Glossary

Conventions

The following conventions are used in this thesis for notation and symbols:

- A lower case character typeset in boldface, e.g., x, represents a column vector.
- The number of elements in a vector \mathbf{x} is indicated by $n_{\mathbf{x}}$.
- An upper case character typeset in boldface, e.g., A, represents a matrix.
- A character typeset in calligraphics, e.g., \mathcal{N} , represents a set.
- A tilde over a variable, e.g., \tilde{x} , indicates a variable specified over a prediction horizon.
- A bar over a variable, e.g., \bar{x} , indicates that the value of the variable is known.
- A subscript *i* or *j* of a variable, e.g., *x_i* or *x_j*, refers to a variable of a control agent or subnetwork *i* or *j*, respectively.
- Subscripts max and min of a variable, e.g., *x*_{max} and *x*_{min}, represent the maximum and minimum value of that variable, respectively.
- A subscript avg, e.g., x_{avg} , indicates that an average is considered.
- A superscript ι or ω of a variable, e.g., x^ι or x^ω, refers to a variable beloning to node ι or ω, respectively.
- A superscript T, e.g., \mathbf{x}^{T} , indicates that a transpose is taken.

List of symbols and notations

Below follows a list of the most frequently used symbols and notations in this thesis. Symbols particular to power network applications are explained only in the relevant chapters.

$\mathbf{A}, \mathbf{A}_{c}$	system matrices of linear time-invariant models
${\bf B}, {\bf B}_1, {\bf B}_2, {\bf B}_3$	input matrices of linear time-invariant models
$\mathbf{C}, \mathbf{C}_{\mathrm{c},y}, \mathbf{C}_{\mathrm{c},z}$	output matrices of linear time-invariant models

Glossary

localized constraint type
exogeneous input direct-feedthrough matrices of linear time-invariant models
matrices of mixed-logical dynamic models
function vector with linear cost coefficients state-offset vectors of linear time-invariant models
equality constraint function equality constraint function with all variables except u fixed equality constraint function of subnetwork i for an internal node equality constraint function of subnetworks i for an internal node that is connected to an external node equality constraint function of subnetwork i for an external node equality constraint function of subnetwork i for an external node output offset water of linear time inversiont models
inequality constraint function
inequality constraint function
index of a control agent or a subnetwork identity matrix
index of a neighboring agent objective function additional, cycle, relative, and full simulation cost localized objective function term type
discrete time step or control cycle counter control cycle counter control cycle finishing step prediction step counter interconnecting-output selection matrix of agent <i>i</i>
a control cycle counter within predictions an augmented Lagrange function
number of neighbors of control agent <i>i</i> prediction model and linearized prediction model mesh with candidate solutions
number of subnetworks number of elements in vector a length of a prediction horizon length of a prediction horizon in control cycles number of initial solutions number of iterations

$egin{array}{l} N_{ m p} & N_{\Delta s} & N_{\iota} & N_{\iota} & N^+ & N_{\iota} & \mathcal{N}_{\iota} & \mathcal{N}_{\iota}$	length of a prediction horizon in discrete time steps number of iterations between parameter updates number of control agents that have node ι in their subnetwork set of natural numbers set of positive natural numbers set of indexes of neighboring agents of agent <i>i</i> set of indexes of neighboring nodes of node ι
р	parameter
Q, Q_a	weight matrices for quadratic costs
\mathbb{R}	set of real numbers
s s, s^+	iteration number solution vector and a new solution vector
t t_0, t_f, t_{fault} T_c T_{comp} T_{opt} T_p	continuous time instant initial, finishing, and fault continuous time instant length of a discrete control cycle in seconds computation time in seconds finishing time of an optimization in seconds length of a discrete time step in seconds
и и _b и _c U U	input variable binary input variable continuous input variable vector with input vectors of all agents domain with integer values
Vi	local remaining variable of subnetwork <i>i</i>
$egin{aligned} & \mathcal{W}_{ ext{in},ji} \ & \mathcal{W}_{ ext{out},ij} \ & \mathbf{W}_{ ext{in},i} \ & \mathbf{W}_{ ext{out},i} \ & \mathbf{W}_{ ext{in}} \ & \mathbf{W}_{ ext{in}} \ & \mathbf{W}_{ ext{out}} \end{aligned}$	interconnecting input of subnetwork i interconnecting output of subnetwork j vector with all interconnecting inputs of agent i vector with all interconnecting outputs of agent i vector with the interconnecting inputs of all agents vector with the interconnecting outputs of all agents
$x \\ x_b \\ x_c \\ X$	state variable binary state variable continuous state variable vector with states of all agents
y Yb Yc Ydesired,max,Ydesired,min	output variable binary output continuous output desired upper and lower bound

157

Yerr Y	maximum of the violation of an upper and lower bound vector with output variables of all agents
Z	auxiliary continuous variable
Z∞	auxiliary variable for computing an ∞ -norm
\mathbf{z}_1	auxiliary variables for computing a 1-norm
$\gamma_{ m b}, \gamma_{ m c}$	positive penalty coefficients
$\gamma_{\rm contr}$	contraction factor
$\gamma_{ m exp}$	expansion factor
$\gamma_{\rm m}, \gamma_{\rm M}$	minimum and maximum of a function
$\gamma_{ m mesh}$	mesh size change
$\gamma_{ m s}$	sensitivity threshold
$\gamma_{\Delta \mathrm{c}}$	multiplication factor for $\gamma_{\rm c}$
$\gamma_{\epsilon,\mathrm{mach}}$	small postive constant close to machine precision
$\gamma_{\epsilon, ext{term}}$	small postive constant used for determining termination
δ	binary variable
ι	index of a node
$\lambda_{\mathrm{in},ji}$	Lagrange multiplier of an interconnecting input constraint
$\lambda_{\mathrm{out},ij}$	Lagrange multiplier of an interconnecting output constraint
$\lambda_{\text{hard,ext},i}$	Lagrange multiplier of a constraint of subnetwork <i>i</i> for an internal
	node that is connected to an external node
$\lambda_{ ext{soft},i}$	Lagrange multiplier of a constraint of subnetwork <i>i</i> for an external
	node
${f \Lambda}_{ m in}$	vector with Lagrange multipliers of all agents
ν	number of nodes in a network
ω	index of a neighboring node

List of abbreviations

The following abbreviations are used in this thesis:

AVR	Automatic Voltage Regulator
DAE	Differential-Algebraic Equations
FACTS	Flexible Alternating-Current Transmission System
MPC	Model Predictive Control
PSS	Power System Stabilizer
SVC	Static Var Compensator
TCSC	Thyristor Controlled Series Compensators
μ CHP	micro Combined Heat and Power