constraints. Therefore, if this threshold is in-
creased, the iterations will stop sooner since the values of interconnecting variables involved
in an interconnecting constraint are allowed further apart from each other. However, this can
obviously lead to predictions of the subnetwork that do not ref ect the evolution of the phys-
ical subnetwork, and therefore to sub-optimally chosen inputs. In addition, it is a priori
unknown to which value the accuracy threshold should be increased. If the increase is not
large enough, the iterations may still continue.

2. Refining the discretization By making the discretization of the discrete inputs f ner
over the iterations, at some point the discretization will be f ne enough to let the iterations
converge to values for the interconnecting variables that make the stopping condition sat-
isf ed. By making a f ner discretization for the discrete inputs, the changes in the discrete
inputs from one iteration to another will be smaller, hence, approximating the case when
there are only continuous inputs. In practice, however, the discretization of the discrete
inputs may be given, and may not be adjustable. In that case the f ner discretization can
be rounded to the closest original discrete value. However, rounding of values has some
consequences, as discussed in the next approach.

3. Relaxing and rounding The extreme case of ref nement of the discretization appears
when the discrete inputs are relaxed to continuous inputs, as is done, e.g., in [15]. In this
case, the original schemes can be applied. At termination of the iterations, the resulting
values for the continuous inputs can then be rounded to the closest discrete values for the
discrete inputs. However, in particular when making predictions over a longer horizon this
rounding can lead at least to sub-optimality and sometimes even to infeasibility. This is due
to the fact that in general a rounded input has a different inf uence on the evolution of the
subnetwork over a time step when compared to the inf uence that a continuous input would
have. So in practice the evolution of the subnetwork will be different from the predictions
made using the prediction model in the optimization.

4. Fixing the integer inputs The discrete inputs can be f xed once the non-converging
series of values of the discrete inputs has been detected. The discrete inputs can be f xed to
the locally most optimal values, or they can be f xed to the most frequently appearing values
over a predef ned number of earlier iterations. The remaining overall optimization problem
will then become convex and the values of the other variables will converge to values that
are optimal given the f xed discrete variables. In addition, at the end of the iterations the
interconnecting constraints will be satisf ed and thus the agents will have agreed on how the
internetwork variables should evolve over the prediction horizon. Furthermore, the agents
will have determined inputs that are feasible, and the agreements regarding the values for
the interconnecting constraints will be fulf lled when these inputs are implemented. How-
ever, the f xed discrete variables may be sub-optimal from a network-wide perspective, and
determining when the non-converging series of discrete values arises is a hard problem.

5. Increasing the penalty coefficient The penalty coeff cient γc can be increased to a
very high value once the non-converging series of discrete values has been detected. A large
value for the penalty coeff cient γc places all emphasis on obtaining satisf ed interconnecting
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constraints, and the discrete inputs that come with this can then be implemented. However,
it may not be known a priori what the value of the penalty coeff cient γc should have in order
to give convergence and in addition it is hard to determine when the non-converging series
of discrete values appears. Therefore, inspired by [20], instead of increasing the penalty
coeff cient γc abruptly when the non-converging series of discrete values has been detected,
the penalty coeff cient γc can be increased in steps several times over the iterations. By
increasing the penalty coeff cient γc in steps, the agents get some time to try to converge to
values for the interconnecting variables that satisfy the stopping condition. If this conver-
gence does not happen within a certain number of iterations, then the penalty coeff cient γc
is increased again.

Discussion Comparing the alternatives, the main disadvantage of the alternatives based
on increasing the accuracy threshold, and relaxing or ref ning of the discretization and then
rounding, is that the values for the interconnecting variables observed in the system will
be signif cantly different from those determined during the optimization. For the alternative
based on increasing the accuracy threshold the reason for this disadvantage is that during the
optimization the accuracy required on satisfying the interconnecting constraints is lowered,
and thus the values that different control agents assign to particular interconnecting variables
are allowed to be further apart. For the alternative based on relaxing or ref ning of the
discretization and then rounding, the reason for this disadvantage is that the control agents
have reached agreement on values for the interconnecting variables for a particular set of
inputs, whereas a different set of inputs will be implemented on the system. The alternatives
based on f xing the integer inputs and increasing the penalty coeff cient do not suffer from
this disadvantage.

The alternative based on f xing the integer inputs requires that it can be detected when
the integer inputs have to be f xed and it requires a strategy to determine to which values
the inputs should be f xed. It is not straightforward to implement such strategies. The al-
ternative based on increasing the penalty coeff cient does not have to address these issues.
However, for this alternative it has to be determined at which frequency the penalty coeff -
cient should be increased, and with which factor. The settings that give the best performance
will be problem specif c and therefore require tuning. From the alternatives discussed, this
last alternative has the most natural way of dealing with the non-converging behavior, by
emphasizing over the iterations more and more that a solution should be obtained with in-
terconnecting constraints that are satisf ed. The predictions that each control agent therefore
makes of its subnetwork are accurate at termination of the iterations.

Below we use the alternative based on increasing the penalty coeff cient to formulate a
multi-agent single-layer MPC approach for interconnected hybrid systems.

3.4.4 Serial and parallel single-layer hybrid MPC approaches

For control of interconnected hybrid systems, in which the subnetworks are linear time-
invariant systems with discrete inputs as modeled using (3.14), and the MPC overall control
problem is convex for f xed values of the integer variables, we propose the serial and par-
allel scheme of Section 1.3.2, with the extension that the penalty coeff cient γc varies over
the iterations, i.e., extension 5 above. Hence, the original serial and parallel scheme are fol-
lowed in the sense that the agents perform local optimization steps and communication, but
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the way in which the information from neighboring agents is included in updating the in-
terconnecting objective function is different. Instead of using a f xed penalty coeff cient, an
iteration-varying penalty coeff cient is taken. Every N∆s iterations, the penalty coeff cient
γc is multiplied by γ∆c, with γ∆c > 1.

Remark 3.3 The approaches proposed in this section for multi-agent MPC control of the
assumed class of systems follow from rather straightforward extensions of the original ap-
proaches of Section 1.3.2. More complex extensions could be the result of combining the
original approaches of Section 1.3.2 with optimization techniques for integer programming,
such as distributed branch and bound or ADOPT [101]. In an iterative way of alternating be-
tween the distributed branch and bound and the approaches of Section 1.3.2, the distributed
branch and bound approach could determine values for the integer variables, after which the
integer values can be f xed, and the resulting convex overall problem can be solved using
the approaches of Section 1.3.2. Such an approach could potentially address a larger class
of systems than assumed here, although that remains to be investigated. 2

In the following section we perform experiments with the proposed scheme on a load-
frequency control problem with discrete power generation.

3.5 Application: Discrete-input load-frequency control

We consider the load-frequency control problem as def ned in Section 2.5. In this load-
frequency control problem a power network is divided into n subnetworks, each equipped
with power generation and consumption capabilities. A control agent is assigned to each
subnetwork. The objective of each control agent is to keep frequency deviations at a min-
imum after load disturbances. In order to achieve this objective each control agent can
adjust the power generation in its subnetwork. In the original problem def nition of Section
2.5, power generation was considered as a continuous input. Here, we assume that power
generation can be adjusted in discrete amounts, hence, power generation is considered as a
discrete input. Such discrete power generation is present, e.g., if generators can be switched
on or off, or if actuators on the generator can take on values only from a discrete set of
values. Furthermore, also load shedding, which can be seen in a way as negative power
generation, is typically done in discrete amounts.

3.5.1 Network setup

For illustrative purposes, we consider a network consisting of 2 subnetworks, as shown
in Figure 3.11. The dynamics and parameter of the subnetworks are as described in Sec-
tion 2.5, with the exception that the inputs can only take on discrete values from the set
{−1.0,−0.9, . . . ,0.9,1.0}.

3.5.2 Control setup

The control agents controlling subnetworks 1 and 2 use the objective function as def ned
in Section 2.5. The mixed-integer optimization problem that each control agent solves at
an iteration is solved using the quadratic mixed-integer solver of ILOG CPLEX v10 [71],
which we use through the Tomlab v5.7 [66] interface in Matlab v7.3 [98].
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subnetwork 1 subnetwork 2

Figure 3.11: Network consisting of 2 subnetworks. Each subnetwork has generation and
consumption capabilities.
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Figure 3.12: Resultswithout using the extended version of the serial MPC scheme. Per
iteration the values of the interconnecting input variable of subnetwork 1 for
prediction steps 2, 3, and 4 are shown. The values of the variable for the
prediction steps 2, 3, and 4 are shifted with +5, +10, and +15, respectively.

3.5.3 Simulations

To show the non-converging series of discrete values of the inputs, consider the experi-
ment in which we take a prediction horizon with length N = 5 steps, an accuracy threshold
γǫ,term = 0.0001, and an initial penalty coeff cient γc(0) of 1. The penalty coeff cient γc(s)
is updated every N∆s = 50 iterations, with a factor of γ∆c = 1.5. The initial state of the
network is x∆ f ,1(0) = 0, x∆δ,1(0) = 0, x∆ f ,2(0) = 0, and x∆δ,2(0) = −1.0745.

3.5.4 Results

When the control agents do not use the adjustment of the penalty term γc, then the non-
converging series of discrete values appears, as illustrated in Figures 3.12 and 3.13 for the
serial approach. The f gures illustrate that as the control agents exchange information, the
value of the interconnecting input of control agent 1 changes, also when the values of the
discrete inputs do not change. At the moments that the discrete inputs change, a clear jump
is also observed in the value of the interconnecting input.

When the control agents use the penalty term increments extension, then the iterations
converge, as illustrated in Figures 3.14, 3.15, and 3.16. It can be seen that in this case as the
penalty coeff cient γc(s) increases, the number of jumps in the discrete inputs reduces, and
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Figure 3.13: Resultswithout using the extended version of the serial MPC scheme. The
values of the discrete inputs chosen by the agents of subnetworks 1 (top) and 2
(bottom), respectively, for prediction steps 2, 3, and 4 are shown. The values
of the inputs for the prediction steps 2, 3, and 4 are shifted with +5, +10,
and +15, respectively. In addition, the values of the inputs are scaled (before
shifting) to take on integer values between -10 and 10.
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Figure 3.14: Evolution of penalty coefficientγc using the extended version of the serial MPC
scheme.
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Figure 3.15: Interconnecting variable resulting from using the extended version of the serial
MPC scheme. The values of the variable for the prediction steps 2, 3, and 4
are shifted with +5, +10, and +15, respectively.

0 50 100 150 200 250
5

10

15

20

 

 

0 50 100 150 200 250
0

5

10

15

20

 

 

s

s

u 1
(k

+
l)

(p
.u

.)
u 2

(k
+

l)
(p

.u
.)

l = 4
l = 3
l = 2

l = 4
l = 3
l = 2

Figure 3.16: Inputs resulting from using the extended version of the serial MPC scheme.
The values of the inputs for the prediction steps 2, 3, and 4 are shifted with +5,
+10, and +15, respectively. In addition, the values of the inputs are scaled
(before shifting) to take on integer values between -10 and 10.
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that ultimately convergence is obtained. It is worth noting that the inputs that are chosen
by the control agents are the same as those that would have been chosen by a centralized
overall control agent.

3.6 Summary

In this chapter we have discussed multi-agent MPC control of transportation networks mod-
eled as interconnected hybrid systems. In this setting, the network is divided into a number
of subnetworks, each being controlled by a control agent that uses a model of its subnetwork
and MPC to determine its actions.

We have f rst focused on modeling of hybrid systems and discussed how logic state-
ments, which commonly appear in the description of hybrid systems, can be transformed
into linear mixed-integer equality and inequality constraints. Then, we have illustrated the
use of the transformations to construct a prediction model for an a single MPC control
agent. Subsequently, we have focused on multi-agent control of networks consisting of
subnetworks that are modeled as hybrid systems. We have focused on a particular type of
hybrid subnetworks, viz. subnetworks with linear time-invariant dynamics that accept in-
puts that take on values from a discrete set of values only. Furthermore, we have discussed
the problems that arise when the serial and parallel scheme of Chapter 2 would be applied
to this type of system without modif cation. Moreover, we have discussed several alterna-
tive extensions of the original schemes to deal with these problems, and we have chosen
one extension that results in control agents choosing feasible integer inputs, based on ac-
curate subnetwork predictions. Several issues still have to be addressed in future research,
including among others investigating formally whether the proposed scheme converges, de-
termining formally what the quality of the solutions is, and determining when the penalty
coeff cient should be increased and with what value it should be increased. In addition, how
to combine distributed optimization problem solvers for continuous and integer variables
should be investigated.

In this chapter we have applied the topics discussed on two applications: energy control
in households, and load-frequency control with discrete generation switching. For the en-
ergy control in households application we have used the transformations to derive a model
for a household equipped with its own power generation (via a micro combined heat and
power unit) and storage capabilities (via a water tank and a battery). As a f rst step toward
a control structure in which multiple control agents, each representing a single household,
jointly control the energy usage in a district, we have proposed a decentralized multi-agent
single-layer MPC approach in which the control agents only consider their own household
and no communication with other control agents takes place. In the application of the load-
frequency control with discrete generation switching we have considered how the proposed
extension of the serial scheme of Chapter 2 performs when the subnetworks do have inter-
connections, and the respective control agents do communicate with one another. We have
illustrated that the extension proposed for dealing with non-convergence of the iterations of
the MPC scheme can make the iterations converge.

In this chapter, as well as in Chapter 2, we have focused on issues particular to single-
layer control, i.e., control in which the control agents have equal authority relationships with
respect to one another. In Chapters 4 and 5 we focus more on how to take into account also
control agents with different authority relationships.





Chapter 4

Multi-layer control using MPC

In the previous chapters we have discussed common issues arising due to the nature of large-
scale transportation networks. In those chapters we have focused on particular issues in
single-layer control, i.e., control in which control agents have equal authority relationships
with respect to one another and control dynamics that take place at similar time scales. In
this chapter we consider particular issues involved in multi-layer control, i.e., control in
which control agents of higher control layers have authority over control agents in lower
control layers, and control agents in higher control layers typically control dynamics at
lower time scales. In Section 4.1 we introduce multi-layer MPC control for transportation
networks, and in particular discuss how the prediction models that the control agents use
can to be constructed. In Section 4.2 we discuss prediction models constructed for a highea-
layer control agent using object-oriented modeling, which is suited for making prediction
models of large-scale systems, and prediction models derived from such object-oriented
models by linearization. We formulate an MPC problem based on such an object-oriented
prediction model in Section 4.3. As we will see, the MPC problem based on the object-
oriented prediction model leads to a nonconvex MPC problem, with an objective function
that is expensive to evaluate. We consider two approaches for addressing this issue: i) the
nonlinear MPC optimization problem is solved directly, using pattern search as solver; ii) a
linearized approximation of the nonlinear optimization problem is solved, using an eff cient
linear programming solver.

In this chapter we consider as application emergency voltage control. In Section 4.4
we develop an object-oriented model of a 9-bus dynamic power network and experimen-
tally assess the performance of the proposed approaches on an emergency voltage control
problem.

Parts of this chapter have been published in [110] and presented in [113].

4.1 Multi-layer control of transportation networks

As we have discussed in Chapter 1, there are several characteristics of transportation net-
works that make their control challenging. In Chapters 2 and 3, we have discussed how
to deal with the large geographical region and the hybrid dynamics that transportation net-
works typically have. In this chapter, we discuss how to deal with the wide range of time
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scales over which the dynamics of transportation networks typically evolve. Multi-layer
control can be used for this.

4.1.1 Multi-layer control

If dynamics evolve over a wide range of time scales, then control of such dynamics can be
done using multiple control agents that each consider a particular range of time scales. The
control agents can be grouped into layers depending on the time scales they control.

Figure 4.1 illustrates multi-layer control of a network, in which the control structure
consists of a higher, medium, and lower control layer. At lower layers, control agents that
control faster dynamics are located. The faster dynamics will typically require faster control,
hence at the lower control layers the time available to determine control actions is relatively
small. However, to adequately describe the fast dynamics, more detailed dynamics have to
be considered. Therefore at lower control layers, typically, more localized models of the
dynamics will be used. Control agents that control slower dynamics are located at higher
control layers. There more time is available to determine actions. However, the slower
dynamics considered at the higher layers will typically involve larger regions of the network.
Therefore, at higher control layers less detailed models are used. The result is a multi-layer
or hierarchical control structure in which control takes place at different control layers based
on space and/or time division [17]. The higher-layer control agents determine both actions
to be implemented directly in the physical network, and set points to be provided to the
control agents in a lower control layer. Hence, control agents in higher control layers can
be seen as supervisory control agents.

In principle each control layer can consist of multiple control agents, each controlling
their own group of control agents in a lower control layer. Communication among the
control agents in each layer may or may not be present.

4.1.2 Multi-layer control in power networks

As an example of the multi-layer control of transportation networks, we consider power
networks. Power networks in general are controlled using multi-layer control in which con-
trol of the physical network is the result of the joint effort of several control layers at local,
regional, national, and sometimes international level [45, 60]. The physical power network
consists of multiple interconnected subsystems, like generators, loads, transmission lines,
etc. This physical network is controlled by several control layers in order to control the
network in a desired way. The lowest control layer consists of control agents that locally
control the actuators in the physical network. The higher control layers consists of con-
trol agents that determine actions and set-points for lower control layers. The set-points
can be used to obtain coordination between the control agents of the lower control lay-
ers. The higher control layers typically consist of, e.g., regional or national human network
operators. These human operators decide on the actions to take based on off ine studies, ex-
perience, heuristics, knowledge bases, and actual system conditions obtained via telemetry
or obtained from state estimators and soft sensors. The set-points should be determined in
such a way that objectives def ned for the higher control layer are achieved [100, 131]. The
higher control layer hereby typically takes into account nonlinear behavior of the system,
behavior that may be neglected by lower control layers.
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supervisor 1 supervisor 2

high−level supervisor

physical network

agent 2agent 1 agent 5 agent 3 agent 4

Figure 4.1: Illustration of multi-layer control. A higher layer provides set-points to a lower
layer (dashed lines). The lower layer controls the actuators in the physical
system (dotted lines).

It is in general not possible to rapidly change the set-points used by a lower control
layer in an online and coordinated manner to achieve improved performance [45]. As it
becomes more complex for human operators to adequately predict the consequences of
faults and disturbances in the network (e.g., for power networks, due to deregulation of the
energy market, the increase in power demands, and the emergence of embedded generation
[73]), the need for intelligent automatic online control systems increases. These automatic
control systems can be used to determine which set-points should be provided, at a f rst
stage outside the control loop in the form of a decision support system, and at a later stage
inside the control loop in the form of closed-loop control.

4.1.3 MPC in multi-layer control

Although in general there can be many control layers, and each control layer can consist of
multiple control agents, in this chapter we restrict our focus to two control layers, a medium
and a lower control layer. The medium control layer consists of a single control agent, and
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the lower control layer consists of multiple decentralized control agents. In Chapter 5 we
consider the control by a higher control layer that consists of multiple control agents that
can communicate with one another.

To be able to obtain its control objectives, a control agent in a particular layer has to
monitor the current state of the part of the lower control layer of its interest and the underly-
ing physical network. Based on this, the control agent has to foresee when the behavior of
the system is going into an undesirable direction such that it can provide adequate set-points
to that part of the lower control layer that it considers. We propose a medium-layer control
agent that at each control cycle uses MPC to determine which set-points to provide to the
lower control layer.

In order for the medium-layer MPC control agent to meet its control objectives, it has
to be able to predict how set-point changes inf uence the dynamics of the network. The
performance of the control agent relies for a large part on the accuracy of the prediction
model that it uses. The prediction model has to describe well how the actions of the control
agent affect the behavior of the network and the lower-layer control agents. Ideally, the
control agent should have a model of the complete dynamics of the network, including the
behavior of the other control agents. However, such an ideal model can be very complex or
impossible to construct, thus making the optimization procedure in the control agent slow
or impossible. Instead, the control agent has to use an approximation of the model. If this
approximation f ts in a suitable form, relatively eff cient optimization techniques can be
used to determine the actions to take (e.g., linear or mixed-integer linear programming).

Suppose that the dynamics of the transportation network can be represented by a system
of ordinary differential equations (ODEs) as:







dxvery slow
dt (t)

dxslow
dt (t)

dxfast
dt (t)






=





fvery slow(xvery slow(t),xslow(t),xfast(t))
fslow(xvery slow(t),xslow(t),xfast(t))
ffast(xvery slow(t),xslow(t),xfast(t))



 ,

where the dynamics have been grouped into “very slow”, “slow”, and “fast dynamics”.
Suppose that the medium-layer control agent has as objective to control the slow dynamics
only. The question is whether and how this control agent has to take into account the very
slow and the fast dynamics. Although the control agent is not directly interested in the
very slow and fast dynamics, these dynamics can inf uence the slow dynamics in which
the control agent is interested. Simply ignoring the very slow and the fast dynamics may
lead to unacceptable loss of model accuracy. Instead of ignoring the very slow and the
fast dynamics completely, the control agent can approximate the very slow dynamics with
constants, and the fast dynamics with instantaneous dynamics. The model that the control
agent then considers can be described as:
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fslow(xvery slow(t),xslow(t),xfast(t))
ffast(xvery slow(t),xslow(t),xfast(t))



 , (4.1)

which constitutes a system of differential-algebraic equations (DAEs). Note that with re-
spect to the fast dynamics a model such as discussed in Chapter 5 emerges. Note also that
the very slow dynamics can include changes in set-points used by the medium-layer control
agent. The medium-layer control agent can receive updates from higher-layer control agents
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with respect to the very slow dynamics that it assumes constant, including the set-points,
and it can in addition determine the set points for the lower-layer control agents, e.g., in
such a way that the objectives related to its time scale dynamics are achieved.

Constructing the prediction model

Due to the complexity of transportation networks, constructing appropriate prediction mod-
els that can be used in control of these networks is a diff cult task. Constructing a model im-
plementing (4.1) involves formalizing many components, differential equations, algebraic
equations, mixed continuous and discrete elements, and dynamics at different time scales.
Over the last decade modeling languages and simulation environments have been introduced
that allow general-purpose physical modeling based on acausal modeling, mixing physical
modeling using equations with the use of object-orientedconstructs, and therewith signif-
icantly easing the development of such complex prediction models [13, 39, 99, 122]. In
the next section we discuss object-oriented modeling and its use for constructing object-
oriented prediction models implementing models such as (4.1). In addition, we discuss how
prediction models approximating these object-oriented prediction models can be derived us-
ing linearization. These models will then be used in Section 4.3 for setting up MPC control
problems.

4.2 Constructing prediction models with object-oriented
modeling

4.2.1 Object-oriented modeling

To face the diff culty of constructing models of complex systems, object-oriented approaches
for analysis and simulation of such networks have received increasing attention [95]. In
object-oriented modeling, the structure of models of complex systems are determined by
def ning objects for subsystems in these complex systems. The objects are used to map
the structure of the model as closely as possible to the structure of the system. The ob-
jects are described in a declarative way by def ning only local equations of objects and the
connections between the objects. To facilitate modeling, an object-oriented approach for
modeling offers inheritance and composition concepts. Inheritance offers the possibility to
form new classes of objects using classes that have already been def ned. The new classes
take over or inherit attributes and behavior, e.g., dynamics, of the already existing classes.
Extended models can then be constructed by inheriting dynamics and properties of more
basic or more general models. E.g., for power networks, advanced generator objects are
designed in this way by extending a basic generator objects that only contains the basic
dynamics of a synchronous machine. Composition offers the possibility to combine simple
objects into more complex ones. E.g., for power networks, when composing an object of
a voltage regulator and an object of a turbine governor with an object of a basic generator,
an object for a regulated generator with complex dynamics is obtained. Objected-oriented
concepts enable proper structuring of models and generally lead to more f exible, modular,
and reusable models.
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4.2.2 Modeling tools

Several object-oriented approaches have been developed over the years, e.g., [13, 39, 99,
122, 136]. The approaches typically support both high-level modeling by composition and
detailed component modeling using equations. Models of system components are typically
organized in model libraries. A component model may be a composite model to support
hierarchical modeling and may specify the system topology in terms of components and
connections between the components. Using a graphical model editor, e.g., Dymola [39],
a model can be def ned by drawing a composition diagram, by simply positioning icons
that represent the models of the components and drawing connections between the icons.
Parameter values of the underlying models are then conveniently specif ed in dialog boxes.

Most of the object-oriented simulation software packages assume that a system can be
decomposed into objects with f xed causal relations [7]. Causal relations are relations be-
tween causes and effects. E.g., if there is a causal relationship between two objects A and
B, then this means that if the variables of object A change, that then the variables of object
B change as a consequence of the change of the variables of object A. In a f xed causal
relations this behavior is def ned in one direction only. Hence, for objects A and B, the
variables of object A do not change as a consequence of changes in variables of object B.
In general, causality implies that the model of the system can be expressed as the intercon-
nection of objects with an explicit state-space representation, in which algebraic relations
as in (4.1) cannot be present. Often a signif cant effort in terms of analysis and analytical
transformations is required to obtain a model in this form [39], in particular for systems in
which causality is not naturally present, as is the case, e.g., in power networks. Setting the
causality in a voltage-current formulation would mean that currents are expressed as func-
tion of voltages, or vice versa. Acausal modeling permits to relax the causality constraint
and allows to focus on the elements and the way these elements are connected to each other,
i.e., the system’s topology. An environment that allows acausal modeling, is Dymola [39],
which implements the object-oriented modeling language Modelica [136]. In Section 4.4
we will develop an object-oriented Modelica model for power networks using Dymola.

4.2.3 Object-oriented prediction models

Using an object-oriented modeling approach, each of the objects of a transportation network
can be modeled with a mixture of differential equations, algebraic equations, and discrete
logic. The model of the overall system then consists of the models for the objects and in
addition algebraic equations interconnecting the individual objects.

For the object-oriented model to be useful as a prediction model that can be used by an
MPC control agent, a method has to be available that can evaluate the model over a time
horizon from time t0 until tf given the initial state of the system at time t0. So, it should be
possible to solve a so-called initial value problem that given the initial states x(t0) ∈ R

nx ,
the initial inputs u(t0) ∈ R

nz, and inputs u(t) specif ed over the full time interval, computes
the outputs y(t) ∈ R

ny , for t ∈ [t0, tf].
Note that a medium-layer control agent in fact does not provide set-points to a lower

control layer continuously, but only at discrete control cycles kc, for kc = {0,1, . . .}, where
control cycle kc corresponds to continuous time kcTc, with Tc the control cycle time in
continuous time units, as shown in Figure 4.2. A zero-order hold is used to make the trans-
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discrete time step kp

continuous time t

control cycle kc

Tp

Tc

Figure 4.2: Overview of different time scales.

formation between the continuous-time input signal u(t) and the discrete-time input signal
u(kc). So, u(kc) = ukc becomes in continuous time:

u(t) = ukc , for t ∈ [kcTc,(kc + 1)Tc).

Therefore, instead of specifying the continuous-time input signal u(t) to the prediction
model M, a sequence of Nc inputs is specif ed to the prediction model M. The Nc inputs
are collected in ũ(kc) as [(u(kc))

T, . . ., (u(kc + Nc − 1))T]T, where Nc = tf−t0
Tc

+ 1 is the length
of the prediction horizon in control cycles, and where for the sake of simplicity it is assumed
that tf − t0 is an integer multiplier of Tc.

In general there is no analytic expression for the solution of the initial value problem.
Instead, the trajectories of the variables of interest have to be approximated by numerical
means to obtain values for these variables at discrete points in time. For control purposes
we are typically interested in the outputs y(t). Assume that computing a sample of the
continuous-time output y(t) for every Tp time units is suff cient to adequately represent the
underlying continuous signals, where Tp is the length of one discrete time step, as illus-
trated in Figure 4.2. We then def ne the prediction horizon with a length Np = tf−t0

Tp
+ 1

in discrete time steps, where for the sake of simplicity it is assumed that tf − t0 is an in-
teger multiplier of Tp. We denote the outputs over the prediction horizon with length Np
by ỹ(kp) = [y(kp)

T, . . . ,y(kp + Np − 1)T]T, where discrete time step kp = 0 corresponds to
continuous time t = 0 and discrete time step kp + l corresponds to continuous time (kp + l)Tp.

Transition betweent, Tp, and Tc

Below the notations v(t), v(kp), and v(kc), for some variables v each have to be interpreted
in their own way. The notation v(t) refers to the variables v def ned at continuous time t,
the notation v(kp) refers to the variables v def ned at discrete time steps kp, and the notation
v(kc) refers to the variables v def ned at control cycle kc. In particular, if the continuous-time
signal y(t) is sampled with a sample size Tp, the signal y(Tp) is obtained. If the continuous-
time signal y(t) is sampled with a sample size Tc, the signal y(Tc) is obtained. The variables
x̃(t), and ỹ(t) can be transitioned in a similar way. Furthermore, if the control inputs at
control cycle u(kc) are subjected to a zero-order hold, the signals u(kp) and u(t) can be
obtained. The variables ũ(kc) can be transitioned in a similar way. The zero-order hold for
the control inputs to make the transition between u(kc) and u(kp) can be implemented as:

u(kp + l + l2) = u(kp + l), for l = {0,L,2L, . . . ,Nc − 1},and l2 = {1,2, . . . ,L − 1}, (4.2)

where L =
Np
Nc

, and where u(kp + l) at discrete time kp + l corresponds to u(kc + l
L ) at control

cycle kc + l
L .
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General object-oriented prediction model

Given the previous considerations, in the following we assume without loss of generality
that the object-oriented prediction model of the transportation network is given by the map-
ping:

ỹ(kp) = M (x̄, ū, ũ(kc)) , (4.3)

where the prediction model M maps the initial states x̄ = x(kc), the previous inputs ū =
u(kc − 1), and the Nc inputs collected in ũ(kc) to the Np outputs collected in ỹ(kp). The
prediction model thus includes the procedure to perform the time-domain simulation of the
object-oriented model.

Remark 4.1 Here we have assumed that the initial derivatives dx
dt (kc) and initial algebraic

variables z(kc) can be uniquely determined when x̄ and ū are given. If this is not the case,
then the initial derivatives and algebraic variables have to be provided to the prediction
model M as well. 2

A transformed prediction model

For the interconnected individual objects modeled with differential equations, algebraic
equations, and discrete-event logic, there is no direct initial value problem solver. However,
the object-oriented model can be transformed into a system of synchronous differential, al-
gebraic, and discrete equations [39], leading to deterministic behaviour and automatic syn-
chronization of the continuous and discrete parts of the model. The continuous dynamics are
modeled using a system of DAEs. For handling discrete event dynamics, the synchronous
data f ow principle is employed [44]. The idea of this principle is that at each time instant
all active equations have to be fulf lled concurrently. The active equations at a particular
time instant consist of those equations representing the continuous dynamics at that time
and possibly the equations related to the discrete events at that time [118].

If no discrete events would be present, and thus only a purely continuous system of
DAEs is considered, a time domain simulation can be performed using the DAE solver
DASSL [26, 121]. DASSL implements a variable integration step and variable order version
of the backward differentiation formula [121]. Due to the variable integration step size,
DASSL is in particular suited for performing simulations of dynamics involving fast and
slow dynamics. Variable step size methods are well-suited for such dynamics, since these
methods automatically choose a larger step size when no fast dynamics are present, and a
smaller step size when they are [26]. The solver uses a predictor-corrector scheme. First,
the predictor makes a guess of the solution at a new integration point. Then, the corrector
determines the f nal solution by solving a system of algebraic equation, which is obtained
after substituting the derivative with the backward differentiation formula. To use DASSL,
the functions of the system of DAEs have to be specif ed. The Jacobian of this system of
DAEs, which is used in the solution of the system of DAEs, can be supplied as a function,
or it can be approximated numerically by DASSL.

To be able to adequately handle the discrete events present in the systems of our model,
the solver DASSL-RT can be used. DASSL-RT is an extended version of the DASSL solver,
including a root f nder [121, 124]. The root f nder is necessary to allow eff cient simulation
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of the discrete events. The root f nder checks mathematical indicator expressions that indi-
cate when discrete events should be simulated. These indicator expressions are given in the
same variables as the dynamics, and will therefore change values when the dynamics are
simulated. If one of the indicator expressions changes sign during the simulation, the root
f nder will back track the solution until the time instance when the indicator expression is
equal to zero. The values of the simulation at that time will be returned. At event instants
mixed continuous and discrete systems of equations are then solved to determine new values
for the discrete variables and possibly the continuous variables.

4.2.4 Linearized object-oriented prediction models

The prediction model M in (4.3) typically is nonlinear and non-smooth, involving the nu-
merical solution of systems of DAEs in combination with discrete logic. Therefore, com-
puting the predictions is a costly process. This will have its effect on the time required to
compute control actions. Instead of using the object-oriented prediction model directly, we
can also try to derive an approximate prediction model from the object-oriented prediction
model. This will result in optimization problems that are more eff cient to solve.

One way to approximate the object-oriented prediction model is by deriving a discrete-
time linearized prediction model from the continuous-time dynamics represented in the sys-
tem of DAEs, assuming small variations of the variables around the operation point for
which the model is linearized. At each control cycle kc, corresponding to continuous time
kcTc the continuous-time linearization for the system of DAEs:

dx
dt

(t) = f(x(t),z(t),u(t))

0 = g(x(t),z(t),u(t))

y(t) = h(x(t),z(t),u(t)),

around x̄ = x(kc), ū = u(kc − 1), z̄ = z(kc), and ȳ = y(kc) is given by the system:

dx
dt

(t) = Acx(t)+ Bcu(t)+ Fc (4.4)

z(t) = Cc,zx(t)+ Dc,zu(t)+ Gc,z (4.5)
y(t) = Cc,yx(t)+ Dc,yu(t)+ Gc,y, (4.6)

where

Ac =
∂f
∂x

(x̄, z̄,ū)+
∂f
∂z

(x̄, z̄,ū)

(

−
∂g
∂z

(x̄, z̄,ū)

)−1(∂g
∂x

(x̄, z̄,ū)

)

Bc =
∂f
∂u

(x̄, z̄,ū)+
∂f
∂z

(x̄, z̄,ū)

(

−
∂g
∂z

(x̄, z̄,ū)

)−1 ∂g
∂u

(x̄, z̄,ū)

Cc,z =

(

−
∂g
∂z

(x̄, z̄,ū)

)−1 ∂g
∂x

(x̄, z̄,ū)

Dc,z =

(

−
∂g
∂z

(x̄, z̄,ū)

)−1 ∂g
∂u

(x̄, z̄,ū)
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Cc,y =
∂h
∂x

(x̄, z̄,ū)+
∂h
∂z

(x̄, z̄,ū)

(

−
∂g
∂z

(x̄, z̄,ū)

)−1 ∂g
∂x

(x̄, z̄,ū)

Dc,y =
∂h
∂u

(x̄, z̄,ū)+
∂h
∂z

(x̄, z̄,ū)

(

−
∂g
∂z

(x̄, z̄,ū)

)−1 ∂g
∂u

(x̄, z̄,ū)

Fc = −
∂f
∂z

(x̄, z̄,ū)

(

−
∂g
∂z

(x̄, z̄,ū)

)−1(

−g(x̄, ū, z̄)+
∂g
∂x

(x̄, z̄,ū)x̄ +
∂g
∂u

(x̄, z̄,ū)ū

+
∂g
∂z

(x̄, z̄,ū)z̄
)

−
(

∂f
∂x

(x̄, z̄,ū)x̄ +
∂f
∂u

(x̄, z̄,ū)ū +
∂f
∂z

(x̄, z̄,ū)z̄− f(x̄, ū, z̄)

)

Gc,y = −
(

−
∂g
∂z

(x̄, z̄,ū)

)−1(

−g(x̄, ū, z̄)+
∂g
∂x

(x̄, z̄,ū)x̄ +
∂g
∂u

(x̄, z̄,ū)ū +
∂g
∂z

(x̄, z̄,ū)z̄
)

Gc,y = −
(

∂h
∂x

(x̄, z̄,ū)x̄ +
∂h
∂z

(x̄, z̄,ū)z̄+
∂h
∂u

(x̄, z̄,ū)ū − h(x̄, z̄,ū)

)

−
∂h
∂z

(x̄, z̄,ū)

(

−
∂g
∂z

(x̄, z̄,ū)

)−1(

−g(x̄, ū, z̄)+
∂g
∂x

(x̄, z̄,ū)x̄ +
∂g
∂u

(x̄, z̄,ū)ū

+
∂g
∂z

(x̄, z̄,ū)z̄
)

,

when ∂g
∂z(x̄, z̄,ū) is invertible. The required Jacobians can either be derived analytically [83]

or computed numerically. Using the modeling tool Dymola, the linearized model of the
object-oriented model is conveniently obtained using symbolic differentiation.

Remark 4.2 It is assumed that initial algebraic variables z(kc) can be uniquely determined
given x̄ and ū. If this is not the case, then z(kc) should be specif ed to the prediction model
M. 2

Remark 4.3 The linearized prediction model can give adequate approximations when the
discrete dynamics do not have a too large impact on the dynamics, and the changes in the
continuous values are not too large. If the variations are not small, mode changes have to be
considered in the model, e.g., by using piecewise aff ne or similar models [83]. 2

The continuous-time linearization can be discretized with the sampling interval Tp, to
obtain the following discrete-time linearized model in the aff ne expressions of x(kp), u(kp),
and y(kp):

x(kp + 1) = Ax(kp)+ Bu(kp)+ F (4.7)
y(kp) = Cx(kp)+ Du(kp)+ G, (4.8)

where kp denotes the discrete time step, and where

A = eAcTp

B =
Z Tp

0
eAcτ dτBc

F =
Z Tp

0
eAcτ dτFc
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C = Cc,y

D = Dc,y

G = Gc,y.

The value of Tp determines how well the dynamics of the discrete-time model approximate
the dynamics of the continuous-time linearized model (4.4)–(4.6). With a smaller value
for Tp the approximation will be more accurate than with a larger value for Tp. However,
with a smaller value for Tp the number of variables over a prediction horizon will become
larger, which yields increased computational requirements for performing a simulation over
a prediction horizon.

The discrete-time prediction model for x̃(kp + 1) over a prediction horizon with length
Np discrete time steps is given by:

x̃(kp + 1) =











A
A

. . .
A











x̃(kp)+











B
B

. . .
B











ũ(kp)+











F
F
...
F











,

where the empty entries represent blocks of zeros. Substituting the expression for x(kp + l −
1) in the expression for x(kp + l), for l = {1, . . . ,Np − 1}, we can rewrite these equations as:

x̃(kp + 1) = B̃ũ(kp)+ F̃(x̄),

where

B̃ =















B
AB B
A2B AB B

...
...

...
. . .

ANp−1B ANp−2B ANp−3B . . . B















and

F̃(x̄) =















A
A2

A3

...
ANp















x̄ +















F
(A + I) F

(

A2 + A + I
)

F
...

(

ANp−1 + . . .+ A + I
)

F















.

The discrete-time prediction model for ỹ(kp) over the prediction horizon of length Np in
discrete time steps is given by:

ỹ(kp) =











C
C

. . .
C











x̃(kp)+











D
D

. . .
D











ũ(kp)+











G
G
...
G











,
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which after substitution of the prediction model for x̃(kp) yields:

ỹ(kp) = D̃ũ(kp)+ G̃(x̄),

where

D̃ =















D
CB D

CAB CB D
...

. . . . . . . . .
CANp−2B CANp−3B . . . CB D















and

G̃(x̄) =















C
CA
CA2

...
CANp−1















x̄ +















CIF + G
(CA + CI) F + G

...
(

CANp−2 + . . .+ CA + CI
)

F + G















.

To take into account that the control inputs can not be adjusted at each discrete time step kp,
but only at each control cycle kc, the equalities def ning the zero-order hold on the (4.2) are
added to the model. We can then denote the prediction model for ỹ(kp) by:

ỹ(kp) = Mlin (x̄, ū, ũ(kc)) , (4.9)

where Mlin =
[

D̃ũ
(

kp
)

+ G̃(x̄)
]

. The obtained discrete-time approximation can be em-
ployed as a prediction model in the MPC problem formulation of the medium-layer control
agent. It approximates the object-oriented prediction model (4.3).

4.3 Supervisory MPC control problem formulation

We now use the prediction models as discussed in the previous section to formulate the MPC
problems that a medium-layer control agent can use. Every Tc time units the control agent
has to determine inputs and set-points for the coming Tc time units. These variables have to
be chosen in such a way that costs over a prediction horizon of Nc control cycles, i.e., over a
time span of NcTc time units, are minimized. Let the control objectives of the control agent
consist of determining inputs and set-points such that over the entire prediction horizon:

• the values of the output variables ỹ(kp) are maintained between given upper and lower
bounds;

• the changes in the values of the set-points ũ(kc) are minimized.

We formulate the MPC problems as a nonlinear optimization problem and a linear optimiza-
tion problem.
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4.3.1 Nonlinear MPC formulation

To formulate the MPC problem as a nonlinear optimization problem, we f rst transform the
control objectives in a straightforward way into a nonlinear objective function as follows:

J(ỹ(kp), ũ(kc)) =
Np−1

∑
l=0

‖Qyyerr(y(kp + l))‖∞

+‖Qu(u(kc)− ū)‖1 +
Nc−1

∑
l=1

‖Qu(u(kc + l)− u(kc + l − 1))‖1, (4.10)

where ū are the set-points provided at the last control cycle, i.e., ū = u(kc −1), Qy and Qu are
penalty matrices, ‖v‖∞ and ‖v‖1 denote the inf nity and one norm of vector v, respectively,
and where yerr(y(kp)) are the violations of the desired output bounds, the entries of which
are computed as:

yq,err(yq(kp)) =







yq,desired,min − yq(kp) for yq(kp) ≤ yq,desired,min
0 for yq,desired,min < yq(kp) < yq,desired,max
yq(kp)− yq,desired,max for yq(kp) ≥ yq,desired,max,

(4.11)

where vq indicates entry q of vector v, and yq,desired,min and yq,desired,max are the desired
upper and lower bounds of yq. The inf nity norm is taken for minimization of the variables
yerr(y(kp)), such that the worst error is minimized. The one norm is used for the changes in
the inputs u(kc + l)− u(kc + l − 1), such that the changes in each of the inputs are minimized.

The values of the output variables ỹ(kp) are related to the inputs ũ(kc) through the pre-
diction model, as specif ed in (4.3). Hence, the supervisory MPC control problem can be
formulated as:

min
ỹ(kp),ũ(kc)

J(ỹ(kp), ũ(kc)) (4.12)

subject to
ỹ(kp) = M (x̄, ū, ũ(kc)) (4.13)
ũmin ≤ ũ(kc) ≤ ũmax, (4.14)

where ũmin and ũmax are vectors with bounds on the elements of ũ(kc), and the variables with
a bar are given. Instead of keeping the relation (4.13) for the prediction model as an explicit
equality relation, this relation can be eliminated by substituting it into the objective function,
since only the objective function depends on ỹ(kp). This substitution has computational
advantages, since after the substitution the optimization problem has fewer variables and no
nonlinear equality constraints. Hence, the MPC problem reduces to:

min
ũ(kc)

J(M (x̄, ū, ũ(kc)) , ũ(kc)) (4.15)

subject to
ũmin ≤ ũ(kc) ≤ ũmax. (4.16)

Since the objective function of this problem includes the prediction model M and due to the
def nition of yerr(y(kp)) the optimization problem is in general a nonconvex optimization
problem subject to simple bound constraints.
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Below we consider two approaches to solve the problem at hand. First, we propose
to use the direct-search method pattern search as an appropriate solver for directly solving
the nonlinear MPC problem. Pattern search has as advantage its more effective way of
dealing with the problem at hand when compared to solvers for nonlinear optimization that
require gradient or Hessian information. However, computational time requirements may
be large. As an alternative, we consider solving the nonlinear MPC problem by using a
linearized approximation of the problem. The advantage of this approach is that it may be
more eff cient in terms of computational requirements. However, the restricted validity of
linearized models may jeopardize the quality of the resulting control actions. In Section 4.4
we experimentally compare the two approaches.

4.3.2 Direct-search methods for nonlinear optimization

In the MPC problem (4.15)–(4.16), evaluating the objective function is expensive due to
the evaluation of the prediction model. In practice, computation time is limited and within
the available computation time a solution that is as good as possible has to be determined.
Many nonlinear optimization methods rely on gradient and Hessian information [18, 115].
However, the saturation and the use of the inf nity norm in the objective function make
that the objective function has many f at areas in which the gradient and Hessian are both
equal to zero and thus not informative. Solvers that use this f rst-order or second-order
information will therefore perform unnecessary numerical approximation of the gradient
and the Hessian, involving numerous objective function evaluations. In addition, the MPC
problem (4.15)–(4.16) typically has many local minima in which gradient-based solvers
typically quickly can get stuck.

Instead of using gradient or Hessian-based solvers, we propose to use so-called direct-
search optimization methods, which do not explicitly require gradient and Hessian infor-
mation [32, 150]. The only property that these methods require is that the values of the
objective function can be ranked [87]. This feature together with the feature that direct-
search methods are suitable for non-smooth problems [32], make that these methods are
suitable for solving the nonlinear problem (4.15).

Pattern search

For solving the nonlinear MPC problem (4.15)–(4.16), which is based on the object-oriented
prediction model, we propose to use the direct-search method pattern search [87], for its
straightforward implementation and its ability to yield good solutions, even for objective
functions with many local minima, in combination with a multi-start method [96], to im-
prove the probability of obtaining a solution close to a globally optimal solution. Several
theoretical issues of pattern search have been discussed in [9, 10, 84, 138].

Pattern search works in an iterative way. Given the solution s(s−1) at iteration s− 1, if
a new solution s+ is found for which it holds that J(s+) < J(s(s−1)), then the solution at
iteration s becomes s+. If such a new solution is not found, then the solution at iteration s
equals the solution at the previous iteration. The new solution s+ has to be selected from a
f nite set of candidate solutions in a mesh M (s) that is updated at each iteration. An iteration
of pattern search for an unconstrained problem is summarized in the following steps [87]:
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• A mesh M (s) around the last solution s(s−1) is constructed, consisting of a discrete set
of candidate solutions in R

ns in which the algorithm searches for a new solution. The
coarseness of the mesh is determined by the mesh size γ

(s−1)
mesh ∈ R

+.

• The mesh M (s) is explored in one or two phases:

– In the search phaseany strategy can be used to f nd a solution s+ ∈ M (s) for
which J(s+) < J(s(s−1)), as long as a f nite number of points is considered. If a
solution s+ is found, the search was successful and the next phase is not invoked.

– In the polling phasea new solution s+ for which J(s+) < J(s(s−1)) is searched
for in a subset of solutions in M (s), consisting of those solutions that are in the
direct neighborhood of the last solution s(s−1). This neighborhood is def ned
through a set of vectors called a pattern and the current solution. If a solution s+

is found in this neighborhood then the polling phase was successful.

• If either of the phases was successful, then s(s) = s+, the coarseness of the mesh
is set to γ

(s)
mesh = γexpγ

(s−1)
mesh , with expansion factor γexp > 1, and the next iteration

starts. If s+ was not found, then s(s) = s(s−1), the coarseness of the mesh is set to
γ

(s)
mesh = γcontrγ

(s−1)
mesh , with contraction factor γcontr ∈ (0,1), and the next iteration starts.

The iterations continue until a stopping condition is satisf ed, e.g., the mesh size is less
than a given tolerance, the total number of objective function evaluations reaches a given
maximum, or the distance between the point found at one successful poll and the point at
the next successful poll is less than a given tolerance.

Approaches of pattern search for solving constraint optimization problems have been
addressed in the literature, e.g., for optimization problems with bound constraints [86],
linear constraints [84], and nonlinear constraints [85].

Multi-start pattern search

The combination of pattern search with multi-start for solving the control problem at control
cycle kc consists of solving the control problem from Ninit different initial solutions, with
Ninit a positive integer. In general, the larger Ninit, the larger the chance of obtaining a
solution close to a globally optimal solution. However, in practice computation time is
limited, since control set-points have to be provided at each control cycle. Therefore, our
multi-start implementation involves starting from different initial solutions as long as time
is available. The f rst initial solution is based on the (perhaps shifted) solution of control
cycle kc − 1, since the solution of control cycle kc − 1 typically gives a good guess of the
solution at control cycle kc. The solution with the minimal objective function value after
optimization with pattern search when the maximum computation time has elapsed is used
as the f nal solution at control cycle kc. See [96] for an overview of further characteristics
of multi-start methods.

Although multi-start methods generally increase the time required to solve an optimiza-
tion problem signif cantly, multi-start methods can typically be executed in a highly parallel
fashion. In particular when a straightforward multi-start method is chosen that relies on
randomly generated initial solutions, then each optimization problem involved in the multi-
start method can be solved on an independent processor. For Ninit initial solutions executed
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on p processors the overall execution time is then expected to improve with approximately
a factor p compared to when a single processor is used.

In Section 4.4 we experimentally compare the performance of multi-start pattern search
with a multi-start gradient-based optimization.

4.3.3 Linear MPC formulation

The approach proposed above for solving the nonlinear optimization problem based on
multi-start pattern search may still require a signif cant amount of computation time. In-
stead of solving the nonlinear optimization problem directly, we here discuss solving an
approximation of the nonlinear optimization problem by linearization. This approach has
the potential to require a signif cantly smaller amount of computation time, although possi-
bly at the price of reduced performance.

To obtain a linear approximation of the MPC formulation of (4.12)–(4.14), the linearized
prediction model (4.9) can be used instead of the object-oriented prediction model (4.3), and
a transformation of the nonlinear objective function (4.10) and the expression for yerr(y(kp))
in (4.11) can be made into linear objective terms and inequality constraints. First, note that
the following optimization problem:

min
yerr

‖yerr(ȳ(kp))‖∞

where yerr as def ned in (4.11), for any f xed ȳ(kp), is equivalent to the optimization problem:

min
yerr

‖yerr‖∞

subject to
ȳ(kp) ≥ ydesired,min − yerr
ȳ(kp) ≤ ydesired,max + yerr
yerr ≥ 0,

where 0 is a zero vector of length nyerr . Note also that the inf nity-norm based optimization
problem:

min
v

‖Qv‖∞,

where v ∈ R
nv , and Q ∈ R

nv×nv , is equivalent to the linear programming problem:

min
v,z∞

z∞

subject to − 1z∞ ≤ Qv

Qv ≤ 1z∞,

where z∞ ∈ R, and 1 is a one vector of length nv. In addition, note that the one-norm based
optimization problem:

min
v

‖Qv‖1,



4.4 Application: Voltage control in a 9-bus power network 93

where v ∈ R
nv , Q ∈ R

nv×nv , is equivalent to the linear programming problem:

min
v,z1

1Tz1

subject to − z1 ≤ Qv

Qv ≤ z1,

where z1 ∈ R
nz1 and 1 is a one vector of length nz1 . Using these equivalences the nonlinear

optimization problem as def ned in (4.12)–(4.14) is transformed into:

min
ỹ(kp),ũ(kc),ỹerr(kp),̃z∞(kp),̃z1(kc)

Np−1

∑
l=0

z∞(kp + l)+
Np−1

∑
l=0

1Tz1(kp + l) (4.17)

subject to
y(kp + l) ≥ ydesired,min − yerr(kp + l)

y(kp + l) ≤ ydesired,max + yerr(kp + l)

yerr(kp + l) ≥ 0

− z∞(kp + l) ≤ Qyyerr(kp + l)

Qyyerr(kp + 1) ≤ z∞(kp + l)

for l = 0, . . . ,Np − 1
− z1(kc) ≤ Qu(u(kc)− ū)

Qu(u(kc)− ū) ≤ z1(kc)

− z1(kc + l) ≤ Qu(u(kc + l)− u(kc + l − 1))

Qu(u(kc + l)− u(kc + l − 1)) ≤ z1(kc + l)

for l = 1, . . . ,Nc − 1
ỹ(kp) = Mlin (x̄, ū, ũ(kc))

ũmin ≤ ũ(kc) ≤ ũmax. (4.18)

Since we have a linear objective function with linear equality and inequality constraints, and
since all variables are continuous, this MPC optimization problem is a linear programming
problem, for which there exist good commercial and free solvers [103].

4.4 Application: Voltage control in a 9-bus power network

A major source of power outages is voltage instability [142]. Voltage instability in general
stems from the attempt of load dynamics to restore power consumption beyond the capabil-
ity of the combined transmission and generation system after a fault. The control problem
we are dealing with in this section is emergency voltage control, i.e., control to prevent a
particular type of voltage instability. After a fault, e.g., a partial or total outage of a line, the
generation and transmission network may not have suff cient capacity to provide the loads
with power. A lower layer of decentralized control agents will try to restore the behavior
of the system to an acceptable level. However, due to the reduced transmission capacity of
the network the requested load demand together with the given system conf guration place
the network under an excessive amount of strain and voltages may start to drop. Corrective
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Figure 4.3: Network topology of the 9-bus dynamic network. The generators are shown with
their nominal apparent power ratings.

actions have to be taken to coordinate the decentralized control agents in the lower con-
trol layer such that negative effects of this voltage instability are minimized and such that
the induced transients that drive the system to collapse or cause unwanted and hazardous
sustained oscillations are avoided.

Traditionally, off ine static stability studies are carried out in order to avert the occur-
rence of voltage instability. The approach we propose in this section is an application of
online control that takes into account both the inherent temporal dynamics and that deter-
mines the most appropriate control sequence required to reach an acceptable and secure
operating point. We therefore propose the use of the MPC schemes discussed in Section 4.3
by a medium-layer control agent to determine the set-points for lower-layer control agents
in such a way that negative effects due to voltage instability after faults are minimized.

In the following we describe the power network and control setup, formulate MPC prob-
lems based on an object-oriented and a linearized prediction model, and experimentally
assess the performance of the medium-layer control agent using these MPC formulations.

4.4.1 The 9-bus dynamic benchmark network

We perform simulation studies on a 9-bus power network. Figure 4.3 shows the topology
of the physical network. This system is an adjusted version of the 9-bus Anderson-Farmer
network [46], taken from the Dynamical Systems Benchmark Library [63]. The following
list contains more details on the dynamics of the network:

• Synchronous machines: The network consists of 4 synchronous machines G1, G2,
G3 and G4. The synchronous machines are connected to the network via lossless
step-up transformers featuring a f xed turns ratio. Synchronous machines G2 and
G3 represent single physical unit, whereas synchronous machines G1 and G4 denote
aggregate machines comprising several physical units. The mechanical power and the
level of the excitation f eld can be adjusted for each machine.

• Loads: There are 5 loads, L5, L6, L7, L8, L9. Part of the loads can be disabled by
using load shedding.
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Figure 4.4: Illustration of the control of the power network.

• Capacitor bank: A capacitor bank C at bus 7 provides additional reactive power to the
network to locally stabilize bus voltage magnitudes. Capacitors can be connected or
disconnected from the network in discrete quantities.

• Transmission lines: The transmission lines between the buses and components trans-
fer the power from one location to another.

Note that this power network contains very fast dynamics, due to the transmission lines,
fast dynamics, due to the generators, and slow dynamics, due to the loads. Control of
the physical network is done through two-layered control, consisting of a lower, primary,
control layer, and a medium, secondary, control layer. Figure 4.4 illustrates this control
structure.

Lower control layer

The lower control layer in the network regulates power f ows and voltage levels at the bus
terminals of generators. The lower control layer consists of the following elements:

• Turbine governors: All generators feature a turbine governor controlling the mechan-
ical power acting on the shaft of the machine in order to satisfy the active power
demand of the network and maintain a desired frequency. The turbine governors act
on a time scale of tens of seconds. The turbine governors accept set-points for the
mechanical power and frequency.

• Automatic voltage regulators: All generators feature an automatic voltage regulator
(AVR) maintaining the level of the excitation f eld in the rotor windings at the value
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required to keep the bus voltage magnitude close to the desired set-point. The maxi-
mum current in the excitation system is limited. Once a machine has reached one of
its limits it cannot produce additional reactive power and can therefore no longer par-
ticipate in sustaining the voltage magnitudes in the network [82]. The AVR voltage
references of the generators can be set in the range 0.9–1.1 p.u. The AVRs act on a
time scale of seconds. The AVRs accept set-points for the voltage magnitudes of the
generators’ terminal buses.

• Power system stabilizers: Generators G2 and G3 feature a power system stabilizer
(PSS) eliminating the presence of unwanted rotor oscillations by measuring the ro-
tational speed and adding a corrective factor to the voltage magnitude reference for
the AVRs. The corrective factor saturates at a lower and upper bound. Generators G1
and G4 feature no power system stabilizer since these generators represent multiple
physical generators. The PSSs act on a time scale of tenths of seconds. The PSSs
accept set-points for the frequency.

Control handles available to a medium control layer

Given the description of the network and the lower control layer, the control handles avail-
able to a higher control layer in the form of set-point and reference settings are summarized
as follows:

• the voltage references for the AVRs;

• the mechanical power set-points for the turbine governors;

• the reference frequency for the turbine governors and the PSSs;

• the amount of load to shed;

• the amount of capacitor banks to connect to the grid.

Depending on the particular control problem a higher-layer control agent will adjust the
values of these control handles. In particular for the voltage control problem at hand the
amount of load shed and the set points of the AVRs will be taken as the available control
handles.

4.4.2 Object-oriented model of the network

To construct an object-oriented model of the network, we f rst def ne several classes to
describe the components in the power network. Using the def nition of the classes we for-
malize the structure of the network. To each class we assign a set of variables and a set
of equations, typically consisting of a system of DAEs. The equations of a class constrain
the values of variables over time, and therefore add to the behavior of the object-oriented
model. The equations of a particular class f rst of all typically constrain variables of that
particular class. In addition, the equations of a particular class can also constrain the vari-
ables in classes from which that particular class is a subclass. After having def ned the
classes and the associated constraints, the classes can be instantiated into objects to form
the object-oriented representation of the 9-bus network.
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Figure 4.5: Class diagram for a power network.

Class definitions

Figure 4.5 shows the class diagram of the components that we consider. Below we motivate
the def nition of the classes shown in the f gure.

The components in the physical network all have in common that they are connected to
other components. To model this, the connector class [39] Pin is def ned. The Pin connec-
tor class def nes variables for the voltage magnitude and angle, and the current magnitude
and angle. No additional constraints on the values of these variables are def ned, however
when two components are connected to each other through the Pin connector class, four
constraints are def ned that force the voltage magnitudes and angles of both components to
be equal, and that force the sum of the current magnitudes and angles of both components
to be zero.

Components like buses, machines, loads, and capacitor banks are connected to the net-
work at one point. We therefore def ne the basic class OnePin. This class has a single
variable P1, which refers to an object of class Pin, and has no further additional constraints.
Components like transmission lines and transformers are connected to the network at two
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points. Therefore, we def ne the class TwoPin as an extension of the OnePinclass. This
class has a single variable P2, which refers to an object of class Pin. Note that by extending
the OnePinclass, the TwoPinclass inherits access to the variables of the OnePinclass, hence
it inherits access to variable P1 and the Pin class variables associated with this variable.

Since no additional constraints are def ned in the OnePinand TwoPinclasses, the values
for the variables involved in either of the two classes, consisting of the four variables of
the P1 variable, cannot be determined. These classes are therefore partial classes [39].
Subclasses of partial classes have to be def ned containing constraints to give these variables
values.

Subclasses of the class OnePinrepresent those components in the network that are con-
nected at a single point, i.e., buses, machines, loads, and capacitor banks. Therefore, classes
Bus, Machine,Load, and CapBankare def ned as subclasses of class OnePin. There are
different types of machines and we therefore def ne as subclasses of the class Machinethe
classes Classicand Detailed. The following lists the most important characteristics of the
dynamics associated with these classes, and the variables that the classes expect as control
inputs or provide as outputs:

• The Busclass involves two constraints that force the current magnitude and angle of
the pin of the bus to be zero.

• The Classicclass is equipped with classical 2nd-order mechanical dynamics [63, 82].
The dynamics of this machine depend on the level of f eld voltage uE(t) and mechani-
cal power uPm(t). The value of the voltage magnitude yV(t) of the bus of the machine
and the frequency deviation y∆ω(t) are made available to other classes.

• The Detailedclass is equipped with a detailed 6th-order model [63, 82] including the
mechanical equations and the electrical transient and sub-transient dynamics of the
machine, since it represents a single physical unit. The variables that the dynamics
depend on are the same as for the Classicclass. Also the values that are available to
other classes are the same.

• If the original benchmark def nition would be used, the Loadclass would be equipped
with a static voltage dependent and constant impedance load model [76]. However,
to model the loads in more detail and to obtain slow load dynamics, a 2nd-order ZIP
model [59] is assigned to the Loadclass. Among others, two constraints are included
describing the relation between the current angle and magnitude and the voltage angle
and magnitude under different amounts of active and reactive power consumption.
The class accepts as input the amount of load to shed ushed(t).

• The CapBankclass is equipped with two static constraints relating the number of
capacitors ucap(t) connected to the power network to the current magnitude and angle
and the voltage magnitude and angle of its pin [63]. The class accepts as input the
number of capacitors ucap(t) to connect to the network. This input is a variable that
can take on only discrete values.

Subclasses of the class TwoBusrepresent those components in the network that are con-
nected to two buses, i.e., transmission lines and transformers. Therefore, classes Line and
TraFo are def ned as subclasses of class TwoPin. The most important characteristics of the
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dynamics associated with these classes and the variables that the classes expect as control
inputs or provide as outputs are:

• The Line class is equipped with the static equations of the π model for transmission
lines [63, 82]. Four constraints relate the eight variables of the two pins.

• The TraFoclass is equipped with the static equations of the π model for transmission
lines [63, 82], but with the resistance and susceptance set to zero. Four constraints
relate the eight variables of the two pins.

Each of the classes def ned so far contains variables related to the particular component
being modeled, i.e., input, state, algebraic, and output variables, and equations describing
the behavior of the components. Moreover, each of these classes def nes constraints involv-
ing the variables of the OnePinor TwoPinclass.

There are also several components that do not directly connect to the power network,
and that therefore are not def ned as a subclass of the OnePinor TwoPin class. These
components consist, e.g., of the components in the lower control layer, which determine the
inputs to components directly connected to the power network. Examples of these are the
AVRs, turbine governors, and possibly PSSs. Corresponding classes AVR,GOV, and PSS
are therefore def ned. For the class AVRsubclasses SMPand BBC are def ned, depicting
two different types of AVRs. The most important characteristics of the dynamics of these
classes, and the variables that the classes expect as control inputs or provide as outputs, are
the following:

• The SMPclass is equipped with the equations of a 3rd-order AVR [63, 82]. The SMP
class accepts as inputs a bus voltage magnitude uV,mac(t) of the bus of which the AVR
should regulate the voltage magnitude, and a voltage magnitude set-point uV,PSS(t).
In addition, the SMPclass accepts as input voltage magnitude set-point uV,ref(t). The
SMPclass provides the excitation f eld voltage yE(t) as output. The excitation f eld
voltage yE(t) saturates at a lower limit yE,min and an upper limit yE,max.

• The BBCclass is equipped with 2nd-order dynamics [63, 82]. This class has the same
inputs and outputs as the SMPclass. Also this AVR class considers saturation of the
excitation f eld voltage yE(t).

• The GOV class is equipped with 3rd-order dynamics [63, 82]. The dynamics have as
input a frequency deviation uω(t) of a machine. The GOV class accepts uTorder(t) as
set-point for the mechanical power. The class provides mechanical power yPm(t) as
output.

• The PSSclass is equipped with 3rd-order dynamics [63, 82]. It uses as input a fre-
quency deviation uω(t) to determine a voltage magnitude yV,PSS(t). The voltage mag-
nitude yV,PSS(t) saturates at upper bound yV,PSS,max and lower bound ηV,PSS,min.

Having def ned the classes for these individual components, it is convenient to def ne
some classes by composition. E.g., the class Genis def ned as the composition of a machine
with a specif c lower control conf guration. As subclasses we def ne the classes Aggregate
and Single. The classesAggregateand Singleinclude references to specif c AVR,GOV, and
PSSclasses.
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Figure 4.6: The 9-bus power network as object diagram.

Remark 4.4 In the example of the division of the power network into classes and subclasses
given here only the components that will be used later have been def ned. It is straightfor-
ward, however, to include many more subclasses, e.g., for describing different loads, trans-
formers, and additional generators. In [105] several examples of additional components that
can be added can be found. The classif cation of components into classes facilitates easy
experimenting with models with different levels of detail. 2

Object diagram

Given the classes and the associated dynamics, we can now instantiate the classes into
objects to form an object diagram for the power network under study. Generators G1 and
G4 are of class Aggregate. Generators G2 and G3 are of class Single. The loads are of class
Load. The capacitor bank is of classCapBank. The buses are of classBus. The transmission
lines are of class Line, and the transformers are of class TraFo. Figure 4.6 shows the layout
of the resulting object diagram as created in Dymola. The Dymola model can be obtained
from the author on request.

4.4.3 Control problem formulation for the higher control layer

To illustrate the control problem, we consider a typical scenario with no medium-layer
MPC control agent installed, in which we use the model constructed in the previous section
as model of the physical network. In the scenario that we consider, the network is initially
in steady state. Then, at tfault = 26.5 s a fault of 600% impedance increase in the transformer
between bus 1 and 5 occurs. Figure 4.7 illustrates the evolution of the voltage magnitudes
of three representative buses. The fault occurring in the transformer between bus 1 and 5
changes the transmission capacity of the network. Due to the changed transmission capacity
of the network and due to the dynamics of the loads, the voltage magnitudes start to start os-
cillating, despite the actions of the lower control layer. If the set-points to the control agents
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Figure 4.7: Voltage magnitude profiles yV,i of three representative buses, (i= 2, i = 6, and
i = 7), for a typical scenario in which no medium control layer is present. After
a fault of 600% impedance increase occurs in the transformer between buses 1
and 5 at tfault = 26.5 s, the voltage magnitudes yV,i start oscillating, ultimately
resulting in a network collapse.

of the lower control layer are not changed, perhaps in combination with other measures, the
network ultimately collapses.

To prevent such a collapse from occurring, a higher-layer control agent should be in-
stalled with the task to [49]:

1. Maintain the voltage magnitudes between 0.9 and 1.1 p.u., i.e., suff ciently close
to nominal values to ensure a safe operation of the system by keeping the voltage
magnitudes suff ciently distant from low voltages.

2. Effectively achieve a steady-state point of operation, while minimizing changing of
the control inputs so that a constant and appropriate set of input values is ultimately
applied to the power network and the lower control layer.

For the second objective, in particular the option of shedding load is to be avoided un-
less absolutely necessary in order to fulf ll the primary objective, as load shedding is the
most disruptive countermeasure available. Since typical slow voltage collapses without a
medium-layer control agent installed emerge over time spans of several tens of seconds up
to several minutes [142], a control cycle time of 20 s is acceptable. It should be noted that
the speed at which a voltage collapse unfolds depends on the magnitude of the fault occur-
ring. A collapse will take place sooner with a larger fault than with a smaller fault. So,
depending on the range of faults that should be adequately dealt with, the control cycle time
will have to be decreased or increased.
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Below we formulate the nonlinear and linear higher-layer MPC problem of the 9-bus
power network, and we assess the performance of the resulting closed-loop control structure
in experiments.

Nonlinear MPC problem formulation

The control problem of the supervisory control agent using the object-oriented prediction
model is based on the formulation specif ed in Section 4.3.1. For l = 0, . . . ,Nc −1, the inputs
ũ(kc + l) correspond to the AVR set-points uAVR,i(kc + l), for i = {1, . . . ,4}, and the amounts
of load to shed ushed,i(kc + l), for i = {5, . . . ,9}. For l = 0, . . . ,Np − 1, the outputs ỹ(kp + l)
correspond to the voltage magnitudes yV,i(kp), for i = {1, . . . ,9}, at the 9 buses.

One control cycle takes 20 s, hence Tc is 20 s. Although in principle a the prediction hori-
zon should include all important dynamics, for computational reasons a prediction horizon
with a length of only 2 control cycles is taken. The continuous voltage signal is sampled
every 0.5 s, hence Tp is 0.5 s, and the length of the prediction horizon Np is therefore 40
prediction steps.

The MPC control problem is formulated as in (4.15)–(4.16), where yq,desired,min is 0.9
p.u. and yq,desired,max is 1.1 p.u. for each element of ỹ(kp + l). The elements of umin and umax
corresponding to AVR settings uAVR,i(kc + l) are set to 0.9 and 1.1 p.u., respectively. The
elements of umin and umax corresponding to load settings ushed,i(kc + l) are set to 0 and 1,
respectively, corresponding to full load shedding or no load shedding, respectively.

The cost matrix Qy contains on its diagonal elements 1
Np/Nc

200 and Qu contains the
value 1 on the diagonal elements corresponding to AVR settings uAVR,i(kc + l), and the value
20 on the diagonal elements corresponding to load shedding settings ushed,i(kc + l). This way
of penalizing the voltage bound violations, the AVR settings, and the load shedding settings
ensures that the main objective of the control agent is to satisfy the voltage objectives, and
that load shedding should only be chosen as a last resort.

Linear MPC problem formulation

The control problem of the supervisory control agent using the linearized prediction model
is based on the formulation given in Section 4.3.3. The MPC control is formulated using
(4.17)–(4.18). The length of the prediction horizon in prediction steps Np is 40, and the
length of the prediction horizon in control cycles Nc is 2. The inputs ũ(kc) correspond to
the set-points for the AVRs uAVR,i(kc + l) and the amounts of load to shed ushed,i(kc + l) over
the prediction horizon. The outputs ỹ(kp) correspond to the voltage magnitudes yV,i(kp + l)
at the 9 buses.

Similar as for the nonlinear MPC formulation, the cost matrices Qy and Qu are def ned
such that a weight of 1

Np/Nc
200 is placed on the violation of each soft constraint. The inputs

are weighted with the penalty coeff cients 1 and 20 for the AVR settings uAVR,i(kc) and the
load shedding settings ushed,i(kc), respectively.

The linearized prediction model is obtained at each control cycle kc by linearizing the
object-oriented prediction model around the current state x(kc) and the inputs applied at the
preceding time instant u(kc − 1). The sampling interval Tp = 0.5 s.

In the following we f rst focus on the performance of the control agent when it uses
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the nonlinear MPC formulation. We illustrate the difference between pattern search and
gradient-based optimization methods, and illustrate how the proposed approach chooses
adequate set points that prevent the network from collapsing. Then, we also consider the
performance of the control agent, when it uses the linear MPC formulation. We illustrate
how the two strategies compare.

4.4.4 Control using the nonlinear MPC formulation

Direct search versus gradient-based optimization

We compare pattern search as part of Matlab’s Direct Search and Genetic Algorithms tool-
box in Matlab v7.3 [97] with the derivative-based solver SNOPT v5.8 [50], as implemented
in Tomlab v5.7 [65], and accessed from Matlab. SNOPT uses a sparse sequential quadratic
programming method, using limited-memory quasi-Newton approximations to the Hessian
of the Lagrange. In principle it requires gradient information, but this information can be
approximated numerically if it is not available.

To compare the performance of the solvers, we perform 50 experiments in which a
single fault occurs at varying locations in the power network (i.e., at the 4 transformers and
the lines), with varying magnitudes (i.e., an impedance increase of 100% up to 800%), and
at varying times (i.e., the fault time varies between second 20 and 28). The control problems
of the f rst control cycle after a fault has been applied are solved by both pattern search and
SNOPT, allowing a decision making time of 300 s1.

In Figure 4.8 we see that SNOPT considers far more initial solutions within the given
time span. The time that SNOPT requires to obtain a locally optimal solution is much lower
than the time required by pattern search. This is explained by the fact that SNOPT uses
much fewer prediction model evaluations per optimization, since it does not explore the
search space as much as pattern search does.

Figure 4.9 shows, as decision time progresses, the average over all experiments of the
best objective value of pattern search so far divided by the best objective value of SNOPT
so far. This fraction is 1, if the best objective values of pattern search and SNOPT are on
average the same. It is larger than 1, if SNOPT on average has a better solution, and smaller
than 1 if pattern search has a better solution on average. The f gure considers only points
for which the fraction can be computed, i.e., both pattern search and SNOPT have f nished
at least one optimization problem. We observe that pattern search on average has a best
objective value so far that is about a factor 5 smaller than the best objective value so far of
SNOPT.

The comparison shows that pattern search, although it does not require gradient or Hes-
sian information and is straightforward to implement, generally provides solutions that out-
perform the solutions provided by SNOPT.

1This relatively long decision making time is taken to illustrate how the performance of both solvers varies over
time. In practice, multiple processors can be employed to parallelize the multi-start approach and to obtain accept-
able solutions in a more realistic time frame. In addition all code can be optimized for speed and implemented in
object code (currently only the SNOPT code is in object code). This is in particular important for the objective
function evaluations, since these consume the most signif cant part of the computation time.
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Figure 4.8: Average Ninit,avg of accumulated number of initial solutions considered by the
solvers as decision time t progresses.

Control for a single scenario

To illustrate the performance of the medium-layer control agent using the nonlinear MPC
formulation, we now discuss a single scenario. We reconsider the fault of 600% impedance
increase at tfault = 26.5 s in the transformer in the line from bus 1 to 5. Figure 4.7 shows
the evolution of three representative buses when no medium-layer control agent is installed.
We now consider using a supevisory control agent that uses the nonlinear MPC formula-
tion. The supervisory control agent operates at Tc = 20 s using multi-start pattern search as
discussed before to solve the nonlinear MPC problem. The supervisory control agent uses
a prediction horizon with a length of of 40 s, and samples the voltage magnitudes from its
prediction model every 0.5 s.

Figure 4.10 shows the resulting voltage magnitude prof les and Figure 4.11 shows the
chosen set-points. It should be noted that the load shedding set-point is scaled to take on
values between 0 and 50, corresponding to 100% load shedding and no load shedding,
respectively, and that the AVR set-points for the automatic voltage regulators are scaled to
take on values between 0 and 20, corresponding to 0.9 p.u. and 1.1 p.u., respectively.

After the fault has appeared, the control agent is able to stabilize the voltage magnitude
between 0.9 and 1.1 p.u. with a low number of set-point changes and thus achieves its
objectives. The control agent obtains a total performance2 of 98.7, and it takes the control
agent in total 157.4 s to determine its control actions.

2The total performance is obtained by evaluating the nonlinear objective function over the full day with Tp =
0.1 s.
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Figure 4.9: Average relative performance Jrel of pattern search compared to SNOPT over
all experiments. The average relative performance Jrel at a particular time t is
computated as follows: best objective value of pattern search so far divided by
best objective value of SNOPT so far, averaged over all experiments.

4.4.5 Control using the linear MPC formulation

As alternative to solving the optimization problem using pattern search, we now use the
linear MPC problem formulation. To solve the linear programming problems at each control
cycle, we use the ILOG CPLEX v10 linear programming problem solver [71], which we
access through the Tomlab v5.7 [66] interface in Matlab v7.3 [98].

We consider the following scenario. The network is in steady state, when at tfault = 26.5
a fault appears, which increases the impedance in the transformer between buses 1 and 5
with 600%. The medium-layer control agent again operates at Tc = 20 s, and uses the linear
MPC formulation with a prediction horizon with a length of 40 s, while sampling the voltage
magnitudes every 0.5 s.

Figures 4.12 and 4.12 show the evolution of the voltages over the simulation and the
set-points chosen by the control agent, respectively. We observe that the control agent
can determine actions that stabilize the voltages at acceptable levels, despite the linearized
approximation that the control agents uses for the prediction model. The control agent
using the linear MPC formulation obtains a total performance of 142.4, and it takes the
control agent in total 26.3 s to determine its control actions. Hence, although the control
agent does not obtain an improved performance when compared to the control agent using
the nonlinear MPC formulation, it does achieve stabilizing the voltage magnitudes using
signif cantly fewer computation time.
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Figure 4.10: Voltage magnitude profiles for simulation including a medium-layer nonlinear
MPC control agent.
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Figure 4.11: Set-points provided by the supervisory control agent for simulation including
the nonlinear medium-layer MPC control agent. Load shedding values are
scaled to lie within 0 and 50. AVR set-points are scaled to lie within 0 and 20.
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Figure 4.12: Voltage magnitude profiles for controlled simulation using the linear MPC for-
mulation.
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Figure 4.13: Set-points provided by the control agent using the linear MPC formulation for
controlled simulation. Load shedding values are scaled to lie within 0 and 50.
AVR set-points are scaled to lie within 0 and 20.
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4.5 Summary

In this chapter we have discussed MPC in multi-layer control. In particular we have focused
on issues related to the model that a medium-layer MPC control agent uses and discussed
why object-oriented modeling is suitable for this. We have proposed an MPC strategy in
which the prediction model is formulated either as an object-oriented model, allowing rela-
tively easy construction of models of complex systems, or as a linearized approximation of
such a model, allowing the use of eff cient optimization problem solvers. Due to the nature
of power networks, the object-oriented prediction model involves differential, algebraic, and
logic relations and is nonlinear, non-smooth, and costly to evaluate.

To solve the nonlinear MPC problem of the medium-layer control agent using the con-
structed prediction model, we have proposed to use pattern search as optimization method.
Pattern search is a direct-optimization method that does not compute or approximate gradi-
ents and/or Hessians, which are not available in analytical form in the situation considered.
Moreover, due to the discrete elements, e.g., saturation, the MPC optimization problem is
non-smooth, making approaches using gradient or Hessian information less suitable.

We have applied the proposed control strategy for the control agent in a medium control
layer of a power network. The medium-layer control agent provides set-points to a lower
control layer with the aim of preventing voltage collapses from occurring. Simulation stud-
ies on a 9-bus dynamic power network have shown the potential of the proposed approaches.
For the MPC formulation based on the object-oriented model, we have illustrated the differ-
ence in performance between a gradient-based and the pattern search method and we have
shown that the voltage collapses can be prevented from occurring. For the MPC problem
based on the linearized model, we have compared the performance of the control for a spe-
cif c example with the performance obtained by the MPC control agent using the original
model. We have observed that the MPC control agent using the linearized prediction model
can determine set-points that stabilize the voltage magnitudes, despite the linearized model
used. Although the control actions that the MPC control agent using the linearized model
chooses result in higher costs than the actions that the original MPC control agent would
choose, the total computation time is signif cantly lower for the MPC control agent using
the linearized model. It is therefore interesting to investigate further what the performance
loss is due to the linearization, and for which type of disturbances the control agent using
the linearized model can yield good performance.



Chapter 5

Overlapping subnetworks

In Chapter 4 we have considered the control of several control agents in a lower control
layer by a single control agent in a medium control layer. The control agent in the medium
control layer has used a prediction model including both the behavior of the lower control
layer and the physical network. In this chapter we consider control by multiple control
agents in a higher control layer. The control agents assume that the dynamics of the lower
control layers and the physical network are instantaneous. We focus on the question of how
nodes of a network should be assigned to subnetworks. In Chapters 2 and 3 the subnetworks
into which the transportation networks were divided were not overlapping. In this chapter
we will discuss how subnetworks can be def ned that are overlapping.

We f rst formalize the way in which we model general transportation networks in this
chapter in Section 5.1. We then discuss several approaches for def ning subnetworks and
the properties of the resulting subnetworks in Section 5.2. In Section 5.3 we focus on a
particular approach for def ning subnetworks based on the inf uence that actuators in these
subnetworks have. Currently existing approaches for multi-agent control assume that the
subnetworks that control agents control are not overlapping. However, as we will see, the
inf uence-based approach might result in subnetworks that are overlapping. To deal with
this, in Section 5.4 we f rst discuss a recently proposed approach that can be used for the
higher-layer multi-agent control of subnetworks that are not overlapping, but that do have
links among them. We then propose an extension of this approach for application to higher-
layer multi-agent control of subnetworks that are overlapping in Section 5.5.

In this chapter we consider as application optimal power f ow control of large power
networks. In particular, in Section 5.6 we apply the approach for overlapping subnetworks
to an optimal power f ow control problem using FACTS devices, in which each FACTS
device is controlled by a different control agent. Experiments are carried out on an adjusted
IEEE 57-bus power network.

Parts of this chapter have been published in [69].

5.1 Steady-state models of transportation networks

As explained in Chapter 1, in a transportation network there is some commodity f owing
through the network over links between nodes inside the network. The nodes can be ar-
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ranged in a topology to ref ect how the elements inside the network are connected to each
other. Depending on the f ows of the commodity in the network, the values of the variables
associated with the nodes, e.g., pressures, speeds, etc., take on different values. By chang-
ing the values of actuators that are located in the network, the f ows and, hence, the values
of the variables can be changed. Control agents are used to determine how the values of the
actuators should be changed in order to achieve desired behavior, which is directly related
to desired values for the variables associated with the nodes inside the network.

In Chapter 4, we have discussed multi-layer control, and made a distinction between
lower, medium, and higher control layers, as depicted in Figure 4.1. In that chapter, we
have in particular considered control of an individual medium-layer control agent, that uses
a model of the dynamics of the lower control layer and physical network. Here we consider
the control of multiple control agents in a higher control layer. The control agents in this
higher control layer are interested in controlling the very slow dynamics or the long term
behavior, and therefore assume that dynamics of the lower control layers and physical net-
work can be represented by instantaneous dynamics. Therefore, the control agents in the
higher control layer consider only steady-state characteristics, i.e., the characteristics of the
lower control layers and the network when transients have faded out and the network has
settled in a steady state, e.g., after a change in the settings of an actuator.

To model the steady-state characteristics, each of the nodes in the network has associated
with it variables and constraints used to compute the steady-state values for these variables,
given values for actuator settings and exogenous inputs. Let the network consist of ν nodes,
and let ι, for ι ∈ {1, . . . ,ν} denote a particular node. The constraints of a particular node ι
involve variables of that particular node ι and possibly variables of the nodes of neighboring
nodes ω ∈ N ι, where N ι = {ωι,1, . . . ,ωι,nN ι

} is the set of neighboring nodes of node ι.
The set of neighboring nodes N ι of node ι contains those nodes that can be reached from
node ι by going over one link in the topology.

Let for node ι ∈ {1, . . . ,ν}, the variables zι ∈ R
nzι , uι ∈ R

nuι , and dι ∈ R
ndι , denote the

algebraic1, the input, and the exogenous input variables associated with node ι, respectively,
and let the constraints of node ι be given by:

0 = gι(zι,uι,dι,zωι,1 , . . . ,z
ωι,nN ι ) (5.1)

where zω are the variables of neighboring node ω ∈N ι, and gι are smooth constraint func-
tions of node ι. A steady-state model for the overall network is obtained by aggregating the
constraints (5.1) for all nodes ι ∈ {1, . . . ,ν}, and is compactly represented as:

0 = g(z,u,d), (5.2)

where z, u, and d are the algebraic, input, and exogenous input variables of the overall
network, and g def nes the steady-state characteristics of the network. Given the inputs u
and the exogenous inputs d, the steady state in which the network settles is determined by
solving the system of equations (5.2).

Assume that there are multiple control agents, with the objective to reach overall net-
work objectives, like safety and security. With each node a number of objective terms can
be associated. These objective terms are used to indicate which behavior is desired for the

1Sometimes the algebraic variables are also referred to as static states.
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variables zι and uι of that node. The terms involve the variables of node ι and possibly the
variables of the neighboring nodes ω ∈N ι. The aggregation of the objectives terms of each
node gives the objective for the control of the overall network.

The nodes that a control agent considers in its decision making form the subnetwork
of that control agent. Given that each control agent has access to a particular actuator, the
issue that we address below is how to determine which nodes of the overall network a control
agent should consider, i.e., how should the subnetwork of a control agent be determined.

5.2 Subnetworks and their properties

We f rst introduce some properties of subnetworks, and then we discuss different approaches
for def ning subnetworks and the properties of the resulting subnetworks.

5.2.1 Properties of subnetworks

We make distinctions among non-overlapping,touching, andoverlappingsubnetworks. If
for each subnetwork, the nodes belonging to that subnetwork do not coincide with the nodes
belonging to any other subnetwork, and if there are no links going from nodes in one sub-
network into nodes of another subnetwork, then the subnetworks are non-overlapping. If for
each subnetwork, the nodes belonging to that subnetwork do not coincide with the nodes
of any other subnetwork, but if there are links between nodes of one subnetwork and nodes
of another subnetwork, then the subnetworks are touching. If the nodes belonging to some
subnetworks partially coincide with the nodes belonging to other subnetworks, then the sub-
networks are overlapping. In that case, commonsubnetworks of particular subnetworks are
def ned as the subnetworks consisting of those nodes that belong to each of these particular
subnetworks. Figure 5.1 illustrates the different types of subnetwork divisions. Note that it
is not strictly necessary that each node is part of a subnetwork.

In addition to non-overlapping, touching, and overlapping subnetworks, we make a dis-
tinction between time-invariantand time-varyingsubnetworks. With a time-invariant sub-
network we refer to a subnetwork of which the assignment of nodes does not change over
time. With a time-varying subnetwork we refer to a subnetwork of which the assignment of
nodes does change over time.

5.2.2 Defining subnetworks

Given an overall transportation network, there are several approaches that can be taken to
def ne subnetworks inside that transportation network, i.e., how to determine which nodes
belong to which subnetwork. Some examples of approaches to def ne subnetworks are the
following:

1. Subnetworks can be def ned through geographical borders, e.g., of cities, provinces,
countries, etc., i.e., based on an existing grouping of nodes.

2. Subnetworks can be def ned through clustering of nodes into a predef ned number
of groups, in such a way that the number of interconnections among the resulting
subnetworks is minimized.
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Figure 5.1: Illustration of different types of subnetworks.

3. Subnetworks can be def ned based on a radius around nodes, i.e., nodes reachable
within a certain number of links from a particular main node (e.g., the node with an
actuator) are included in a particular subnetwork.

4. Subnetworks can be def ned by including in the subnetwork of a control agent only
nodes that can be inf uenced by the actuators of that control agent.

The f rst approach can lead to subnetworks that are non-overlapping, touching, or over-
lapping. E.g., if the subnetworks are def ned based on city borders, then the subnetworks
can be non-overlapping; if the subnetworks are def ned based on country borders, then the
subnetworks can be touching; and, if the subnetworks are def ned based on country and
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city borders, the subnetworks can be overlapping. In the case that subnetworks are de-
f ned in this way, each subnetwork is typically already controlled by a control authority.
The subnetworks resulting from this approach are typically time-invariant, unless wars, city
restructuring, breakdowns, etc., are taken into account.

The second approach can lead to non-overlapping or touching subnetworks. If not all
nodes of the network are assigned to a subnetwork, then the subnetworks can be non-
overlapping. However, if all nodes of the network are assigned to a subnetwork, the subnet-
works are touching. Note that using this approach, it may be the case that actuators owned
by different control authorities are placed in one subnetwork. The subnetworks resulting
from this approach are typically time invariant.

The third approach can lead to non-overlapping, touching, and overlapping subnet-
works, depending on the number of nodes that is taken to belong to a particular subnetwork.
The underlying idea of considering a radius is that the dynamics topologically far from an
actuator are not relevant, since these far away dynamics do not have a signif cant inf uence
on the dynamics around the actuator. The resulting subnetwork is typically time invariant.

The fourth approach can also lead to non-overlapping, touching, and overlapping sub-
networks. In this approach, f rst it is determined how much the variables of each node can be
inf uenced by actuators, and then depending on the inf uence on the nodes it is determined
which nodes should be included in a subnetwork. If the inf uence varies over time, then the
resulting subnetwork is time-varying. Otherwise it is not.

In the following sections we consider the fourth approach for def ning subnetworks, and
discuss how coordination among control agents that control subnetworks def ned in that
way can be achieved, in particular when the resulting subnetworks are overlapping.

5.3 Influence-based subnetworks

The idea of inf uence-based subnetworks is that the subnetworks are def ned based on the
nodes that a certain actuator and, hence, a control agent controlling that actuator, can in-
f uence. When the nodes that can be inf uenced have been computed for each actuator, the
inf uence-based subnetwork is def ned as the union of these nodes over all actuators of a
control agent.

5.3.1 Using sensitivities to determine subnetworks

To determine which dynamics an actuator can inf uence, sensitivities can be used [51]. The
sensitivity of a variable zω associated with a node ω ∈ {1, . . . ,ν} in the network with re-
spect to an input uι indicates how much the value of variable zω changes when the input
uι changes. Therefore, an input uι with respect to which variable zω has a high sensitivity,
i.e., a sensitivity with an absolute value relatively far from zero, has a large inf uence on
the value of variable zω , whereas an input uι with respect to which the variable zω has a
low sensitivity, i.e., a sensitivity with an absolute value close to zero, has a low inf uence
on the value of the variable zω . Knowledge of those variables that have a relatively high
sensitivity to the inputs is more important than accurate knowledge of variables that have
a relatively low sensitivity. Given the sensitivities, sensitivity thresholding can be used to
determine which variables have to be known and which may be neglected. In general, it is to
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be expected that variables representing dynamics appearing geographically far from a par-
ticular input, will have relatively low sensitivity with respect to that input, when compared
to variables representing dynamics in the geographical vicinity of that input.

5.3.2 Computing the sensitivities

To determine the sensitivity of the steady-state characteristics of the network, i.e., the sen-
sitivity of the algebraic variables z with respect to a particular input uι at node ι, consider
the constraint functions guι(z,uι), where guι are the constraint functions in g in which all
elements of u, except for the element corresponding to uι, and all elements of d have been
set to f xed values. Since 0 = g(z,u,d), also 0 = guι(z,uι). In addition, since z depends on
uι, it follows by the chain rule that:

0 =
∂guι

∂z
(z,uι)

∂z
∂uι

(z,uι)+
∂guι

∂uι
(z,uι) ,

and therefore:

∂z
∂uι

(z,uι) =

(

−
∂guι

∂z
(z,uι)

)−1 ∂guι

∂uι
(z,uι) , (5.3)

under the assumption that the inverse term exists. The term ∂z
∂uι (z,uι) is the sensitivity of

z with respect to uι. From this sensitivity we can determine which terms of the algebraic
variables z are signif cantly inf uenced by input uι. If the absolute value of the sensitivity
of a particular element of z with respect to input uι is larger than a sensitivity threshold
γs, then that element of z cannot be neglected. The elements of z that cannot be neglected
can be linked to their corresponding nodes, giving a set of nodes that can be signif cantly
inf uenced by input uι.

The set of nodes that can be inf uenced by an actuator depends on the sensitivity thresh-
old γs used. On the one hand, if a sensitivity threshold γs of 0 is used, all nodes will be
selected. Hence, the subnetwork resulting from this approach will correspond to the full
network. On the other hand, if a very large sensitivity threshold γs is used, no nodes will be
selected, and the subnetwork resulting from this approach will be empty. In Section 5.6.2
we give an illustration of this.

5.3.3 Control of influence-based subnetworks

The settings of the actuators in the network should be adjusted in such a way that the ob-
jectives associated with the nodes are achieved as well as possible. Let each actuator be
controlled by a control agent, and let the task of each control agent be to determine new set
points for its actuators. Control agent i considers as its subnetwork the union of the nodes
that can be inf uenced by the actuators that control agent i can control. The prediction model
Mi that control agent i considers therefore also consists of the union of the constraints in the
inf uence-based models for each actuator that it controls.

Remark 5.1 Since in this chapter we consider only steady-state characteristics, it is not
benef cial to formulate the control problem of each control agent in an MPC setting. If we
would formulate the control problem as an MPC problem, then the MPC problem would
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consist of the combination of static problems for each prediction step, without having cou-
pling between the static problems. Hence, this would effectively mean solving N indepen-
dent static optimization problems without any coupling between them each time a control
agent has to determine actions. However, note that if dynamics depending on time, or if ob-
jective terms depending on inputs implemented earlier are included, that then it does make
sense to formulate an MPC control problem. 2

When the inf uence-based approach is used to determine for each control agent which
subnetwork it should consider, the resulting subnetworks can be non-overlapping, touching,
or overlapping. In addition, the inf uence-based approach uses the sensitivity (5.3), which
is a function of the operating point, to select which nodes should belong to a subnetwork.
Since the operating point can change over time, the nodes that would be assigned to a
subnetwork can differ as well. Hence, the subnetworks can be time-varying.

If the subnetworks are non-overlapping, then the values of the variables of the nodes that
control agents can inf uence signif cantly do not overlap, so no coordination among control
agents is necessary. Adequate control performance can then be obtained, as illustrated in
[51]. If the subnetworks are touching, then techniques based, e.g., on the ideas of Chapter
2 can be used to obtain coordination. For subnetworks that are overlapping, no techniques
have been proposed so far for obtaining coordination. For overlapping subnetworks, the
control agents will have to f nd agreement on how the variables involved in the dynam-
ics of the common subnetworks will evolve over time. In the following we f rst discuss an
approach that can be used for controlling time-invariant touching subnetworks. Then we ex-
tend this approach to be able to deal with time-invariant overlapping subnetworks. For sake
of simplicity we assume below that all nodes in the network are assigned to a subnetwork.

5.4 Multi-agent control of touching subnetworks

In Chapters 2 and 3 we have discussed two approaches for coordinating multiple control
agents when subnetworks are touching, based on a decomposition of an augmented La-
grange function. Below we discuss a technique for coordinating such control agents based
on the ideas of the modif ed Lagrange technique proposed in [31]. The underlying idea is to
determine subproblems in such a way that the f rst-order optimality conditions for the sub-
problems of all control agents together are equivalent to the f rst-order optimality conditions
of a hypothetical overall control problem [31].

5.4.1 Internal and external nodes

Before explaining how the approach for multi-agent control of touching subnetworks works,
we f rst def ne some concepts that will be frequently used in the following:

• We categorize the nodes that control agent i considers based on their location. For
touching subnetworks, the nodes that control agent i considers can be internal nodes
or externalnodes. The internal nodes of control agent i are those nodes that belong
exclusively to its subnetwork. The external nodes of control agent i are those nodes
that do not belong to its subnetwork.
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type location variables involved in constraint
C int

i,int internal internal
C int+ext

i,int internal internal+external
C ext

i,ext external external
C int+ext

i,ext external internal+external

Table 5.1: Localized constraint types of constraints associated with nodes in a sub-
network that touches other subnetworks. The location indicates the loca-
tion of the node from the point of view of control agent i. The variables
involved in the constraint indicate which variables are involved in the con-
straint, from the point of view of control agent i.

• Based on the distinction between internal and external nodes of control agent i, we
make a distinction between internal and external variables of control agent i. The
internal variables are those variables associated with the internal nodes of control
agent i. The external variables are those variables associated with the external nodes
of control agent i.

• For control agent i, the localized constraint typeof a particular constraint associated
with a node ι that control agent i considers is formed by the combination of the lo-
cation and the types of variables involved in that constraint. The localized constraint
type of a constraint associated with a node ι considered by control agent i is de-
noted by CVars

i,Loc , where Loc∈ {int,ext} indicates the location of the node to which the
constraint is associated, and Vars∈ {int, int+ext} indicates the variables involved in
the constraint. Recall that a constraint associated with a particular node ι involves
variables of that particular node and possibly variables of neighboring nodes. The
constraints associated with the nodes considered by control agent i can therefore have
the localized constraint types as depicted in Table 5.1. Figure 5.2 illustrates for some
nodes the localized constraint types that can be found at these nodes.

• In a similar way as we def ned localized constraint types CVars
i,Loc , we also def ne lo-

calized objective term types JVars
i,Loc , referring to the location of the node to which an

objective term is associated and the variables that are involved in the objective func-
tion term.

5.4.2 Control problem formulation for one agent

The optimization problem of control agent i at time step k consists of minimizing the ob-
jective function Ji , subject to the steady-state characteristics of subnetwork i and additional
constraints on inputs and outputs. Below we focus on the diff culties that arise with re-
spect to the prediction model and the objective function due to the existence of other control
agents that control subnetworks that are touching the subnetwork of control agent i.
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Subnetwork i

internal nodes

external nodes

1 1

1

1 2

2

2

2

3

3

3

Figure 5.2: Illustration of different localized constraint types that can be found at nodes
considered by control agent i. The number next to a node in the figure corre-
sponds as follows to the localized constraint types of the constraints that can be
associated to that node: (1)C int

i,int ; (2) C int
i,int ,C

int+ext
i,int ; (3) C int+ext

i,ext ,C ext
i,ext.

Prediction model

The prediction model of control agent i consists of the constraints associated with all its in-
ternal nodes. The internal nodes that do not have external neighboring nodes do not require
special attention, since the variables involved in the constraints of these internal nodes are
of localized constraint type C int

i,int and therefore only involve variables that are inf uenced by
control agent i. However, the internal nodes that are connected to external nodes do require
special attention, since the constraints associated with these internal nodes can be of local-
ized constraint type C int+ext

i,int , and therefore involve not only variables of the subnetwork of
control agent i, but also variables of the subnetwork of a neighboring agent j ∈Ni . In order
to make predictions over its prediction horizon, control agent i has to know accurate values
for the external variables involved in the constraints of these nodes. Therefore, control agent
i has to coordinate with the neighboring agents which values external variables should have.
To obtain coordination on the values of the external variables, we apply an idea that was
f rst proposed in [31] as follows.

Control agent i considers the constraints that are associated with its internal nodes and
that are of localized constraint type C int+ext

i,int , using f xed values for the external variables.
The values for these external variables have been obtained from the neighboring agent j
that has the node of these external variables as an internal node. Control agent i solves its
local optimization problem using these values for the external variables. The optimization
yields values for the internal variables of control agent i, and for the Lagrange multipliers
that are associated with the constraints of localized constraint type C int+ext

i,int . The Lagrange
multipliers of these constraints and the values of the internal variables involved in these con-
straints are sent to each neighboring agent j that has a node to which the external variables
of these constraints correspond as an internal node.

Each neighboring agent j considers the constraints of the internal nodes of control agent
i that involve external variables of control agent i in its decision making by including these
associated constraints as soft constraints in its objective function. Note that internal and
external nodes of control agent i correspond to external and internal nodes, respectively, of a
control agent j . In the soft constraints of such a control agent j , the external variables, which
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localized constraint type constraint
C int

i,int hard
C int+ext

i,int hard
C int+ext

i,ext soft

Table 5.2: The constraints that control agent i can have and how it deals with these con-
straints. For the hard and soft constraints, the external variables are fixed to
values obtained from neighboring agents. For the hard constraints with external
variables Lagrange multipliers are determined. The soft constraints are weighted
using the Lagrange multipliers received from neighboring agents.

localized objective term type how deal with the objective term
J int

i,int include as is
J int+ext

i,int include as is

Table 5.3: The localized objective term types that control agent i considers and how it deals
with these terms. External variables are fixed to values obtained from neighbor-
ing agents.

correspond to internal variables of control agent i, are f xed to the values that control agent
i has sent to control agent j . In addition, the soft constraints are weighted by the Lagrange
multipliers as given by control agent i. Neighboring agent j solves its optimization problem,
yielding values for its internal variables. It sends the values of the internal variables that
appear in the soft constraints to control agent i, such that control agent i can update its
information about the corresponding external variables.

Based on this idea, Table 5.2 shows how control agent i deals with the different con-
straints, when formulating its optimization problem.

Objectives

The objective function for control agent i consists of objective function terms that are as-
sociated with the nodes in its subnetwork. Objective terms associated with internal nodes
that are only connected to internal nodes do not give rise to issues, since no other control
agents consider these objective terms. However, objective terms associated with internal
nodes that are also connected to external nodes cause problems for the same reason as with
the constraints associated with such nodes. Coordination on the values of these variables is
obtained by obtaining the desired values for the external variables from neighboring agents.

Table 5.3 shows the different localized objective term types that control agent i consid-
ers, and how it deals with these, when formulating its optimization problem.

5.4.3 Control scheme for multiple agents

The multi-agent control scheme taking into account the prediction model and objective func-
tion discussed above operates in an iterative way. When the control agents have to determine
actions, they perform a series of iterations, in each of which the control agents perform a
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local optimization step and communicate information. The outline of the scheme is as fol-
lows:

1. Each control agent i measures the current values for the algebraic variables zi and the
input variables ui that are associated with the nodes in its subnetwork. In addition,
it obtains predictions of known exogenous inputs di . Furthermore, it obtains through
communication from its neighbors values for the external variables and Lagrange
multipliers associated with the external nodes that control agent i considers.

2. The iteration counter s is set to 1.

3. Let w(s−1)
in,i and λ̃

(s−1)
soft,i denote the external variables and Lagrange multipliers, respec-

tively, of which control agent i has received the values from neighboring agents.
Given w(s−1)

in,i and λ̃
(s−1)
soft,i , each control agent i ∈ {1, . . . ,n} performs the following

steps in parallel:

(a) Control agent i solves the optimization problem:

min
zi ,ui ,wout,i

Ji

(

zi ,ui ,w
(s−1)
in,i

)

+
(

λ̃
(s−1)
soft,i

)T
g̃soft,i

(

zi ,ui ,w
(s−1)
in,i

)

subject to
g̃hard,i (zi ,ui ,di) = 0

g̃hard,ext,i

(

zi ,ui ,di ,w
(s−1)
in,i

)

= 0 (5.4)

wout,i = K̃ i
[

zT
i uT

i dT
i

]T (5.5)
zi,min ≤ zi ≤ zi,max

ui,min ≤ ui ≤ ui,max ,

where zi,min and zi,max are upper and lower bounds on zi , ui,min and ui,max are
upper and lower bounds on ui , g̃soft,i are the constraints of localized constraint
type C int+ext

i,ext , g̃hard,i are the constraints of localized constraint type C int
i,int , g̃hard,ext,i

are the constraints of localized constraint type C int+ext
i,int , and wout,i are the vari-

ables that control agent i uses in communication to neighboring agents, selected
using selection matrix K̃ i . The optimization results in values for the variables
z(s)

i and u(s)
i , Lagrange multipliers λ̃

(s)
hard,ext,i associated with the constraints (5.4)

for current iteration s, and values for w(s)
out,i .

(b) Control agent i sends the values of the Lagrange multipliers λ̃
(s)
hard,ext,i of the

hard constraints of localized constraint type C int+ext
i,int and the values of wout,i cor-

responding to internal variables of these nodes to the neighboring agents that
consider the involved external variables.

(c) Control agent i receives from the neighboring agents j ∈ Ni those Lagrange
multipliers related to the localized constraint type C int+ext

i,ext and those values of
the internal variables of the neighboring agents that control agent i requires to
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f x its external variables. Control agent i uses this received information at the
next iteration as λ̃

(s)
soft,i and w(s)

in,i .

4. The next iteration is started by increasing sand going back to step 3, unless a stopping
condition is satisf ed. The stopping condition is def ned as the condition that the
absolute changes in the Lagrange multipliers from iteration s− 1 to s are smaller than
a pre-def ned small positive constant γǫ,term.

Although the approach discussed above can coordinate control agents that control touch-
ing subnetworks, a shortcoming of this method is that it requires that the subnetworks are
touching, since it assumes that each node in the network is assigned to only one of the sub-
networks. However, in the case of control of overlapping subnetworks, some of the nodes
are included in more than one subnetwork and the identif cation of internal and external
nodes of a control agent is not straightforward any more. Therefore, the method is not di-
rectly applicable to overlapping subnetworks. In the following, we consider an extension of
the method discussed above to control of overlapping subnetworks.

5.5 Multi-agent control for overlapping subnetworks

Now, we extend the approach for control of touching subnetworks to control of overlapping
subnetworks. We f rst propose some new def nitions, then consider the issues appearing due
to the overlap, and then propose a way to deal with these issues.

5.5.1 Common nodes

In addition to internal and external nodes as def ned before, for control of overlapping sub-
networks we make the following def nitions:

• Commonnodes are nodes that belong to the subnetwork of control agent i and that
also belong to the subnetwork of another control agent j . A subnetwork def ned by
the nodes common to several subnetworks is referred to as a common subnetwork.

• The variables associated with the common nodes are referred to as the common vari-
ables.

• Given the def nition of a common node, the number of possibilities for localized
constraint types increases. Table 5.4 lists the localized constraint types that can be
considered by a control agent when subnetworks can be overlapping. In total there
are 12 different localized constraint types. Figure 5.3 illustrates some of the possible
localized constraint types.

• In addition to the extension of the localized constraint types, the localized objective
term types are extended also accordingly.
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type location variables involved in constraint
C int

i,int internal internal
C int+com

i,int internal internal+common
C int+ext

i,int internal internal+external
C int+com+ext

i,int internal internal+common+external
C int+com

i,com common internal+common
C int+com+ext

i,com common internal+common+external
C com

i,com common common
C com+ext

i,com common common+external
C ext

i,ext external external
C int+ext

i,ext external internal+external
C com+ext

i,ext external common+external
C int+com+ext

i,ext external internal+common+external

Table 5.4: Localized constraint types for overlapping subnetworks.

Subnetwork i

internal nodes

external nodes

common1

1

2

3

4

5

6

7
8

9

10

11

Figure 5.3: Illustration of different localized constraint types that can be found at particu-
lar nodes. The number next to a node in the figure corresponds as follows to
the localized constraint types of the constraints that can be associated to that
node: (1)C int

i,int ; (2) C int
i,int , C

int+ext
i,int ; (3) C int+ext

i,ext , C ext
i,ext; (4) C int

i,int , C
int+com
i,int ; (5)

C int
i,int , C

int+com
i,int , C int+ext

i,int , C int+com+ext
i,int ; (6) C com

i,com; (7) C int+com
i,com , C com+ext

i,com , C com
i,com,

C int+com+ext
i,com ; (8) C com

i,com, C com+ext
i,com ; (9) C com

i,com, C int+com
i,com ; (10) C ext

i,ext, C
ext+com
i,ext ; (11)

C int+ext
i,ext , C com+ext

i,ext , C ext
i,ext, C

int+com+ext
i,ext .
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5.5.2 Control problem formulation for one agent

For multi-agent control of overlapping subnetworks an approach has to be found to deal
with the common nodes. Since the common nodes are considered by several control agents,
also the constraints associated with these common nodes appear in the subnetwork models
of multiple control agents. Even though we assume that the control agents have the same
objective with respect to these nodes, combined with the objective for their internal nodes,
conf icting intentions for the common nodes can be the result. Below we discuss how to
extend the scheme of the previous section for control of overlapping subnetworks.

Prediction model

Similar as for control of touching subnetworks, for control of overlapping subnetworks, in-
ternal nodes of control agent i that are connected to external nodes require special attention,
since the constraints associated to these nodes may involve external variables. In addition
to this, also common nodes of control agent i that are connected to external nodes require
special attention. The extension of the approach for control of touching subnetworks to the
control of overlapping subnetworks consists of the following with respect to the prediction
model.

Control agent i considers as prediction model the constraints of all internal andcommon
nodes. For the constraints of localized constraint types C int+ext

i,int , C int+ext+com
i,int , C com+ext

i,com , and
C int+com+ext

i,com the control agent takes for the external variables values that it has received from
neighboring agents. When control agent i has solved its optimization problem, it sends
the values of the internal and the common variables of the constraints of these specialized
constraint types to neighboring agents.

Each neighboring agent j considers the constraints of the internal and common nodes of
control agent i that involve external variables of control agent i in its optimization problem
as soft constraints by including them in the objective function, weighted by the Lagrange
multipliers provided by control agent i, and with f xed values for the external andcommon
values in the soft constraints as received from control agent i. The result of solving the
optimization problem of neighboring agent j yields values for the internal, common, and
external variables of control agent j . The internal variables of control agent j related to the
soft constraints are sent to control agent i.

Table 5.5 summarizes how control agent i deals with the different localized constraint
types.

Objectives

With the nodes that control agent i has in its subnetwork objective terms are associated. The
objective function terms associated with each node can depend on the variables associated
with that node and its neighboring nodes. As before, the objective terms involving only
internal variables require no special attention. The objective terms involving both internal
and external variables can be dealt with by f xing the external variables, as is also done for
control of touching subnetworks. However, the common variables appearing in control of
overlapping subnetworks do require special attention.

For control of overlapping subnetworks, multiple control agents will try to control the
values of the common variables. To allow control agents to jointly achieve performance
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localized constraint type constraint
C int

i,int hard
C int+ext

i,int , C int+com
i,int hard

C int+com+ext
i,int hard

C int+com
i,com hard and soft

C int+com+ext
i,com hard and soft

C com
i,com hard

C com+ext
i,com hard

C int+ext
i,ext soft

C int+ext+com
i,ext soft

Table 5.5: The way in which control agent i considers the constraints of particular localized
constraint types in its optimization problem. For the hard constraints all common
variables are fixed to values obtained from neighboring agents. For the soft
constraints all external and common variables are fixed. For the hard constraints
with external variables Lagange multipliers are determined. The soft constraints
are weighted with Lagrange multipliers obtained from neighboring agents.

localized objective term type how deal with the objective term
J int

i,int include as is
J int+ext

i,int include as is
J int+com

i,int include as is
J com

i,com include partially: 1/Nι

J int+com
i,com include partially: 1/Nι

Table 5.6: The localized objective term types that control agent i considers and how it deals
with the associated objective terms. External variables are fixed. Variable Nι is
the number of control agents considering node Nι as common node.

comparable to the performance that an overall centralized control agent can achieve, the
responsibility for the objective terms involving only common variables, i.e., of localized
objective term type C com

i,com , is shared equally by the control agents. Hence, each control
agent i that considers a particular common node ι, takes in its objective function 1/Nι times
the objective function terms of that common node that involve only common variables,
where Nι is the number of control agents considering node Nι as common node. Control
agent i in addition includes the objective terms of internal and common nodes that involve
only internal and common variables, i.e., of localized objective term types C int

i,int , C
int+com
i,int ,

C com
i,com , and C int+com

i,com .

Table 5.6 summarizes how control agent i deals with the different localized objective
term types.
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5.5.3 Control scheme for multiple agents

We have discussed how each control agent formulates its prediction model and objective
function. The scheme that we propose for multi-agent control for overlapping subnetworks
consists of the scheme proposed in Section 5.4 for touching subnetworks, with the following
changes:

• Control agent i receives from the neighboring agents the following information at
initialization and after each iteration:

– Lagrange multipliers with respect to the constraints of localized constraint type
C ext+int

i,ext , C ext+com
i,ext , C ext+com+int

i,ext .

– Values for the external variables and the common variables involved in these
constraints.

• The optimization problem that each agent solves is changed accordingly to ref ect the
extensions discussed in this section, i.e., to take into account the constraints as given
in Table 5.5 and the objective terms as given in Table 5.6.

The result is a control scheme that can be used by higher-layer control agents that control
subnetworks that are overlapping. In the next section we apply this scheme on an optimal
f ow control problem in power networks.

5.6 Application: Optimal flow control in power networks

In this section we propose to use the scheme discussed in Section 5.5 for multi-agent con-
trol of overlapping subnetworks to the problem of optimal power f ow control in power
networks. Optimal power f ow control is a well known-method to control and optimize the
operation of a power network [82]. Optimal power f ow control is typically used to im-
prove steady-state network security by improving the voltage prof le, preventing lines from
overloading, and minimizing active power losses. Usually settings for generators are deter-
mined by solving an optimization problem that minimizes an objective function encoding
the system security objectives, subject to the steady-state characteristics of the network.

Typically only steady-state characteristics at on time step are considered, not taking into
account future known exogenous inputs. The conventional optimal power f ow control can
be easily generalized to an optimal power f ow control taking into account future known
exogenous inputs. In this way, indeed, the optimal power f ow control can be seen as an
application of model predictive control, in which the prediction model consists of the steady-
state characteristics def ned over a particular prediction horizon.

Flexible alternating current transmission systems (FACTS) are devices that can improve
power network operation. They can be used for dynamic control of voltage, impedance, and
phase angle. The usage of FACTS devices has the potential to improve the security of the
network, to increase the dynamic and transient stability, to increase the quality of supply for
sensitive industries, and to enable environmental benef ts, all without changing the topology
of the existing network [62]. Some frequently used types of FACTS devices, and the types of
FACTS devices that we consider below, are Static Var Compensators (SVCs) and Thyristor
Controlled Series Compensators (TCSCs) [40].
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Traditional approaches for multi-agent optimal power f ow control assume that a decom-
position of the overall network and control objectives into touching subnetworks is possible
[80, 116], as shown in Figure 5.1(b). When the optimal power f ow control problem in-
volves multiple subnetworks and each bus in these subnetworks is assigned to exactly one
subnetwork, then the assumption of touching subnetworks is appropriate to make. How-
ever, when a bus in a subnetwork is assigned to multiple subnetworks, then this assumption
no longer holds. In our case, we are interested in control using FACTS devices of subnet-
works that have been determined by sensitivity analysis, as discussed in Section 5.3. As
we discussed in that section, the resulting subnetworks can be non-overlapping, touching,
or overlapping. Indeed, if FACTS devices are positioned topologically far from each other,
their inf uence-based subnetworks will typically not overlap, whereas if they are positioned
topologically close to each other, their inf uence-based subnetworks will typically overlap.
Hence, an approach that can be used by the control agents controlling the FACTS devices in
such overlapping subnetworks is required. The approach proposed in Section 5.5 is suitable
for this.

Simulations are carried out on the IEEE 57-bus power network with additional FACTS
devices installed at various locations [5]. The base parameters of the IEEE 57-bus network
can be obtained from the Power Systems Test Case Archive2. Line limits have been assigned
to the lines in such a way that no lines are overloaded. In order to f nd an interesting and
meaningful situation for FACTS control, the grid was adapted by placing an additional
generator at bus 30 leading to increased power f ows in the center of the grid. The values of
all parameters of the used power network are available from the author on request.

Below we formulate the steady-state models used to describe the network behavior, we
assign the constraints to buses, we set up the objective terms associated with the buses,
we discuss the way in which the subnetworks can be determined using the inf uence-based
approach, and we show the workings of the proposed approach.

5.6.1 Steady-state characteristics of power networks

As the focus lies on improving the steady-state network security, the power network is
modeled using equations describing the steady-state characteristics of the power network.
As we will see, the aspects of the steady-state security that we are interested in can be
determined from the voltage magnitude zV,ι per unit (p.u.) and voltage angle zθ,ι (degrees)
associated with each bus ι in the network. In order to determine the values for these variables
under different exogenous inputs and actuator values, models for the components and their
inf uence on the voltage magnitude and angle are def ned. We model the transmission lines,
the generators, the loads, and the FACTS devices.

Transmission lines

For the transmission lines the well known π-model is used [82]. The active power zP,ιω

(p.u.) and the reactive power zQ,ιω (p.u.) f owing from bus ι over the transmission line to

2http://www.ee.washington.edu/research/pstca/pf57/pg_tca57bus.htm

http://www.ee.washington.edu/research/pstca/pf57/pg_tca57bus.htm
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bus ω are then given by, respectively:

zP,ιω = (zV,ι)
2

(

ηR,ιω

(ηR,ιω)2 + (ηX,ιω)2

)

− zV,ιzV,ω

(

ηR,ιω

(ηR,ιω)2 + (ηX,ιω)2 cos(zθ,ι − zθ,ω)

)

+ zV,ιzV,ω

(

ηX,ιω

(ηR,ιω)2 + (ηX,ιω)2 sin(zθ,ι − zθ,ω)

)

(5.6)

zQ,ιω = (zV,ι)
2

(

ηX,ιω

(ηR,ιω)2 + (ηX,ιω)2 −
ηB,ιω

2

)

+ zV,ιzV,ω

(

ηR,ιω

(ηR,ιω)2 + (ηX,ιω)2 sin(zθ,ι − zθ,ω)

)

− zV,ιzV,ω

(

ηX,ιω

(ηR,ιω)2 + (ηX,ιω)2 cos(zθ,ι − zθ,ω)

)

, (5.7)

where ηB,ιω (p.u.) is the shunt susceptance, ηR,ιω (p.u.) is the resistance, and ηX,ιω (p.u.) is
the reactance of the line between buses ι and ω.

The constraints for each transmission line going from bus ι to bus ω, for ω ∈ N ι, are
assigned to bus ι.

Generators

Generators are modeled with constant active power injection and constant voltage magni-
tude. Hence, if a generator is connected to bus ι, then the following constraints are assigned
to that bus:

zP,gen,ι = dP,gen,ι

zV,ι = dV,gen,ι,

where dP,gen,ι is the given active power that the generator produces, and dV,gen,ι is the given
voltage magnitude that the generator maintains. At most one generator can be connected to
a bus, since a generator directly controls the voltage magnitude of that bus.

A single generator is used as slack generator, i.e., a generator with inf nite active and
reactive power capacity, with f xed voltage magnitude and angle [82]. Hence, if the slack
generator is connected to bus ι, the following constraints are assigned to that bus:

zV,ι = dV,gen,ι

zθ,ι = dθ,gen,ι,

where dθ,gen,ι is the given voltage angle ensured by the generator.

Loads

The loads are modeled with constant active and constant reactive power injections. Hence,
if a load is connected to bus ι, then the following constraints are associated to that bus:

zP,load,ι = dP,load,ι

zQ,load,ι = dQ,load,ι,
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where dP,load,ι and dQ,load,ι are the given active and reactive power consumption, respec-
tively, of the load connected to bus ι. For simplicity, one load can be connected to a node.
Multiple loads can easily be aggregated to obtain a single load.

FACTS devices

SVC An SVC is a FACTS device that is shunt-connected to a bus ι and that injects or ab-
sorbs reactive power zQ,SVC,ι to control the voltage zV,ι at that bus [62]. The SVC connected
to bus ι is modeled as a shunt-connected variable susceptance, which accepts as control
input the effective susceptance uB,SVC,ι, as shown in Figure 5.4(a). The injected reactive
power zQ,SVC,ι of the SVC is:

zQ,SVC,ι = −(zV,ι)
2uB,SVC,ι.

The control input uB,SVC,ι is limited to the domain:

uB,SVC,min,ι ≤ uB,SVC,ι ≤ uB,SVC,max,ι,

where the values of uB,SVC,min,ι and uB,SVC,max,ι are determined by the size of the device
[52].

The constraints of an SVC are assigned to the bus to which the SVC is connected.

TCSC A TCSC is a FACTS device that can control the active power f owing over a line
[62]. It can change the line reactance zX,line,ιω, and hence the conductance ηG,ιω and suscep-
tance ηB,ιω involved in (5.6)–(5.7). The TCSC is therefore modeled as a variable reactance
uX,TCSC,ιω connected in series with the line, as shown in Figure 5.4(b). If a TCSC is con-
nected in series with a transmission line between buses ι and ω, the total reactance zX,line,ιω
of the line including the TCSC is given by:

zX,line,ιω = ηX,ιω + uX,TCSC,ιω,

where ηX,ιω is the reactance of the line without the TCSC installed. The reactance uX,TCSC,ιω

is limited to the domain:

uX,TCSC,min,ιω ≤ uX,TCSC,ιω ≤ uX,TCSC,max,ιω,

where the values of uX,TCSC,min,ιω and uX,TCSC,max,ιω are determined by the size of the TCSC
device and the characteristics of the line in which it is placed, since due to the physics the
allowed compensation rate of the line uX,TCSC,ιω/ηX,ιω is limited [52].

The constraints of the TCSC at the line between bus ι and ω are assigned to bus ι.

Power balance

By Kirchhoff’s laws, at each bus the total incoming power and the total outgoing power has
to be equal. This yields for bus ι the following additional constraints:

0 = ∑
ω∈N ι

(zP,ιω)+ zP,load,ι − zP,gen,ι

0 = ∑
ω∈N ι

(zQ,ιω)+ zQ,load,ι + zQ,SVC,ι.
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zV,ι juB,SVC,ι

(a)

ηR + jηX,ιω
juX,TCSC,ιω

j ηB
2j ηB

2

(b)

Figure 5.4: (a) Model of an SVC and (b) of a TCSC.

If no generator is connected to bus ι, then dP,gen,ι and zQ,gen,ι are zero. If no load is connected
to bus ι, then zP,load,ι and zQ,load,ι are zero. If no SVC is connected to bus ι, then zQ,SVC,ι is
zero.

5.6.2 Control objectives

The objectives of the control are to improve the system security through minimization of de-
viations of bus voltages from given references to improve the voltage prof le, minimization
of active power losses, and preventing lines from overloading, by choosing appropriate set-
tings for the FACTS devices. These objectives are translated into objective terms associated
with the buses as follows:

• To minimize the deviations of the bus voltage magnitude zV,ι of bus ι from a given
reference dV,ref,ι, an objective term pV (zV,ι − dV,ref,ι)

2 is associated with bus ι, where
pV is a weighting coeff cient.

• To minimize the active power losses over a line between bus ι and bus ω, an objective
term plosszP,loss,ιω is associated to bus ι, where ploss is a weighting coeff cient, and
where zP,loss,ιω = zP,ιω + zP,ωι.

• To minimize the loading of the line between buses ι and ω, an objective term is

associated to bus ι as pload

(

zS,ιω

zS,max,ιω

)2
, where pload is a weighting coeff cient, and

where zS,ιω =
√

(zP,ιω)2 + (zQ,ιω)2 is the apparent power f owing over the line from
bus ι to bus ω. The relative line loading is penalized in a quadratic way such that an
overloaded line is penalized more severely than a line that is not overloaded.

The weighting coeff cients pV , ploss, and pload allow to put change the weight given to each
objective. In the following we take pV = 1000, ploss = 100, and pload = 1.

5.6.3 Setting up the control problems

Each FACTS device is controlled by a different control agent. The inf uence-based subnet-
works of the control agents controlling the FACTS devices can be overlapping, and therefore
the control problems of the control agents are set up using the approach discussed in Sec-
tion 5.5. To solve their subproblems at each iteration the control agents use the nonlinear
problem solver SNOPT v5.8 [50], as implemented in Tomlab v5.7 [65], and accessed from
Matlab v7.3 [98].
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Figure 5.5: IEEE 57-bus network with SVCs installed at buses 14 and 34.

In the following we illustrate how the subnetwork of a control agent changes depending
on the sensitivity threshold γs, and how the approach works for a particular assignment of
buses to subnetworks in two representative scenarios.

5.6.4 Illustration of determination of subnetworks

To illustrate the way in which inf uence-based subnetworks can be def ned for a power
network, consider the adjusted IEEE 57-bus power network depicted in Figure 5.5 with
SVCs installed at buses 14 and 34. We illustrate how the inf uence of the SVC at bus 34 on
the buses in the network changes depending on the sensitivity threshold γs.

Remark 5.2 Instead of computing the gradients of the constraint functions of the network
with respect to the SVC input analytically, we have numerically approximated them. The
approximation is made by initializing the network in a particular operating point z̄,ū, in-
creasing the value of the SVC input by γ∆uB,SVC , determining the values of z, and computing
the sensitivity of z with respect to the SVC input as: 1

γ∆uB,SVC
(z− z̄), where γ∆uB,SVC = 10−6.

Since we are interested in the sensitivity of the SVC input with respect to the voltage mag-
nitudes, the sensitivity criterion is checked only for the elements of z corresponding to the
voltage magnitudes. 2

Figure 5.6 shows the subnetworks and Figure 5.7 shows the number of nodes in the
subnetworks, as the sensitivity threshold γs is increased. We observe that, indeed, with a
lower threshold, more buses are included in the subnetwork, and with a higher threshold,
fewer buses are included.

5.6.5 Simulations

Various test scenarios with different FACTS devices and subnetworks have been examined.
Here we present two representative scenarios. The subnetworks used in these scenarios are
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Figure 5.8: IEEE 57-bus system with decomposition into 2 subnetworks. Scenario 1: SVCs
at buses 14 and 34, scenario 2: TCSCs in lines 22 and 72.

shown in Figure 5.8. It can be seen that these subnetworks are overlapping, since there are
several buses that are included in both subnetworks.

Scenario 1: Control of SVCs
In the f rst scenario, SVCs are placed at buses 14 and 34. As the SVCs are mainly used
to inf uence the voltage prof le, the line limits are chosen such that no line is at the risk of
being overloaded.

Figure 5.9 shows the convergence of the SVC device settings over the iterations. As can
be seen, the settings of the SVC devices converge within only a few iterations to the f nal
values, which in this case are equal to the values obtained from an overall optimization.
Figure 5.10 shows the evolution of the deviations between the values determined by both
subnetworks for the voltage magnitudes and angles at some common buses. In the f gure
the error zV,err,ι is def ned as the absolute difference between the values that control agents
1 and 2 want to give to the voltage magnitude zV,ι. Similarly, the error zθ,err,ι is def ned as
the absolute difference between the values that control agents 1 and 2 want to give to the
voltage angles. As can be seen fast convergence is observed.

Scenario 2: Control of TCSCs

In the second scenario, TCSCs are installed in lines 72 and 22. Since TCSCs are mainly
used to inf uence active power f ows and to resolve congestion, the line limits are chosen
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Figure 5.11: FACTS device settings for the TCSCs in lines 22 and 72, i.e., the lines between
buses 7 and 8, and buses 44 and 45, respectively.

such that lines 7 and 60 are overloaded in the base case when the FACTS devices are set out
of operation.

The results for the TCSC settings and the difference between the voltage magnitudes
and angles for some common buses over the iterations are given in Figures 5.11 and 5.12,
respectively. The control agent of subnetwork 1 sets the TCSC to its upper limit at the f rst
few iterations. But after some additional iterations, the values that the control agents choose
converge to their f nal values, which are again equal to the values obtained from an overall
control agent.

In Figure 5.13 the line loadings of lines 7 and 60, i.e., the lines which are overloaded
without FACTS devices in operation, are shown. Line 7 is immediately brought below its
limit whereas for line 60, the loading approaches 100% in the course of the optimization
process.

5.7 Summary

In this chapter we have focused on higher-layer multi-agent control using alternative ways
to def ne subnetworks. While in Chapter 4 the medium control layer has used a model
of the dynamics of the lower control layer and physical network, here the higher control
layer uses steady-state characteristics only. While in the previous chapters we have def ned
subnetworks based on already existing control regions, in this chapter we have discussed
how subnetworks can be def ned based on the inf uence of actuators on the variables of
nodes. When such an approach is used to def ne subnetworks, some subnetworks could be
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overlapping. Issues involving how to deal with the emerging common subnetwork then have
to be dealt with. We have discussed these issues and proposed a method for higher-layer
multi-agent control that can be used by control agents that control overlapping subnetworks.
With simulation studies we have illustrated the potential of the approach. However, further
research is still required, e.g., to determine formally when the approach converges and what
the quality of the obtained solutions is, in particular when compared to an overall combined
approach.

As application we have considered FACTS control in an adjusted version of the IEEE
57-bus power network. We have illustrated how the subnetwork of an actuator varies de-
pending on the sensitivity threshold used, and we have applied the control approach that we
proposed in this chapter for overlapping subnetworks to an optimal f ow control problem
using FACTS devices. The simulations illustrate that the proposed approach can in the con-
sidered cases achieve fast convergence to actuator values that are overall optimal. Future
research should address further comparison with an overall single-agent control scheme,
to gain more insight in the quality of the solutions and the time required to obtain these
solutions.





Chapter 6

Conclusions and future research

In this thesis we have discussed multi-agent model predictive control of transportation net-
works in general, and power networks in particular. We have discussed how control agents
have to make decisions given different constraints on the type of systems they control, the
actuators they can access, the information they can sense, and the communication and co-
operation they can perform. In this chapter we summarize our main contributions and for-
mulate future research directions.

6.1 Conclusions

Our main contributions with respect to the control approaches discussed are:

• Serial versus parallel schemes.In Chapter 2 we have formalized the dynamics of
subnetworks as interconnected linear time-invariant systems, and def ned their con-
trol using an MPC control agent for each subnetwork. We have discussed why the
control agent has to communicate with neighboring agents about how the variables
involved in interconnecting constraints evolve. Furthermore, we have surveyed sev-
eral ways of how to perform such communication, and have proposed a novel serial
scheme, which converges toward an overall optimal solution under convexity of the
overall MPC control problem. It has hereby been assumed that the subnetworks have
discrete-time linear time-invariant dynamics, involving only variables taking on con-
tinuous values, and that the control objectives can be formulated as aff ne or convex
functions. We have contrasted the scheme with a related parallel scheme. Experi-
ments have conf rmed that the proposed approach can achieve performance close to
overall performance.

• Networked hybrid systems.In Chapter 3 we have discussed issues related to mod-
eling and control of hybrid systems, i.e., systems including both discrete and contin-
uous elements. With respect to modeling of hybrid systems we have illustrated how
discrete logic statements can be transformed into linear mixed-integer equality and in-
equality constraints. We have discussed issues arising in multi-agent control of inter-
connected hybrid systems and we have proposed an extension of the serial approach
of Chapter 3 for control of such systems. This extension relaxes the assumptions
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made on the original approach (i.e., discrete-time linear time-invariant dynamics for
subnetworks with variables taking on continuous values, in combination with aff ne
or convex objective functions) by allowing input variables to take on integer values
instead of continuous values. Experiments using the proposed approach have given
an indication that the proposed extension can resolve the discussed issues and can
result in actions that give adequate performance.

• Multi-layer control using MPC. In Chapter 4 we have discussed MPC in multi-
layer control. We have discussed the layered control of transportation networks using
higher, medium, and lower-layer control, based on a time-scale decomposition of
the dynamics. Then, we have focused in particular on issues related to the predic-
tion model that a medium-layer MPC control agent uses and discussed why object-
oriented modeling is suitable for constructing such a prediction model. Subsequently,
we have proposed an MPC approach using such an object-oriented prediction model,
or using a linearized approximation of such a model. To cope with the nonlinear, non-
smooth, and costly-to-evaluate objective function of the MPC problem based on the
object-oriented model, we have proposed the use of multi-start pattern search as opti-
mization method. In experiments we have illustrated that the multi-start pattern search
can outperform a state-of-the-art multi-start gradient-based approach. In addition, we
have illustrated that using the MPC problem based on the linearized approximation of
an object-oriented prediction model can result in signif cantly faster control, although
at the price of reduced performance.

• Overlapping subnetworks.In Chapter 5 we have focused on the control by a higher-
layer control agent. It is hereby assumed that at this higher layer the dynamics of the
underlying control layers and physical network can be assumed instantaneous. We
have discussed various ways of def ning subnetworks, and have in particular focused
on how subnetworks can be def ned based on the inf uence that actuators of a control
agent have. Using such inf uence-based subnetworks, it could happen that several
subnetworks are overlapping. We have discussed issues that arise due to this overlap,
and have proposed an approach for multi-agent control of overlapping subnetworks,
using the nonlinear steady-state characteristics of the subnetworks as prediction mod-
els. Experiments have illustrated for a given example that the proposed approach can
choose actions close to overall optimal actions.

We have considered several applications to which the proposed control approaches can
be applied. Our main contributions with respect to these applications are:

• Load-frequency control. In Chapter 2 we have proposed the application of the serial
MPC control scheme for a load-frequency control problem. Through experimen-
tal studies on a network consisting of 13 subnetworks, we have compared the serial
scheme with the related parallel scheme and an overall scheme. The serial scheme
showed to have preferable properties in terms of speed of convergence and quality of
solutions. However, the parallel scheme outperformed the serial scheme in terms of
total computation time. For the serial and the parallel schemes, the performance of
the solutions obtained converged toward the performance of the solutions obtained by
the overall scheme.
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Furthermore, in Chapter 3 we have considered how the proposed extension of the
serial scheme for interconnected hybrid systems performs when applied to the load-
frequency control problem of Chapter 2, extended with discrete generation switching.
We have illustrated that the approach has the potential to yield control actions that are
overall optimal.

• Household energy control.In Chapter 3 we have used the transformations for dis-
crete dynamics to derive a model for a household equipped with its own power gen-
eration and storage capabilities. As a f rst step toward a control structure in which
multiple control agents, each representing a single household, jointly control the en-
ergy usage in a district, we have then proposed MPC for control of a single household
using this model. In its decision making, the control agent uses expected energy
consumption prof les and electricity export prices. We have illustrated that the MPC
control agent can adequately take into account the discrete dynamics and yield a re-
duction in operational costs.

• Emergency voltage control. In Chapter 4 we have considered a control agent in a
medium control layer of a power network that provides set-points to a lower control
layer with the aim of preventing voltage collapses. For the MPC formulation of the
higher-layer control agent based on the object-oriented model, using experiments we
have illustrated the that multi-start pattern can outperform a multi-start state-of-the-
art gradient-based method and we have illustrated that the voltage collapses can be
prevented from occurring. For the MPC problem based on the linearized model, we
have illustrated the performance of the control and related this performance to the
quality of the predictions of the linearized model under faults of varying magnitude.

• FACTS-based optimal flow control. In Chapter 5, we have considered the problem
of control of overlapping subnetworks using FACTS devices on an adjusted version of
the IEEE 57-bus power network. We have illustrated how the region of inf uence of an
actuator varies depending on the sensitivity threshold used, and we have applied the
control approach proposed for control of overlapping subnetworks. Simulations have
illustrated that the proposed approach has the potential to achieve fast convergence to
actuator values that are overall optimal.

6.2 Future research

In principle, a multi-agent control approach for a transportation network will have to in-
tegrate solutions to each of the issues discussed in this thesis. However, even then several
issues remain unsolved or can be investigated further. With respect to the control approaches
addressed in this thesis, some challenging issues that require future research are:

• Serial versus parallel schemes.With respect to the serial multi-agent MPC scheme
as discussed in Chapter 2, analytical bounds on the rate of convergence should be
derived to give guarantees on the speed at which decisions are made. In addition,
ways to speed up the decision making should be investigated, e.g., by forming groups
and control agents that cooperate in coalitions.
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• Networked hybrid systems. In Chapter 3, the transformations that have been used
to transform discrete logic into linear constraints yielded a large number of binary
variables. Research should address how the number of binary variables can be re-
duced. This may be done, e.g., by reformulating the underlying discrete logic, or by
examining for which discrete dynamics it is strictly necessary to explicitly include
these discrete dynamics; it may be the case that some discrete dynamics have a neg-
ligible effect on the continuous dynamics (e.g., dynamics appearing further away on
a prediction horizon) and that these discrete dynamics therefore can be neglected or
approximated with continuous dynamics. For the proposed extension of the serial
MPC scheme for hybrid systems, it should be investigated formally whether and un-
der which assumptions the scheme is guaranteed to converge to an overall optimal
solution. In addition, it should be investigated how exactly the penalty coeff cient
should be increased, and with what value this should be done. Furthermore, it should
be investigated what the range of systems is for which the proposed approach could
work, and if for a larger range of systems combinations between techniques from
distributed integer and distributed real optimization could be useful.

• Multi-layer control using MPC. With respect to Chapter 4, the performance loss
when using the MPC control problem based on the linearized prediction model due
to the approximation of the linearization should be further investigated. In addition,
the solution techniques should be extended to deal with both continuous and discrete
variables, such that hybrid systems can be controlled. Furthermore, analysis has to be
done regarding the performance of the proposed approach for a medium-layer con-
trol agent when the model of the medium-layer control agent is an abstraction of the
dynamics of the physical network and lower control layer. Model order reduction
techniques may be used to determine which dynamics have to be taken into account
by a medium-layer control agent, and which may be removed. In addition, topologi-
cal reduction techniques may be used to determine which dynamics a medium-layer
control agent can aggregate in order to obtain a simplif ed model. Furthermore, it has
to be determined how control agents using MPC in a lower control layer should be
taken into account by a higher-layer control agent, and how ultimately multiple MPC
control agents in a higher layer should control multiple MPC control agents in a lower
layer. Techniques such as those discussed in Chapters 2 and 5 may be extended to
obtain agreement between control agents at different layers about certain variables.
The techniques of Chapters 2 and 5 for the control agents in the lower control layer
should be mixed with similar techniques to obtain coordination between lower and
medium control layers.

• Overlapping subnetworks. For Chapter 5, the quality of the predictions made with
subnetworks based on the inf uence of actuators under different sensitivity parameter
values should be analyzed formally. In addition, investigation has to be performed
on the assumptions under which the scheme proposed for control of overlapping sub-
networks converges, and what the quality of the solutions obtained is. The scheme
should be extended to include dynamic models, instead of only steady-state models,
and to be able to deal with time-varying subnetworks, instead of f xed subnetworks.
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In addition to these topics, more general fundamental further future research directions con-
sist of:

• Scalability. It remains to be addressed how the convergence speed of the approaches
discussed changes when applied to control structures with large numbers of control
agents. If the approaches do not scale well, then ways to make them scalable should
be investigated, e.g., by clustering control agents in groups in combination with coor-
dination between the groups.

• Robustness.It should be investigated how robust the discussed approaches are against
modeling errors and noise. In addition the control schemes that we have discussed
silently assume that the decision making is done instantaneously or that at least the
information used to initiate the decision making at a particular control cycle is valid
also at moment at which actions are actually implemented. Future research should
address how the schemes could be made robust to delays. In addition, fault-tolerance
against failing control agents is still an unsolved issue.

• Non-cooperative agents.When some of the control agents are not cooperative the
control agents may not be able to reach agreement on which actions to take. It should
be investigated how the cooperative agents could deal with this and if they could,
e.g., manipulate the non-cooperative control agents in order to reach the cooperative
objectives. It would hereby be interesting to related concepts from multi-agent MPC
to concepts from the f eld of non-cooperative game theory [11], such as Stackelberg
games [11] and inverse Stackelberg games [64, 134].

• Alternative control methodologies.The techniques that have been discussed in this
thesis should be compared with alternative, non-MPC-based techniques (both from
the f eld of control engineering and from the f eld of computer science), to determine
the advantages and disadvantages of each. In this way possibly new techniques can
be proposed, combining the best of several techniques.

With respect to the applications discussed in this thesis, future research directly related
to these applications consists of:

• Load-frequency control. The models that are used for the load-frequency control
problem in Chapters 2 and 3 could be extended to more adequately represent the
dynamics of the power networks, e.g., by including more detailed models of gen-
erators and loads, and by modeling explicitly the presence of tie-line power control
devices. In addition, the model representing the physical network could be replaced
by a continuous-time nonlinear model, instead of the currently used discrete-time
linearized model. Furthermore, forecasts about expected power f ows between sub-
networks could be included, such the MPC strategy can be exploit at an early time
expected changes in power f ows.

• Household energy control.The model of a single household in Chapter 3 could be
extended by including, e.g., disposable loads, i.e., load shedding within a household.
In addition, the control problem could be reformulated to include variable gas and
electricity export prices, and to schedule when consumption and generation should
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take place. Furthermore, several households could be connected to one another, al-
lowing energy to be exchanged between neighboring households. The control prob-
lem could then be extended such that the control agents of the households cooper-
atively optimize their energy usage. The models of the individual households will
then depend on variables of other households. The control agents will have to reach
agreement on the values of these variables in order to successfully implement MPC. It
should be investigated how the proposed scheme in Section 3.4 for control of intercon-
nected hybrid subnetworks performs on such a system of interconnected households.
Moreover, from the practical point of view, steps toward implementation in practice
can be made by f rst implementing the household control agents on a laboratory setup
and then implementing the household control agents in physical households.

• Emergency voltage control.With respect to the emergency voltage control scenario
in Chapter 4, it would be interesting to further investigate the range of situations in
which the MPC control agent using the linearized prediction model performs ade-
quately and would be a good replacement for the control agent using the nonlinear
prediction model. In addition, a larger benchmark network could be constructed after
which the extended control approaches proposed for future research could be applied.
In this larger benchmark network, control agents are used to control parts of the net-
work using MPC, and a higher-layer control agent coordinates these MPC control
agents. Furthermore, it would be interesting to investigate the potential of the pro-
posed approach for emergency voltage control within large industrial sites.

• FACTS-based optimal flow control. The way in which the subnetworks based on
the inf uence of the FACTS devices change under varying network conditions should
be investigated. In addition, instead of considering steady-state characteristics of the
power network under consideration in Chapter 5, dynamics could be included, e.g.,
in the generators and loads, to more adequately model the dynamics of the network.

In addition, future general application-oriented research should investigate the use of the
discussed approaches in other f elds besides power networks. In this respect, the following
future research directions should be considered:

• Model development and validation. The control schemes that we have discussed
all require a model that adequately represents the dynamics of the system. For ap-
plication of the approaches discussed on practical examples, models will have to be
constructed and validated. It will then also have to be investigated which quantities
can be measured in practice, and which quantities will have to be estimated.

• Alternative application domains. The application of the control approaches pre-
sented in this thesis is not restricted to the applications from the domain of power
networks only. Domains in which the control approaches presented could be applied
include not only transportation networks, such as water distribution networks, road
traff c networks, railway networks, gas distribution networks, etc., but also the pro-
cess industry (e.g., for multi-agent control of production lines), supply chains (e.g.,
for multi-agent control of stocks), and autonomous guided or f ying vehicles. Inves-
tigation of the application of the approaches discussed in this thesis to these domains
will give interesting insights into the similarities and dissimilarities between the op-
eration of transportation networks.
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Glossary

Conventions

The following conventions are used in this thesis for notation and symbols:

• A lower case character typeset in boldface, e.g., x, represents a column vector.

• The number of elements in a vector x is indicated by nx.

• An upper case character typeset in boldface, e.g., A, represents a matrix.

• A character typeset in calligraphics, e.g., N , represents a set.

• A tilde over a variable, e.g., x̃, indicates a variable specif ed over a prediction horizon.

• A bar over a variable, e.g., x̄, indicates that the value of the variable is known.

• A subscript i or j of a variable, e.g., xi or x j , refers to a variable of a control agent or
subnetwork i or j , respectively.

• Subscripts max and min of a variable, e.g., xmax and xmin, represent the maximum and
minimum value of that variable, respectively.

• A subscript avg, e.g., xavg, indicates that an average is considered.

• A superscript ι or ω of a variable, e.g., xι or xω , refers to a variable beloning to node
ι or ω, respectively.

• A superscript T, e.g., xT, indicates that a transpose is taken.

List of symbols and notations

Below follows a list of the most frequently used symbols and notations in this thesis. Sym-
bols particular to power network applications are explained only in the relevant chapters.

A, Ac system matrices of linear time-invariant models

B,B1,B2,B3 input matrices of linear time-invariant models

C,Cc,y,Cc,z output matrices of linear time-invariant models
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CVars
i,Loc localized constraint type

d exogeneous input
D,D1,D2,D3,Dc,y,Dc,z direct-feedthrough matrices of linear time-invariant models

E1,E2,E3,E4,E5 matrices of mixed-logical dynamic models

f function
f vector with linear cost coeff cients
F,Fc state-offset vectors of linear time-invariant models

g equality constraint function
gu equality constraint function with all variables except u f xed
ghard,i equality constraint function of subnetwork i for an internal node
ghard,ext,i equality constraint function of subnetworks i for an internal node

that is connected to an external node
gsoft,i equality constraint function of subnetwork i for an external node
G,Gc,y,Gc,z output-offset vectors of linear time-invariant models

h inequality constraint function

i index of a control agent or a subnetwork
I identity matrix

j index of a neighboring agent
J objective function
Jadd,Jcycle,Jrel,Jsim additional, cycle, relative, and full simulation cost
JVars

i,Loc localized objective function term type

k discrete time step or control cycle counter
kc control cycle counter
kf control cycle f nishing step
kp prediction step counter
K̃ i interconnecting-output selection matrix of agent i

l a control cycle counter within predictions
Laug an augmented Lagrange function

mi number of neighbors of control agent i
M,Mlin prediction model and linearized prediction model
M mesh with candidate solutions

n number of subnetworks
na number of elements in vector a
N length of a prediction horizon
Nc length of a prediction horizon in control cycles
Ninit number of initial solutions
Niter number of iterations
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Np length of a prediction horizon in discrete time steps
N∆s number of iterations between parameter updates
Nι number of control agents that have node ι in their subnetwork
N set of natural numbers
N

+ set of positive natural numbers
Ni set of indexes of neighboring agents of agent i
N ι set of indexes of neighboring nodes of node ι

p parameter

Q,Qa weight matrices for quadratic costs

R set of real numbers

s iteration number
s,s+ solution vector and a new solution vector

t continuous time instant
t0, tf, tfault initial, f nishing, and fault continuous time instant
Tc length of a discrete control cycle in seconds
Tcomp computation time in seconds
Topt f nishing time of an optimization in seconds
Tp length of a discrete time step in seconds

u input variable
ub binary input variable
uc continuous input variable
U vector with input vectors of all agents
U domain with integer values

vi local remaining variable of subnetwork i

win, ji interconnecting input of subnetwork i
wout,i j interconnecting output of subnetwork j
win,i vector with all interconneting inputs of agent i
wout,i vector with all interconnecting outputs of agent i
Win vector with the interconnecting inputs of all agents
Wout vector with the interconnecting outputs of all agents

x state variable
xb binary state variable
xc continuous state variable
X vector with states of all agents

y output variable
yb binary output
yc continuous output
ydesired,max,ydesired,min desired upper and lower bound
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yerr maximum of the violation of an upper and lower bound
Y vector with output variables of all agents

z auxiliary continuous variable
z∞ auxiliary variable for computing an ∞-norm
z1 auxiliary variables for computing a 1-norm

γb,γc positive penalty coeff cients
γcontr contraction factor
γexp expansion factor
γm,γM minimum and maximum of a function
γmesh mesh size change
γs sensitivity threshold
γ∆c multiplication factor for γc
γǫ,mach small postive constant close to machine precision
γǫ,term small postive constant used for determining termination

δ binary variable

ι index of a node

λin, ji Lagrange multiplier of an interconnecting input constraint
λout,i j Lagrange multiplier of an interconnecting output constraint
λhard,ext,i Lagrange multiplier of a constraint of subnetwork i for an internal

node that is connected to an external node
λsoft,i Lagrange multiplier of a constraint of subnetwork i for an external

node
Λin vector with Lagrange multipliers of all agents

ν number of nodes in a network

ω index of a neighboring node

List of abbreviations

The following abbreviations are used in this thesis:

AVR Automatic Voltage Regulator
DAE Differential-Algebraic Equations
FACTS Flexible Alternating-Current Transmission System
MPC Model Predictive Control
PSS Power System Stabilizer
SVC Static Var Compensator
TCSC Thyristor Controlled Series Compensators
µCHP micro Combined Heat and Power
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Samenvatting

Multi-Agent Modelgebaseerd Voorspellend Regelen
met Toepassingen in Elektriciteitsnetwerken

Transportnetwerken, zoals elektriciteitsnetwerken, verkeersnetwerken, spoornetwerken, wa-
ternetwerken, etc., vormen de hoekstenen van onze moderne samenleving. Een soepele,
eff ciënte, betrouwbare en veilige werking van deze netwerken is van enorm belang voor
de economische groei, het milieu en de leefbaarheid, niet alleen wanneer deze netwerken
op de grenzen van hun kunnen moeten opereren, maar ook onder normale omstandigheden.
Aangezien transportnetwerken dichter en dichter bij hun capaciteitslimieten moeten wer-
ken, en aangezien de dynamica van dergelijke netwerken alsmaar complexer wordt, wordt
het steeds moeilijker voor de huidige regelstrategieën om adequate prestaties te leveren on-
der alle omstandigheden. De regeling van transportnetwerken moet daarom naar een hoger
niveau gebracht worden door gebruik te maken van nieuwe geavanceerde regelstrategieën.

Elektriciteitsnetwerken vormen een specif eke klasse van transportnetwerken waarvoor
nieuwe regelstrategieën in het bijzonder nodig zijn. De structuur van elektriciteitsnetwerken
is aan het veranderen op verschillende niveaus. Op Europees niveau worden de elektrici-
teitsnetwerken van individuele landen meer en meer geïntegreerd door de aanleg van trans-
portlijnen tussen landen. Op nationaal niveau stroomt elektriciteit niet langer alleen van het
transmissienetwerk via het distributienetwerk in de richting van bedrijven en steden, maar
ook in de omgekeerde richting. Daarnaast wordt op lokaal niveau regelbare belasting ge-
installeerd en kan energie lokaal gegenereerd en opgeslagen worden. Om minimumeisen
en -serviceniveaus te kunnen blijven garanderen, moeten state-of-the-artregeltechnieken
ontwikkeld en geïmplementeerd worden.

In dit proefschrift stellen wij verschillende regelstrategieën voor die erop gericht zijn om
de opkomende problemen in transportnetwerken in het algemeen en elektriciteitsnetwerken
in het bijzonder het hoofd te bieden. Om het grootschalige en gedistribueerde karakter van
de regelproblemen te beheersen gebruiken wij multi-agentaanpakken, waarin verschillen-
de regelagenten elk hun eigen deel van het netwerk regelen en samenwerken om de best
mogelijke netwerkbrede prestaties te behalen. Om alle beschikbare informatie mee te kun-
nen nemen en om vroegtijdig te kunnen anticiperen op ongewenst gedrag maken wij gebruik
van modelgebaseerd voorspellend regelen (MVR). In de regelstrategieën die wij in dit proef-
schrift voorstellen, combineren wij multi-agent aanpakken met MVR. Hieronder volgt een
overzicht van de regelstrategieën die wij voorstellen en de regelproblemen uit de specif eke
klasse van elektriciteitsnetwerken, waarop wij de voorgestelde regelstrategieën toepassen.
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Multi-agent modelgebaseerd voorspellend regelen

In een multi-agent regeling is de regeling van een systeem gedistribueerd over verschillende
regelagenten. De regelagenten kunnen gegroepeerd worden aan de hand van de autori-
teitsrelaties die tussen de regelagenten gelden. Een dergelijke groepering resulteert in een
gelaagde regelstructuur waarin regelagenten in hogere lagen meer autoriteit hebben over
regelagenten in lagere lagen en waarin regelagenten in dezelfde laag dezelfde autoriteits-
relaties met betrekking tot elkaar hebben. Gebaseerd op de ideeën van MVR bepalen in
multi-agent MVR de regelagenten welke actie zij nemen aan de hand van voorspellingen.
Deze voorspellingen maken zij met behulp van voorspellingsmodellen van die delen van het
algehele systeem die zij regelen. Daar waar de regelagenten in hogere lagen typisch minder
gedetailleerde modelen en langzamere tijdschalen beschouwen, beschouwen regelagenten
op lagere regellagen typisch meer gedetailleerde modelen en snellere tijdschalen. In dit
proefschrift worden de volgende regelstrategieën voorgesteld en bediscussieerd:

• Voor de coördinatie van regelagenten in een regellaag wordt een nieuw serieel schema
voor multi-agent MVR voorgesteld en vergeleken met een bestaand parallel schema.
In de voorgestelde aanpak wordt aangenomen dat de dynamica van de deelnetwerken
alleen uit continue dynamica bestaat en dat de dynamica van het algehele netwerk
gemodelleerd kan worden met verbonden lineaire tijdsinvariante modellen, waarin
alle variabelen continue waarden aannemen.

• In de praktijk komt het regelmatig voor dat deelnetwerken hybride dynamica verto-
nen, veroorzaakt door zowel continue als discrete dynamica. We bediscussiëren hoe
discrete dynamica gevat kan worden in modellen bestaande uit lineaire vergelijkingen
en ongelijkheden en hoe regelagenten dergelijke modellen kunnen gebruiken bij het
bepalen van hun acties. Daarnaast stellen wij een uitbreiding voor van de coördinatie-
schema’s voor continue systemen naar systemen met continue en discrete variabelen.

• Voor een individuele regelagent die richtpunten bepaalt voor regelagenten in een lage-
re regellaag wordt het opzetten van object-georiënteerde voorspellingsmodellen be-
discussieerd. Een dergelijk object-georiënteerd voorspellingsmodel wordt dan ge-
bruikt om een MVR-regelprobleem te formuleren. Wij stellen voor om de optima-
lisatietechniek pattern searchte gebruiken om het resulterende MVR-regelprobleem
op te lossen. Daarnaast stellen wij omwille van de eff ciëntie een MVR-regelstrategie
voor die gebaseerd is op een gelineariseerde benadering van het object-georiënteerde
voorspellingsmodel.

• Regelmatig worden deelnetwerken gedef nieerd op basis van reeds bestaande net-
werkregio’s. Dergelijke deelnetwerken overlappen meestal niet. Als deelnetwerken
echter gebaseerd worden op bijvoorbeeld invloedsgebieden van actuatoren, dan kun-
nen de deelnetwerken overlappend zijn. Wij stellen een regelstrategie voor voor het
regelen van overlappende deelnetwerken door regelagenten in een hogere regellaag.

Multi-agent regelproblemen in elektriciteitsnetwerken

Elektriciteitsnetwerken vormen een specif eke klasse van transportnetwerken waarvoor de
ontwikkeling van geavanceerde regeltechnieken noodzakelijk is om adequate prestaties te
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behalen. De regelstrategieën die in dit proefschrift worden voorgesteld worden daarom aan
de hand van toepassing op specif eke regelproblemen uit elektriciteitsnetwerken geëvalu-
eerd. In het bijzonder worden de volgende regelproblemen besproken:

• We beschouwen een gedistribueerd load-frequencyprobleem, wat het probleem is
van het dicht bij nul houden van frequentie-afwijkingen na verstoringen. Regelagen-
ten regelen elk hun eigen deel van het netwerk en moeten samenwerken om de best
mogelijke netwerkbrede prestaties te behalen. Om deze samenwerking te bewekstel-
lingen gebruiken de regelagenten de seriële of de parallele MVR-strategieën. We be-
schouwen zowel samenwerking gebaseerd op voorspellingsmodellen die alleen conti-
nue variabelen bevatten, als met gebruikmaking van voorspellingsmodellen die zowel
continue als ook discrete variabelen bevatten. Met behulp van simulaties illustreren
we de prestaties die de schema’s kunnen behalen.

• In de nabije toekomst zullen huishoudens de mogelijkheid hebben om hun eigen ener-
gie lokaal te produceren, lokaal op te slaan, te verkopen aan een energie-aanbieder en
mogelijk uit te wisselen met naburige huishoudens. We stellen een MVR-strategie
voor die gebruikt kan worden door een regelagent die het energiegebruik in een huis-
houden regelt. Deze regelagent neemt in zijn regeling verwachte energieprijzen, voor-
spelde energieconsumptiepatronen en de dynamica van het huishouden mee. We il-
lustreren de prestaties die de regelagent kan behalen voor een gegeven scenario van
energieprijzen en consumptiepatronen.

• Spanningsinstabiliteiten vormen een belangrijke bron van elektriciteitsuitval. Om te
voorkomen dat spanningsinstabiliteiten ontstaan is lokaal bij generatielokaties een
laag van regelagenten geïnstalleerd. Een dergelijke lokale regeling werkt onder nor-
male omstandigheden goed, maar levert ten tijde van grote verstoringen geen ade-
quate prestaties. In dergelijke situaties moeten de acties van de lokale regelagenten
gecoördineerd worden. Wij stellen een MVR-regelagent voor die tot taak heeft de-
ze coördinatie te realiseren. De voorgestelde MVR-strategie maakt gebruik van ofwel
een object-georiënteerd model van het elektriciteitsnetwerk ofwel van een benadering
van dit model verkregen na linearisatie. We illustreren de prestaties die behaald kun-
nen worden met behulp van simulaties op een dynamisch 9-bus elektriciteitsnetwerk.

• Regeling gebaseerd op optimal power flow(OPF) kan gebruikt worden om in trans-
missienetwerken de steady-statespanningsprof elen te verbeteren, het overschrijden
van capaciteitslimieten te voorkomen, en vermogensverliezen te minimaliseren. Een
type apparaat waarvoor met behulp van OPF-regeling actuatorinstellingen bepaald
kunnen worden zijn flexible alternating current transmission systems(FACTS). Wij
beschouwen een situatie waarin verschillende FACTS-apparaten aanwezig zijn en elk
FACTS-apparaat geregeld wordt door een regelagent. Elke regelagent beschouwt als
zijn deelnetwerk dat deel van het netwerk dat zijn FACTS-apparaat kan beïnvloeden.
Aangezien de deelnetwerken gebaseerd zijn op beïnvloedingsregio’s kunnen verschil-
lende deelnetwerken overlappend zijn. Wij stellen een coördinatie- en communica-
tieschema voor dat kan omgaan met een dergelijke overlap. Via simulatiestudies op
een aangepast elektriciteitsnetwerk met 57 bussen illustreren we de prestaties.

Rudy R. Negenborn
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Multi-Agent Model Predictive Control
with Applications to Power Networks

Transportation networks, such as power distribution and transmission networks, road traf-
f c networks, water distribution networks, railway networks, etc., are the corner stones of
modern society. A smooth, eff cient, reliable, and safe operation of these systems is of huge
importance for the economic growth, the environment, and the quality of life, not only when
the systems are pressed to the limits of their performance, but also under regular operating
conditions. As transportation networks have to operate closer and closer to their capacity
limits and as the dynamics of these networks become more and more complex, currently
used control strategies can no longer provide adequate performance in all situations. Hence,
control of transportation networks has to be advanced to a higher level using novel control
techniques.

A class of transportation networks for which such new control techniques are in partic-
ular required are power networks. The structure of power networks is changing at several
levels. At a European level the electricity networks of the individual countries are becoming
more integrated as high-capacity power lines are constructed to enhance system security. At
a national level power does not any longer only f ow from the transmission network in the
direction of the distribution network and onwards to the industrial sites and cities, but also
in the other direction. Furthermore, at the local level controllable loads are installed, en-
ergy can be generated locally with small-scale generators, and energy can be stored locally
using batteries. To still guarantee basic requirements and service levels and to meet the de-
mands and requirements of the users while facing the changing structure of power networks,
state-of-the-art control techniques have to be developed and implemented.

In this PhD thesis we propose several new control techniques designed for handling the
emerging problems in transportation networks in general and power networks in particular.
To manage the typically large size and distributed nature of the control problems encoun-
tered, we employ multi-agent approaches, in which several control agents each control their
own part of the network and cooperate to achieve the best possible overall performance.
To be able to incorporate all available information and to be able to anticipate undesired
behavior at an early stage, we use model predictive control (MPC).

Next we give a summary of the control techniques proposed in this PhD thesis and
the control problems from a particular class of transportation networks, viz. the class of
power networks, to which we apply the proposed control techniques in order to assess their
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performance.

Multi-agent model predictive control

In multi-agent control, control is distributed over several control agents. The control agents
can be grouped according to the authority relationships that they have among each other.
The result is a layered control structure in which control agents at higher layers have au-
thority over control agents in lower layers, and control agents within a control layer have
equal authority relationships. In multi-agent MPC, control agents take actions based on
predictions that they make using a prediction model of the part of the overall system they
control. At higher layers typically less detailed models and slower time scales are consid-
ered, whereas at lower layers more detailed models and faster time scales are considered.

In this PhD thesis the following control strategies for control agents at various locations
in a control structure are proposed and discussed:

• For coordination of control agents within a control layer a novel serial scheme for
multi-agent MPC is proposed and compared with an existing parallel scheme. In the
approach it is assumed that the dynamics of the subnetworks that the control agents
control are purely continuous and can be modeled with interconnected linear discrete-
time time-invariant models in which all variables take on continuous values.

• In practice, the dynamics of the subnetworks may show hybrid dynamics, caused
by both continuous and discrete dynamics. We discuss how discrete dynamics can
be captured by systems of linear equalities and inequalities and how control agents
can use this in their decision making. In addition, we propose an extension of the
coordination schemes for purely continuous systems that deals with interconnected
linear time-invariant subnetworks with integer inputs.

• For an individual control agent that determines set-points for control agents in a lower
control layer, creating object-oriented prediction models is discussed. Such an object-
oriented prediction model is then used to formulate an MPC control problem. We
propose to use the optimization technique pattern search to solve the resulting MPC
control problem. In addition, for eff ciency reasons, we propose an MPC control
strategy based on a linearization of the object-oriented prediction model.

• Commonly, subnetworks are def ned based on already existing network regions. Such
subnetworks typically do not overlap. However, when subnetworks are based on,
e.g., regions of inf uence of actuators, then the subnetworks may be overlapping. For
multiple control agents in a higher control layer, at which it can be assumed that the
behavior of the underlying control layers is static, we propose an MPC strategy for
control of overlapping subnetworks.

Multi-agent control problems in power networks

Power networks are a particular class of transportation networks and are subject to a chang-
ing structure. This changing structure requires the development of advanced control tech-
niques in order to maintain adequate control performance. The control strategies proposed
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in this PhD thesis are applied to and assessed on specif c power domain control problems.
In particular, we discuss the following power network problems and control approaches:

• We consider a distributed load-frequency control problem, which is the problem of
maintaining frequency deviations after load disturbances close to zero. Control agents
each control their own part of the network and have to cooperate in order to achieve
the best possible overall network performance. The control agents achieve this by
obtaining agreement on how much power should f ow among the subnetworks. The
serial and parallel MPC strategies are employed for this, both when the prediction
models involve only continuous variables, and when the prediction models involve
both continuous and discrete variables. In simulations we illustrate the performance
that the schemes can obtain.

• In the near future households will be able to produce their own energy, store it locally,
sell it to an energy supplier, and perhaps exchange it with neighboring households.
We propose an MPC strategy to be used by a control agent controlling the energy
usage in a household. This control agent takes into account expected energy prices,
predicted energy consumption patterns, and the dynamics of the household, including
dynamics of local energy generation and storage devices. For a given scenario of
energy prices and consumption patterns, the performance that the control agent can
achieve are illustrated.

• Voltage instability is a major source of power outages. To prevent voltage instability
from emerging, a lower layer of control agents is installed in power networks at gen-
eration sites. These agents locally adjust generation to maintain voltage magnitudes.
Such local control works well under normal operating conditions. However, under
large disturbances such local control does not provide adequate performance. In such
situations, the actions of the local control agents have to be coordinated. We propose
an MPC control agent that has the task to coordinate the local control agents. The
MPC strategy that the agent uses is based on either an object-oriented model of the
power network or on a linearized approximation of this model. The object-oriented
model includes a model of the physical network and the local control agents. We
illustrate the performance of the MPC control agent using the object-oriented model
or the linearized approximation via simulations on a dynamic 9-bus power network.

• Optimal power f ow control is commonly used to improve steady-state power network
security by improving the voltage prof le, preventing lines from overloading, and min-
imizing active power losses. Using optimal power f ow control, device settings for
f exible alternating current transmission systems (FACTS) can be determined. We
consider the situation in which there are several FACTS devices, each controlled by a
different control agent. The subnetwork that each control agent considers consists of a
region of inf uence of its FACTS device. Since the subnetworks are based on regions
of inf uence, the subnetworks of several agents may be overlapping. We propose a
coordination and communication scheme that takes this overlap into account. In sim-
ulation experiments on an adjusted 57-bus IEEE power network the performance of
the scheme is illustrated.

Rudy R. Negenborn
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