Additional notes related to the PhD thesis: Multi-Agent Model Predictive Control with Applications to Power Networks

R.R. Negenborn

December 10, 2008

• In Section 2.3. "Interconnected control problems", Equation (2.10) should be replaced by:

$$\tilde{\mathbf{w}}_{\mathrm{out},i}(k) = \tilde{\mathbf{K}}_i \begin{bmatrix} \tilde{\mathbf{x}}_i(k)^\mathrm{T} & \tilde{\mathbf{u}}_i(k)^\mathrm{T} & \tilde{\mathbf{y}}_i(k)^\mathrm{T} \end{bmatrix}^\mathrm{T}$$

- In Section 2.4.4. "Parallel versus serial schemes", in the paragraph "Parallel implementation", the following text:
 - 2 (b) For all agents $i \in \{1, ..., n\}$, at the same time, agent i solves the problem (2.21) to determine $\tilde{\mathbf{x}}_i(k+1)^{(s)}$, $\tilde{\mathbf{u}}_i(k)^{(s)}$, $\tilde{\mathbf{w}}_{\mathrm{in},ji}(k)^{(s)}$, $\tilde{\mathbf{w}}_{\mathrm{out},ji}(k)^{(s)}$, and sends to agent $j \in \mathcal{N}_i$ the computed values $\tilde{\mathbf{w}}_{\mathrm{out},ji}(k)^{(s)}$.

should be replaced by

- 2 (b) For all agents $i \in \{1, ..., n\}$, at the same time, agent i solves the problem (2.21) to determine $\tilde{\mathbf{x}}_i(k+1)^{(s)}$, $\tilde{\mathbf{u}}_i(k)^{(s)}$, $\tilde{\mathbf{w}}_{\mathrm{in},ji}(k)^{(s)}$, $\tilde{\mathbf{w}}_{\mathrm{out},ji}(k)^{(s)}$, and sends to agent $j \in \mathcal{N}_i$ the computed values $\tilde{\mathbf{w}}_{\mathrm{out},ii}(k)^{(s)}$ and $\tilde{\mathbf{w}}_{\mathrm{in},ii}(k)^{(s)}$.
- In Section 2.4.4. "Parallel versus serial schemes", in the paragraph "Serial implementation", the following text:

... and given the previous information $\tilde{\mathbf{w}}_{\text{prev},ij}(k) = \tilde{\mathbf{w}}_{ij}^{(s-1)}(k)$ of the *last* iteration s-1...

should be replace by

... and given the previous information $\tilde{\mathbf{w}}_{\text{in,prev},ij}(k) = \tilde{\mathbf{w}}_{\text{in},ij}(k)^{(s-1)}$, $\tilde{\mathbf{w}}_{\text{out,prev},ij}(k) = \tilde{\mathbf{w}}_{\text{out},ij}(k)^{(s-1)}$ of the *last* iteration s-1...

- In Section 2.4.4. "Parallel versus serial schemes", in the paragraph "Serial implementation", the following text:
 - (ii) 2 For all agents $i=1,\ldots,n$, one agent after another, agent i determines $\tilde{\mathbf{x}}_i(k+1)^{(s)}, \tilde{\mathbf{u}}_i(k)^{(s)}, \tilde{\mathbf{w}}_{\mathrm{in},ji}(k)^{(s)}, \tilde{\mathbf{w}}_{\mathrm{out},ji}(k)^{(s)}$ by solving (2.21), and sends to agent $j \in \mathcal{N}_i$ the computed values $\tilde{\mathbf{w}}_{\mathrm{out},ji}(k)^{(s)}$.

should be replaced by

2 (b) For all agents $i=1,\ldots,n$, one agent after another, agent i determines $\tilde{\mathbf{x}}_i(k+1)^{(s)}, \tilde{\mathbf{u}}_i(k)^{(s)}, \tilde{\mathbf{w}}_{\mathrm{in},ji}(k)^{(s)}, \tilde{\mathbf{w}}_{\mathrm{out},ji}(k)^{(s)}$ by solving (2.21), and sends to agent $j \in \mathcal{N}_i$ the computed values $\tilde{\mathbf{w}}_{\mathrm{out},ji}(k)^{(s)}$ and $\tilde{\mathbf{w}}_{\mathrm{in},ji}(k)^{(s)}$.

• (PMN) After equation (2.22) should follow:

Send $\tilde{\lambda}_{\text{in},ji}^{(s+1)}(k)$ to controller j and receive the multipliers from controller j to be used as $\tilde{\lambda}_{\text{out},ij}^{(s+1)}(k)$.

• (GB) In Section 5.6.1. "Steady-state characteristics of power networks", paragraph "Transmission lines", Equation (5.7), the term

$$+ z_{V,\iota} z_{V,\omega} \left(rac{\eta_{R,\iota\omega}}{\left(\eta_{R,\iota\omega}
ight)^2 + \left(\eta_{X,\iota\omega}
ight)^2} \sin(z_{ heta,\iota} - z_{ heta,\omega})
ight)$$

should be

$$-z_{V,\iota}z_{V,\omega}\left(rac{\eta_{R,\iota\omega}}{\left(\eta_{R,\iota\omega}
ight)^2+\left(\eta_{X,\iota\omega}
ight)^2}\sin(z_{ heta,\iota}-z_{ heta,\omega})
ight)$$

Acknowledgments

I thank Gautam Bajracharya (GB) and Paul Mc Namara (PMN) for notifying me of corrections.